Generate original array from an array that store the counts of greater elements on right

Last Updated : 09 Nov, 2022
Comments
Improve
Suggest changes
Like Article
Like
Report

Given an array of integers greater[] in which every value of array represents how many elements are greater to its right side in an unknown array arr[]. Our task is to generate original array arr[]. It may be assumed that the original array contains elements in range from 1 to n and all elements are unique 

Examples: 

Input: greater[] = { 6, 3, 2, 1, 0, 0, 0 }
Output: arr[] = [ 1, 4, 5, 6, 7, 3, 2 ]

 Input: greater[] = { 0, 0, 0, 0, 0 }
Output: arr[] = [ 5, 4, 3, 2, 1 ]  

We consider an array of elements temp[] = {1, 2, 3, 4, .. n}. We know value of greater[0] indicates count of elements greater than arr[0]. We can observe that (n - greater[0])-th element of temp[] can be put at arr[0]. So we put this at arr[0] and remove this from temp[]. We repeat above process for remaining elements. For every element greater[i], we put (n - greater[i] - i)-th element of temp[] in arr[i] and remove it from temp[].

Below is the implementation of the above idea 

C++
// C++ program to generate original array
// from an array that stores counts of
// greater elements on right.
#include <bits/stdc++.h>
using namespace std;

void originalArray(int greater[], int n)
{
    // Array that is used to include every
    // element only once
    vector<int> temp;
    for (int i = 0; i <= n; i++)
        temp.push_back(i);

    // Traverse the array element
    int arr[n];
    for (int i = 0; i < n; i++) {

        // find the K-th (n-greater[i]-i)
        // smallest element in Include_Array
        int k = n - greater[i] - i;

        arr[i] = temp[k];

        // remove current k-th element
        // from Include array
        temp.erase(temp.begin() + k);
    }

    // print resultant array
    for (int i = 0; i < n; i++)
        cout << arr[i] << " ";
}

// driver program to test above function
int main()
{
    int Arr[] = { 6, 3, 2, 1, 0, 1, 0 };
    int n = sizeof(Arr) / sizeof(Arr[0]);
    originalArray(Arr, n);
    return 0;
}
Java
// Java program to generate original array
// from an array that stores counts of
// greater elements on right.
import java.util.Vector;

class GFG {

    static void originalArray(int greater[], int n)
    {
        // Array that is used to include every
        // element only once
        Vector<Integer> temp = new Vector<Integer>();
        for (int i = 0; i <= n; i++)
            temp.add(i);

        // Traverse the array element
        int arr[] = new int[n];
        for (int i = 0; i < n; i++) {

            // find the K-th (n-greater[i]-i)
            // smallest element in Include_Array
            int k = n - greater[i] - i;

            arr[i] = temp.get(k);

            // remove current k-th element
            // from Include array
            temp.remove(k);
        }

        // print resultant array
        for (int i = 0; i < n; i++)
            System.out.print(arr[i] + " ");
    }

    // Driver code
    public static void main(String[] args)
    {
        int Arr[] = { 6, 3, 2, 1, 0, 1, 0 };
        int n = Arr.length;
        originalArray(Arr, n);
    }
}

// This code is contributed by Rajput-Ji
Python3
# Python3 program original array from an
# array that stores counts of greater
# elements on right


def originalArray(greater, n):

    # array that is used to include
    # every element only once
    temp = []

    for i in range(n + 1):
        temp.append(i)

    # traverse the array element
    arr = [0 for i in range(n)]

    for i in range(n):

        # find the Kth (n-greater[i]-i)
        # smallest element in Include_array
        k = n - greater[i] - i

        arr[i] = temp[k]

        # remove current kth element
        # from include array
        del temp[k]

    for i in range(n):
        print(arr[i], end=" ")


# Driver code
arr = [6, 3, 2, 1, 0, 1, 0]
n = len(arr)
originalArray(arr, n)

# This code is contributed
# by Mohit Kumar
C#
// C# program to generate original array
// from an array that stores counts of
// greater elements on right.
using System;
using System.Collections.Generic;

class GFG {

    static void originalArray(int[] greater, int n)
    {
        // Array that is used to include every
        // element only once
        List<int> temp = new List<int>();
        for (int i = 0; i <= n; i++)
            temp.Add(i);

        // Traverse the array element
        int[] arr = new int[n];
        for (int i = 0; i < n; i++) {

            // find the K-th (n-greater[i]-i)
            // smallest element in Include_Array
            int k = n - greater[i] - i;

            arr[i] = temp[k];

            // remove current k-th element
            // from Include array
            temp.RemoveAt(k);
        }

        // print resultant array
        for (int i = 0; i < n; i++)
            Console.Write(arr[i] + " ");
    }

    // Driver code
    public static void Main()
    {
        int[] Arr = { 6, 3, 2, 1, 0, 1, 0 };
        int n = Arr.Length;
        originalArray(Arr, n);
    }
}

/* This code contributed by PrinciRaj1992 */
JavaScript
<script>

// JavaScript program to generate original array 
// from an array that stores counts of 
// greater elements on right.
    
    function originalArray(greater,n)
    {
        // Array that is used to include every 
    // element only once 
    let temp = [];
    for (let i = 0; i <= n; i++) 
        temp.push(i); 
  
    // Traverse the array element 
    let arr = new Array(n); 
    for (let i = 0; i < n; i++)
    { 
  
        // find the K-th (n-greater[i]-i) 
        // smallest element in Include_Array 
        let k = n - greater[i] - i; 
  
        arr[i] = temp[k]; 
  
        // remove current k-th element 
        // from Include array 
        temp.splice(k,1); 
    } 
  
    // print resultant array 
    for (let i = 0; i < n; i++) 
            document.write(arr[i] + " "); 
    }
    
    // Driver code
    let Arr=[6, 3, 2, 1, 0, 1, 0 ];
    let n = Arr.length; 
    originalArray(Arr, n);
    

// This code is contributed by patel2127

</script>

Output
1 4 5 6 7 2 3 

Time Complexity: (n2) (Erase operation takes O(n) in vector).
Auxiliary Space: O(n), extra space is required for temp and res arrays.


Next Article
Article Tags :
Practice Tags :

Similar Reads