How to implement Priority Queue - using Heap or Array?
Last Updated :
02 Mar, 2023
A Priority Queue is a data structure that allows you to insert elements with a priority, and retrieve the element with the highest priority.
You can implement a priority queue using either an array or a heap. Both array and heap-based implementations of priority queues have their own advantages and disadvantages. Arrays are generally easier to implement, but they can be slower because inserting and deleting elements requires shifting the elements in the array. Heaps are more efficient, but they can be more complex to implement. You can also refer to the Difference between Heaps and Sorted Array for a general comparison between the two.
Heap-based implementation of a priority queue
It involves creating a binary heap data structure and maintaining the heap property as elements are inserted and removed. In a binary heap, the element with the highest priority is always the root of the heap. To insert an element, you would add it to the end of the heap and then perform the necessary heap operations (such as swapping the element with its parent) to restore the heap property. To retrieve the highest priority element, you would simply return the root of the heap.
To implement a priority queue using a heap, we can use the following steps:
- Create a heap data structure (either a max heap or a min-heap)
- To insert an element into the priority queue, add the element to the heap using the heap's insert function. The heap will automatically rearrange the elements to maintain the heap property.
- To remove the highest priority element (in a max heap) or the lowest priority element (in a min-heap), use the heap's remove function. This will remove the root of the tree and rearrange the remaining elements to maintain the heap property.
Example 1:
C++
//Implement a priority queue in C++ using a heap
#include <iostream>
#include <vector>
#include <string>
class PriorityQueue {
public:
struct Node {
std::string task;
int priority;
Node(std::string task, int priority) : task(task), priority(priority) {}
};
std::vector<Node> heap;
void insert(std::string task, int priority) {
heap.push_back(Node(task, priority));
int idx = heap.size() - 1;
while (idx != 0) {
int parentIdx = (idx - 1) / 2;
if (heap[parentIdx].priority < heap[idx].priority) {
std::swap(heap[parentIdx], heap[idx]);
idx = parentIdx;
} else {
break;
}
}
}
Node extractMax() {
Node maxNode = heap[0];
heap[0] = heap.back();
heap.pop_back();
int idx = 0;
while (idx < heap.size()) {
int leftChildIdx = idx * 2 + 1;
int rightChildIdx = idx * 2 + 2;
int largerChildIdx = leftChildIdx;
if (rightChildIdx < heap.size() && heap[rightChildIdx].priority > heap[leftChildIdx].priority) {
largerChildIdx = rightChildIdx;
}
if (largerChildIdx < heap.size() && heap[largerChildIdx].priority > heap[idx].priority) {
std::swap(heap[largerChildIdx], heap[idx]);
idx = largerChildIdx;
} else {
break;
}
}
return maxNode;
}
};
int main() {
PriorityQueue pq;
pq.insert("Task 1", 1);
pq.insert("Task 2", 2);
pq.insert("Task 3", 3);
pq.insert("Task 4", 4);
while (!pq.heap.empty()) {
PriorityQueue::Node max = pq.extractMax();
std::cout << max.task << std::endl;
}
return 0;
}
//Code is contributed by Kushal Pareek
Java
import java.util.ArrayList;
import java.util.List;
class PriorityQueue {
static class Node {
String task;
int priority;
Node(String task, int priority) {
this.task = task;
this.priority = priority;
}
}
List<Node> heap = new ArrayList<>();
// Adds a task to the priority queue
public void insert(String task, int priority) {
heap.add(new Node(task, priority));
int idx = heap.size() - 1;
while (idx != 0) {
int parentIdx = (idx - 1) / 2;
if (heap.get(parentIdx).priority < heap.get(idx).priority) {
swap(parentIdx, idx);
idx = parentIdx;
} else {
break;
}
}
}
// Extracts the task with the highest priority
public Node extractMax() {
Node maxNode = heap.get(0);
heap.set(0, heap.get(heap.size() - 1));
heap.remove(heap.size() - 1);
int idx = 0;
while (idx < heap.size()) {
int leftChildIdx = idx * 2 + 1;
int rightChildIdx = idx * 2 + 2;
int largerChildIdx = leftChildIdx;
if (rightChildIdx < heap.size() && heap.get(rightChildIdx).priority > heap.get(leftChildIdx).priority) {
largerChildIdx = rightChildIdx;
}
if (largerChildIdx < heap.size() && heap.get(largerChildIdx).priority > heap.get(idx).priority) {
swap(largerChildIdx, idx);
idx = largerChildIdx;
} else {
break;
}
}
return maxNode;
}
private void swap(int i, int j) {
Node temp = heap.get(i);
heap.set(i, heap.get(j));
heap.set(j, temp);
}
}
public class Main {
public static void main(String[] args) {
PriorityQueue pq = new PriorityQueue();
pq.insert("Task 1", 1);
pq.insert("Task 2", 2);
pq.insert("Task 3", 3);
pq.insert("Task 4", 4);
while (!pq.heap.isEmpty()) {
PriorityQueue.Node max = pq.extractMax();
System.out.println(max.task);
}
}
}
// This code is contributed by Edula Vinay Kumar Reddy
Python3
class MaxHeap:
def __init__(self):
self.heap = []
def insert(self, val):
self.heap.append(val)
self.heapify_up()
def remove(self):
if len(self.heap) == 0:
return None
if len(self.heap) == 1:
return self.heap.pop()
val = self.heap[0]
self.heap[0] = self.heap.pop()
self.heapify_down()
return val
def heapify_up(self):
idx = len(self.heap) - 1
while idx > 0:
parent_idx = (idx - 1) // 2
if self.heap[idx] > self.heap[parent_idx]:
self.heap[idx], self.heap[parent_idx] = self.heap[parent_idx], self.heap[idx]
idx = parent_idx
else:
break
def heapify_down(self):
idx = 0
while idx * 2 + 1 < len(self.heap):
left_child_idx = idx * 2 + 1
right_child_idx = idx * 2 + 2
if right_child_idx < len(self.heap) and self.heap[right_child_idx] > self.heap[left_child_idx]:
largest_child_idx = right_child_idx
else:
largest_child_idx = left_child_idx
if self.heap[idx] < self.heap[largest_child_idx]:
self.heap[idx], self.heap[largest_child_idx] = self.heap[largest_child_idx], self.heap[idx]
idx = largest_child_idx
else:
break
class PriorityQueue:
def __init__(self):
self.heap = MaxHeap()
def insert(self, val, priority):
self.heap.insert((priority, val))
def remove(self):
return self.heap.remove()[1]
# Example usage
pq = PriorityQueue()
pq.insert('Task 1', 1)
pq.insert('Task 2', 2)
pq.insert('Task 3', 3)
pq.insert('Task 4', 4)
print(pq.remove()) # Output: Task 4
print(pq.remove()) # Output: Task 3
print(pq.remove()) # Output: Task 2
print(pq.remove()) # Output: Task 1
JavaScript
// JavaScript implementation:
class MaxHeap {
constructor() {
this.heap = [];
}
insert(val) {
this.heap.push(val);
this.heapifyUp();
}
remove() {
if (this.heap.length === 0) {
return null;
}
if (this.heap.length === 1) {
return this.heap.pop();
}
const val = this.heap[0];
this.heap[0] = this.heap.pop();
this.heapifyDown();
return val;
}
heapifyUp() {
let idx = this.heap.length - 1;
while (idx > 0) {
const parentIdx = Math.floor((idx - 1) / 2);
if (this.heap[idx] > this.heap[parentIdx]) {
[this.heap[idx], this.heap[parentIdx]] = [this.heap[parentIdx], this.heap[idx]];
idx = parentIdx;
} else {
break;
}
}
}
heapifyDown() {
let idx = 0;
while (idx * 2 + 1 < this.heap.length) {
const leftChildIdx = idx * 2 + 1;
const rightChildIdx = idx * 2 + 2;
let largestChildIdx;
if (rightChildIdx < this.heap.length && this.heap[rightChildIdx] > this.heap[leftChildIdx]) {
largestChildIdx = rightChildIdx;
} else {
largestChildIdx = leftChildIdx;
}
if (this.heap[idx] < this.heap[largestChildIdx]) {
[this.heap[idx], this.heap[largestChildIdx]] = [this.heap[largestChildIdx], this.heap[idx]];
idx = largestChildIdx;
} else {
break;
}
}
}
}
class PriorityQueue {
constructor() {
this.heap = new MaxHeap();
}
insert(val, priority) {
this.heap.insert([priority, val]);
}
remove() {
return this.heap.remove()[1];
}
}
// Example usage
const pq = new PriorityQueue();
pq.insert("Task 1", 1);
pq.insert("Task 2", 2);
pq.insert("Task 3", 3);
pq.insert("Task 4", 4);
console.log(pq.remove() + "<br>"); // Output: Task 4
console.log(pq.remove() + "<br>"); // Output: Task 3
console.log(pq.remove() + "<br>"); // Output: Task 2
console.log(pq.remove() + "<br>"); // Output: Task 1
// This code is contributed by lokesh.
C#
//Implement a priority queue in C# using a heap
using System;
using System.Collections.Generic;
public class MaxHeap
{
private List<int> heap;
public MaxHeap()
{
heap = new List<int>();
}
public void Insert(int val)
{
heap.Add(val);
HeapifyUp();
}
public int? Remove()
{
if (heap.Count == 0)
{
return null;
}
if (heap.Count == 1)
{
int val = heap[0];
heap.RemoveAt(0);
return val;
}
int result = heap[0];
heap[0] = heap[heap.Count - 1];
heap.RemoveAt(heap.Count - 1);
HeapifyDown();
return result;
}
private void HeapifyUp()
{
int idx = heap.Count - 1;
while (idx > 0)
{
int parentIdx = (idx - 1) / 2;
if (heap[idx] > heap[parentIdx])
{
int temp = heap[idx];
heap[idx] = heap[parentIdx];
heap[parentIdx] = temp;
idx = parentIdx;
}
else
{
break;
}
}
}
private void HeapifyDown()
{
int idx = 0;
while (idx * 2 + 1 < heap.Count)
{
int leftChildIdx = idx * 2 + 1;
int rightChildIdx = idx * 2 + 2;
int largestChildIdx;
if (rightChildIdx < heap.Count && heap[rightChildIdx] > heap[leftChildIdx])
{
largestChildIdx = rightChildIdx;
}
else
{
largestChildIdx = leftChildIdx;
}
if (heap[idx] < heap[largestChildIdx])
{
int temp = heap[idx];
heap[idx] = heap[largestChildIdx];
heap[largestChildIdx] = temp;
idx = largestChildIdx;
}
else
{
break;
}
}
}
}
public class PriorityQueue
{
private MaxHeap heap;
public PriorityQueue()
{
heap = new MaxHeap();
}
public void Insert(string val, int priority)
{
heap.Insert(priority);
}
public string Remove()
{
return heap.Remove().ToString();
}
}
public class Example
{
public static void Main()
{
PriorityQueue pq = new PriorityQueue();
pq.Insert("Task 1", 1);
pq.Insert("Task 2", 2);
pq.Insert("Task 3", 3);
pq.Insert("Task 4", 4);
Console.WriteLine(pq.Remove()); // Output: Task 4
Console.WriteLine(pq.Remove()); // Output: Task 3
Console.WriteLine(pq.Remove()); // Output: Task 2
Console.WriteLine(pq.Remove()); // Output: Task 1
}
}
//This code is contributed by shivamsharma215
OutputTask 4
Task 3
Task 2
Task 1
In the above code, we have defined two classes: MaxHeap and PriorityQueue. The MaxHeap class is used to implement the actual heap data structure, while the PriorityQueue class wraps the MaxHeap class and adds the functionality of a priority queue.
The MaxHeap class has the following functions:
- __init__: Initializes the heap as an empty list
- insert: Inserts a value into the heap and calls the heapify_up function to maintain the heap property
- remove: Removes the root of the heap (the maximum value in a max heap) and calls the heapify_down function to maintain the heap property
- heapify_up: Starting from the bottom of the heap, compares each node to its parent and swaps them if necessary to maintain the heap property
- heapify_down: Starting from the root of the heap, compares each node to its children and swaps them if necessary to maintain the heap property.
The PriorityQueue class has the following functions:
- __init__: Initializes the priority queue with an empty MaxHeap
- insert: Inserts a value into the priority queue with a given priority. The priority is stored along with the value in a tuple, and the tuple is inserted into the MaxHeap
- remove: Removes the highest priority value from the priority queue by calling the remove function on the MaxHeap, and returns only the value (not the priority)
Array-based implementation of a priority queue:
It involves creating an array of elements and sorting it in ascending or descending order of priority. To insert an element, you would need to shift the elements in the array to make room for the new element and then insert it at the appropriate position based on its priority. To retrieve the highest priority element, you would simply return the first element in the array.
To implement a priority queue using arrays, we can use the following steps:
- Create an array to store the elements of the priority queue
- To insert an element into the priority queue, add the element to the end of the array
- To remove the highest priority element (in a max heap) or the lowest priority element (in a min heap),
perform the following steps: - Find the index of the highest or lowest priority element in the array
- Swap the element at that index with the element at the end of the array
- Remove the element at the end of the array
- Repeat steps 1-3 until the element at the desired index is in the correct position
C++
//C++ code implementation of priority queue using an array
#include <iostream>
#include <string>
const int MAX_SIZE = 100;
class PriorityQueue {
private:
struct Task {
std::string name;
int priority;
};
Task queue[MAX_SIZE];
int size;
public:
PriorityQueue() {
size = 0;
}
void insert(std::string name, int priority) {
if (size == MAX_SIZE) {
std::cout << "Error: Queue is full" << std::endl;
return;
}
int i = size;
while (i > 0 && priority < queue[i - 1].priority) {
queue[i] = queue[i - 1];
i--;
}
queue[i].name = name;
queue[i].priority = priority;
size++;
}
std::string remove() {
if (size == 0) {
std::cout << "Error: Queue is empty" << std::endl;
return "";
}
std::string removedTask = queue[size - 1].name;
size--;
return removedTask;
}
};
int main() {
PriorityQueue pq;
pq.insert("Task 1", 1);
pq.insert("Task 2", 2);
pq.insert("Task 3", 3);
pq.insert("Task 4", 4);
std::cout << pq.remove() << std::endl; // Task 1
std::cout << pq.remove() << std::endl; // Task 2
std::cout << pq.remove() << std::endl; // Task 3
std::cout << pq.remove() << std::endl; // Task 4
return 0;
}
//This code is contributed by Kushal Pareek
Java
import java.util.ArrayList;
class PriorityQueue
{
// Declare an ArrayList to store our elements
ArrayList<Pair> queue;
// Initialize our priority queue
public PriorityQueue() {
this.queue = new ArrayList<Pair>();
}
// Insert an element into the queue with a given priority
public void insert(String val, int priority)
{
// Create a new pair object to store our element and its priority
Pair pair = new Pair(val, priority);
// Add the pair to the queue
this.queue.add(pair);
}
// Remove the element with the highest priority from the queue
public String remove() {
int maxIdx = 0;
// Iterate through the queue to find the element with the highest priority
for (int i = 1; i < this.queue.size(); i++) {
if (this.queue.get(i).priority > this.queue.get(maxIdx).priority) {
maxIdx = i;
}
}
String val = this.queue.get(maxIdx).val;
// Shift all elements after the removed element to the left
while (maxIdx < this.queue.size() - 1) {
this.queue.set(maxIdx, this.queue.get(maxIdx + 1));
maxIdx++;
}
this.queue.remove(this.queue.size() - 1);
return val;
}
// Inner class to store an element and its priority
private class Pair {
String val;
int priority;
public Pair(String val, int priority) {
this.val = val;
this.priority = priority;
}
}
public static void main(String[] args) {
PriorityQueue pq = new PriorityQueue();
pq.insert("Task 1", 1);
pq.insert("Task 2", 2);
pq.insert("Task 3", 3);
pq.insert("Task 4", 4);
System.out.println(pq.remove()); // Output: Task 4
System.out.println(pq.remove()); // Output: Task 3
System.out.println(pq.remove()); // Output: Task 2
System.out.println(pq.remove()); // Output: Task 1
}
}
// This code is contributed by Vikram_Shirsat
Python3
class PriorityQueue:
def __init__(self):
self.queue = []
def insert(self, val, priority):
self.queue.append((priority, val))
def remove(self):
max_idx = 0
for i in range(1, len(self.queue)):
if self.queue[i][0] > self.queue[max_idx][0]:
max_idx = i
val = self.queue[max_idx][1]
while max_idx < len(self.queue) - 1:
self.queue[max_idx] = self.queue[max_idx + 1]
max_idx += 1
self.queue.pop()
return val
# Example usage
pq = PriorityQueue()
pq.insert('Task 1', 1)
pq.insert('Task 2', 2)
pq.insert('Task 3', 3)
pq.insert('Task 4', 4)
print(pq.remove()) # Output: Task 4
print(pq.remove()) # Output: Task 3
print(pq.remove()) # Output: Task 2
print(pq.remove()) # Output: Task 1
C#
//C# code implementation of priority queue using an array
using System;
using System.Collections.Generic;
class PriorityQueue
{
// Declare a List to store our elements
private List<Pair> queue;
// Initialize our priority queue
public PriorityQueue()
{
this.queue = new List<Pair>();
}
// Insert an element into the queue with a given priority
public void insert(string val, int priority)
{
// Create a new pair object to store our element and its priority
Pair pair = new Pair(val, priority);
// Add the pair to the queue
this.queue.Add(pair);
}
// Remove the element with the highest priority from the queue
public string remove()
{
int maxIdx = 0;
// Iterate through the queue to find the element with the highest priority
for (int i = 1; i < this.queue.Count; i++)
{
if (this.queue[i].priority > this.queue[maxIdx].priority)
{
maxIdx = i;
}
}
string val = this.queue[maxIdx].val;
// Shift all elements after the removed element to the left
while (maxIdx < this.queue.Count - 1)
{
this.queue[maxIdx] = this.queue[maxIdx + 1];
maxIdx++;
}
this.queue.RemoveAt(this.queue.Count - 1);
return val;
}
// Inner class to store an element and its priority
private class Pair
{
public string val;
public int priority;
public Pair(string val, int priority)
{
this.val = val;
this.priority = priority;
}
}
static void Main(string[] args)
{
PriorityQueue pq = new PriorityQueue();
pq.insert("Task 1", 1);
pq.insert("Task 2", 2);
pq.insert("Task 3", 3);
pq.insert("Task 4", 4);
Console.WriteLine(pq.remove()); // Output: Task 4
Console.WriteLine(pq.remove()); // Output: Task 3
Console.WriteLine(pq.remove()); // Output: Task 2
Console.WriteLine(pq.remove()); // Output: Task 1
}
}
//This code is contributed by shivamsharma215
JavaScript
//javascript equivalent of above code
class PriorityQueue {
constructor() {
// Declare an ArrayList to store our elements
this.queue = [];
}
// Insert an element into the queue with a given priority
insert(val, priority) {
// Create a new pair object to store our element and its priority
const pair = new Pair(val, priority);
// Add the pair to the queue
this.queue.push(pair);
}
// Remove the element with the highest priority from the queue
remove() {
let maxIdx = 0;
// Iterate through the queue to find the element with the highest priority
for (let i = 1; i < this.queue.length; i++) {
if (this.queue[i].priority > this.queue[maxIdx].priority) {
maxIdx = i;
}
}
const val = this.queue[maxIdx].val;
// Shift all elements after the removed element to the left
while (maxIdx < this.queue.length - 1) {
this.queue[maxIdx] = this.queue[maxIdx + 1];
maxIdx++;
}
this.queue.pop();
return val;
}
}
// Inner class to store an element and its priority
class Pair {
constructor(val, priority) {
this.val = val;
this.priority = priority;
}
}
const pq = new PriorityQueue();
pq.insert("Task 1", 1);
pq.insert("Task 2", 2);
pq.insert("Task 3", 3);
pq.insert("Task 4", 4);
console.log(pq.remove()); // Output: Task 4
console.log(pq.remove()); // Output: Task 3
console.log(pq.remove()); // Output: Task 2
console.log(pq.remove()); // Output: Task 1
OutputTask 4
Task 3
Task 2
Task 1
In the above code, we have defined a class called PriorityQueue which implements a priority queue using an array. The PriorityQueue class has the following functions:
- __init__: Initializes the priority queue with an empty array
- insert: Inserts a value into the priority queue with a given priority. The priority is stored along with the value in a tuple, and the tuple is added to the end of the array
- remove: Removes the highest priority value from the priority queue by finding the index of the highest priority element in the array and swapping it with the element at the end of the array until it is in the correct position. Then, the element at the end of the array is removed and the value is returned.
Which is more efficient - Heap or Array, to implement Priority Queue?
Data structure | Insert | Search | Find min | Delete min |
---|
Sorted array | O(n) | O(log n) | O(1) | O(n) |
Min heap | O(log n) | O(n) | O(1) | O(log n) |
Both arrays and heaps can be used to implement priority queues, but heaps are generally more efficient because they offer faster insertion and retrieval times. The choice of data structure will depend on the specific requirements of your application. It is important to consider the trade-offs between the ease of implementation and the performance of the data structure when deciding which one to use.
Similar Reads
DSA Tutorial - Learn Data Structures and Algorithms DSA (Data Structures and Algorithms) is the study of organizing data efficiently using data structures like arrays, stacks, and trees, paired with step-by-step procedures (or algorithms) to solve problems effectively. Data structures manage how data is stored and accessed, while algorithms focus on
7 min read
Non-linear Components In electrical circuits, Non-linear Components are electronic devices that need an external power source to operate actively. Non-Linear Components are those that are changed with respect to the voltage and current. Elements that do not follow ohm's law are called Non-linear Components. Non-linear Co
11 min read
Quick Sort QuickSort is a sorting algorithm based on the Divide and Conquer that picks an element as a pivot and partitions the given array around the picked pivot by placing the pivot in its correct position in the sorted array. It works on the principle of divide and conquer, breaking down the problem into s
12 min read
Merge Sort - Data Structure and Algorithms Tutorials Merge sort is a popular sorting algorithm known for its efficiency and stability. It follows the divide-and-conquer approach. It works by recursively dividing the input array into two halves, recursively sorting the two halves and finally merging them back together to obtain the sorted array. Merge
14 min read
Bubble Sort Algorithm Bubble Sort is the simplest sorting algorithm that works by repeatedly swapping the adjacent elements if they are in the wrong order. This algorithm is not suitable for large data sets as its average and worst-case time complexity are quite high.We sort the array using multiple passes. After the fir
8 min read
Data Structures Tutorial Data structures are the fundamental building blocks of computer programming. They define how data is organized, stored, and manipulated within a program. Understanding data structures is very important for developing efficient and effective algorithms. What is Data Structure?A data structure is a st
2 min read
Breadth First Search or BFS for a Graph Given a undirected graph represented by an adjacency list adj, where each adj[i] represents the list of vertices connected to vertex i. Perform a Breadth First Search (BFS) traversal starting from vertex 0, visiting vertices from left to right according to the adjacency list, and return a list conta
15+ min read
Binary Search Algorithm - Iterative and Recursive Implementation Binary Search Algorithm is a searching algorithm used in a sorted array by repeatedly dividing the search interval in half. The idea of binary search is to use the information that the array is sorted and reduce the time complexity to O(log N). Binary Search AlgorithmConditions to apply Binary Searc
15 min read
Insertion Sort Algorithm Insertion sort is a simple sorting algorithm that works by iteratively inserting each element of an unsorted list into its correct position in a sorted portion of the list. It is like sorting playing cards in your hands. You split the cards into two groups: the sorted cards and the unsorted cards. T
9 min read
Dijkstra's Algorithm to find Shortest Paths from a Source to all Given a weighted undirected graph represented as an edge list and a source vertex src, find the shortest path distances from the source vertex to all other vertices in the graph. The graph contains V vertices, numbered from 0 to V - 1.Note: The given graph does not contain any negative edge. Example
12 min read