Matplotlib.pyplot.set_cmap() in Python
Last Updated :
28 Apr, 2025
Matplotlib.pyplot.set_cmap() is a
function in matplotlib that is used to set the default colormap for the current image or plot. A color map is a mapping from data values to colors, and it is essential in visualizing data through color variations, particularly in heatmaps, contour plots, and other types of color-mapped visualizations.
Matplotlib.pyplot.set_cmap() Syntax
Syntax: matplotlib.pyplot.set_cmap(cmap)
Parameters:
- cmap : This parameter is the colormap instance or the name of a registered colormap.
Returns: This method does not return any value.
Python Matplotlib.pyplot.set_cmap() Examples
Below are some examples by which we can learn more about Matplotlib.set_cmap() function and how to use Matplotlib cmap in Python:
- Matplotlib Triangular Plot
- Matplotlib Plot with Color Mapping
- 3-D Surface Plot with Colormap
Matplotlib Triangular Plot Using matplotlib.set_cmap() Functions
In this example below code implements a triangular plot using Matplotlib, where radial and angular coordinates are used to define points. The radial values vary from 0.35 to 0.95, forming concentric circles, while the angular values cover a range from 0 to π, divided into 40 segments. These coordinates are then transformed into Cartesian coordinates (x, y) and an additional variable (z) is computed based on a sinusoidal function.
Python3
# Implementation of matplotlib function
import matplotlib.pyplot as plt
import matplotlib.tri as tri
import numpy as np
ang = 40
rad = 10
radm = 0.35
radii = np.linspace(radm, 0.95, rad)
angles = np.linspace(0, np.pi, ang)
angles = np.repeat(angles[..., np.newaxis],
rad, axis = 1)
angles[:, 1::2] += np.pi / ang
x = (radii * np.cos(angles)).flatten()
y = (radii * np.sin(angles)).flatten()
z = (np.sin(4 * radii) * np.cos(4 * angles)).flatten()
triang = tri.Triangulation(x, y)
triang.set_mask(np.hypot(x[triang.triangles].mean(axis = 1),
y[triang.triangles].mean(axis = 1))
< radm)
tpc = plt.tripcolor(triang, z,
shading ='flat')
plt.set_cmap("Greens")
plt.title('matplotlib.pyplot.set_cmap() Example')
plt.show()
Output:

Matplotlib Plot with Color Mapping using Matplotlib.set_cmap() Function
In this example, we are using Matplotlib to create a plot with two overlaid images. The first image (Z1) generates a checkerboard pattern using modulo operations, displayed in binary reversed colormap. The second image (Z2) is created by applying a mathematical function on a meshgrid (X, Y). The resulting plot combines both images with different alpha values, creating a visually interesting composition.
Python3
# Implementation of matplotlib function
import matplotlib.pyplot as plt
import numpy as np
from matplotlib.colors import LogNorm
dx, dy = 0.015, 0.05
x = np.arange(-4.0, 4.0, dx)
y = np.arange(-4.0, 4.0, dy)
X, Y = np.meshgrid(x, y)
extent = np.min(x), np.max(x), np.min(y), np.max(y)
Z1 = np.add.outer(range(8), range(8)) % 2
plt.imshow(Z1, cmap ="binary_r",
interpolation ='nearest',
extent = extent, alpha = 1)
def geeks(x, y):
return (1 - x / 2 + x**5 + y**6) * np.exp(-(x**2 + y**2))
Z2 = geeks(X, Y)
plt.imshow(Z2, alpha = 0.7,
interpolation ='bilinear',
extent = extent)
plt.set_cmap("gist_rainbow")
plt.title('matplotlib.pyplot.set_cmap() Example')
plt.show()
Output:

Surface Plot with Colormap Using matplotlib.set_cmap() Method
In this example, we are using NumPy and Matplotlib to create a 3D surface plot of a mathematical function. It generates a grid of x and y values, computes the corresponding z values based on the function (sin(sqrt(x^2 + y^2))), and visualizes the surface plot using the 'viridis' colormap. The code then adds the 'coolwarm' colormap using plt.set_cmap()
, although this line seems unnecessary as it doesn't affect the created surface plot.
Python3
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
# Generate data for a surface plot
x = np.linspace(-5, 5, 100)
y = np.linspace(-5, 5, 100)
X, Y = np.meshgrid(x, y)
Z = np.sin(np.sqrt(X**2 + Y**2))
# Create a 3D surface plot with colormap
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
surf = ax.plot_surface(X, Y, Z, cmap='viridis')
# Set colormap using set_cmap
plt.set_cmap('coolwarm')
plt.show()
Output:

Similar Reads
Matplotlib.pyplot.gca() in Python Matplotlib is a library in Python and it is a numerical - mathematical extension for the NumPy library. Pyplot is a state-based interface to a Matplotlib module that provides a MATLAB-like interface.  matplotlib.pyplot.gca() Function The gca() function in pyplot module of matplotlib library is used
2 min read
Matplotlib.pyplot.cla() in Python Matplotlib is a library in Python and it is numerical - mathematical extension for NumPy library. Pyplot is a state-based interface to a Matplotlib module which provides a MATLAB-like interface. There are various plots which can be used in Pyplot are Line Plot, Contour, Histogram, Scatter, 3D Plot,
1 min read
Matplotlib.pyplot.clim() in Python Matplotlib is a library in Python and it is numerical - mathematical extension for NumPy library. Pyplot is a state-based interface to a Matplotlib module which provides a MATLAB-like interface. There are various plots which can be used in Pyplot are Line Plot, Contour, Histogram, Scatter, 3D Plot,
2 min read
Matplotlib.pyplot.sca() in Python Matplotlib is a library in Python and it is numerical â mathematical extension for NumPy library. Pyplot is a state-based interface to a Matplotlib module which provides a MATLAB-like interface. There are various plots which can be used in Pyplot are Line Plot, Contour, Histogram, Scatter, 3D Plot,
1 min read
Matplotlib.pyplot.sci() in Python Matplotlib is a library in Python and it is numerical - mathematical extension for NumPy library. Pyplot is a state-based interface to a Matplotlib module which provides a MATLAB-like interface. There are various plots which can be used in Pyplot are Line Plot, Contour, Histogram, Scatter, 3D Plot,
2 min read
Matplotlib.pyplot.gci() in Python Matplotlib is a library in Python and it is numerical â mathematical extension for NumPy library. Pyplot is a state-based interface to a Matplotlib module which provides a MATLAB-like interface. There are various plots which can be used in Pyplot are Line Plot, Contour, Histogram, Scatter, 3D Plot,
2 min read
Matplotlib.pyplot.csd() in Python csd() method in Matplotlib is used to compute and plot the Cross Spectral Density (CSD) of two signals. It helps analyze the frequency domain relationship between two time series, revealing how the power of one signal is distributed relative to the other signal across frequencies. It's key features
4 min read
Matplotlib.pyplot.clf() in Python Matplotlib is a library in Python and it is numerical - mathematical extension for NumPy library. Pyplot is a state-based interface to a Matplotlib module which provides a MATLAB-like interface. There are various plots which can be used in Pyplot are Line Plot, Contour, Histogram, Scatter, 3D Plot,
1 min read
Matplotlib.pyplot.gcf() in Python Matplotlib is an amazing visualization library in Python for 2D plots of arrays. Matplotlib is a multi-platform data visualization library built on NumPy arrays and designed to work with the broader SciPy stack. matplotlib.pyplot.gcf() matplotlib.pyplot.gcf() is primarily used to get the current fi
2 min read
Matplotlib.pyplot.setp() function in Python Matplotlib is a library in Python and it is numerical â mathematical extension for NumPy library. Pyplot is a state-based interface to a Matplotlib module which provides a MATLAB-like interface. There are various plots which can be used in Pyplot are Line Plot, Contour, Histogram, Scatter, 3D Plot,
2 min read