Minimize maximum array element by splitting array elements into powers of two at most K times
Last Updated :
22 Feb, 2023
Given an array arr[] consisting of N positive integers and an integer K, the task is to minimize the maximum value of the array by splitting the array element into powers of 2 at most K times.
Examples:
Input: arr[] = {2, 4, 11, 2}, K = 2
Output: 2
Explanation:
Below are the operations performed on array elements at most K(= 2) times:
Operation 1: Remove the element at index 2, i.e., arr[2] = 11 and replace it with 11 numbers of 1s in it. Now the array arr[] modifies to {2, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2}.
Operation 2: Remove the element at index 1, i.e., arr[1] = 4 and replace it with 4 numbers of 1s in it. Now the array arr[] modifies to {2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2}.
After performing the above operations, the maximum value of the array is 2, which is minimum possible value.
Input: arr[]= {9}, K = 2
Output: 1
Approach: The given problem can be solved by using the fact that every number can be expressed the sum of 1 which is a power of 2. Follow the steps below to solve the problem:
Below is the implementation of the above approach:
C++
// C++ program for the above approach
#include <bits/stdc++.h>
using namespace std;
// Function to find the minimum value
// of the maximum element of the array
// by splitting at most K array element
// into perfect powers of 2
void minimumSize(int arr[], int N, int K)
{
// Sort the array element in
// the ascending order
sort(arr, arr + N);
// Reverse the array
reverse(arr, arr + N);
// If count of 0 is equal to N
if (count(arr, arr + N, 0) == N)
cout << 0;
// Otherwise, if K is greater
// than or equal to N
else if (K >= N)
cout << 1 << endl;
// Otherwise
else
cout << arr[K] << endl;
}
// Driver Code
int main()
{
int arr[] = { 2, 4, 8, 2 };
int K = 2;
int N = sizeof(arr) / sizeof(arr[0]);
minimumSize(arr, N, K);
return 0;
}
Java
// Java program for the above approach
import java.lang.*;
import java.util.*;
class GFG{
// Function to find the minimum value
// of the maximum element of the array
// by splitting at most K array element
// into perfect powers of 2
static void minimumSize(int arr[], int N, int K)
{
// Sort the array element in
// the ascending order
Arrays.sort(arr);
// Reverse the array
reverse(arr);
// If count of 0 is equal to N
if (count(arr, 0) == N)
System.out.println(0);
// Otherwise, if K is greater
// than or equal to N
else if (K >= N)
System.out.println(1);
// Otherwise
else
System.out.println(arr[K]);
}
static void reverse(int[] a)
{
int i, k, t;
int n = a.length;
for(i = 0; i < n / 2; i++)
{
t = a[i];
a[i] = a[n - i - 1];
a[n - i - 1] = t;
}
}
static int count(int[] a, int n)
{
int freq = 0;
for(int i = 0; i < a.length; i++)
{
if (a[i] == n)
freq++;
}
return freq;
}
// Driver code
public static void main(String[] args)
{
int arr[] = { 2, 4, 8, 2 };
int K = 2;
int N = arr.length;
minimumSize(arr, N, K);
}
}
// This code is contributed by offbeat
Python
# Python program for the above approach
# Function to find the minimum value
# of the maximum element of the array
# by splitting at most K array element
# into perfect powers of 2
def minimumSize(arr, N, K):
# Sort the array element in
# the ascending order
arr.sort()
# Reverse the array
arr.reverse()
# If count of 0 is equal to N
zero = arr.count(0)
if zero == N:
print(0)
# Otherwise, if K is greater
# than or equal to N
elif K >= N:
print(1)
# Otherwise
else:
print(arr[K])
# Driver Code
arr = [2, 4, 8, 2]
K = 2
N = len(arr)
minimumSize(arr, N, K)
# This code is contributed by sudhanshugupta2019a.
C#
// C#program for the above approach
using System;
class GFG
{
// Function to find the minimum value
// of the maximum element of the array
// by splitting at most K array element
// into perfect powers of 2
static void minimumSize(int[] arr, int N, int K)
{
// Sort the array element in
// the ascending order
Array.Sort(arr);
// Reverse the array
Array.Reverse(arr);
// If count of 0 is equal to N
if (count(arr, 0) == N)
Console.WriteLine(0);
// Otherwise, if K is greater
// than or equal to N
else if (K >= N)
Console.WriteLine(1);
// Otherwise
else
Console.WriteLine(arr[K]);
}
static void reverse(int[] a)
{
int i, t;
int n = a.Length;
for (i = 0; i < n / 2; i++) {
t = a[i];
a[i] = a[n - i - 1];
a[n - i - 1] = t;
}
}
static int count(int[] a, int n)
{
int freq = 0;
for (int i = 0; i < a.Length; i++) {
if (a[i] == n)
freq++;
}
return freq;
}
// Driver code
public static void Main(string[] args)
{
int[] arr = { 2, 4, 8, 2 };
int K = 2;
int N = arr.Length;
minimumSize(arr, N, K);
}
}
// This code is contributed by ukasp.
JavaScript
<script>
// JavaScript program for the above approach
// Function to find the minimum value
// of the maximum element of the array
// by splitting at most K array element
// into perfect powers of 2
function minimumSize(arr,N,K)
{
// Sort the array element in
// the ascending order
(arr).sort(function(a,b){return a-b;});
// Reverse the array
reverse(arr);
// If count of 0 is equal to N
if (count(arr, 0) == N)
document.write(0);
// Otherwise, if K is greater
// than or equal to N
else if (K >= N)
document.write(1);
// Otherwise
else
document.write(arr[K]);
}
function reverse(a)
{
let i, k, t;
let n = a.length;
for(i = 0; i < n / 2; i++)
{
t = a[i];
a[i] = a[n - i - 1];
a[n - i - 1] = t;
}
}
function count(a,n)
{
let freq = 0;
for(let i = 0; i < a.length; i++)
{
if (a[i] == n)
freq++;
}
return freq;
}
// Driver code
let arr=[2, 4, 8, 2];
let K = 2;
let N = arr.length;
minimumSize(arr, N, K);
// This code is contributed by avanitrachhadiya2155
</script>
Time Complexity: O(N * log N)
Auxiliary Space: O(1)
Another efficient approach: In the previous approach, we are sorting the array and found the (K+1)th maximum element for the K<N. Instead of sorting the array, we can use a priority queue to find the (K+1)th maximum element.
The time complexity for this approach in the worst case is O(N*log(K)) for k<N otherwise, the time complexity is O(1). Hence the given approach is much better than the previous approach for a smaller value of k.
Below is the implementation of the above approach:
C++
// C++ program for the above approach
#include <bits/stdc++.h>
using namespace std;
// Function to find the minimum value
// of the maximum element of the array
// by splitting at most K array element
// into perfect powers of 2
void minimumSize(int arr[], int N, int K)
{
// If count of 0 is equal to N
if (count(arr, arr + N, 0) == N)
cout << 0;
// Otherwise, if K is greater
// than or equal to N
else if (K >= N)
cout << 1 << endl;
// Otherwise
else
{
// Finding (K+1)th maximum element
// using a priority_queue
priority_queue<int, vector<int>, greater<int> >pq;
for (int i = 0; i < N; ++i) {
// Insert elements into
// the priority queue
pq.push(arr[i]);
// If size of the priority
// queue exceeds k+1
if (pq.size() > (K+1)) {
pq.pop();
}
}
// Print the (K+1)th maximum element
cout<<pq.top()<<endl;
}
}
// Driver Code
int main()
{
int arr[] = { 2, 4, 8, 2 };
int K = 2;
int N = sizeof(arr) / sizeof(arr[0]);
minimumSize(arr, N, K);
return 0;
}
// This code is contributed by Pushpesh raj
Python3
# Python program for the above approach
import bisect
# Function to find the minimum value
# of the maximum element of the array
# by splitting at most K array element
# into perfect powers of 2
def minimumSize(arr,N,K):
# If count of 0 is equal to N
if(arr.count(0)==N):
print(0)
# Otherwise, if K is greater
# than or equal to N
elif(K>=N):
print(1)
# Otherwise
else:
# Finding (K+1)th maximum element
# using a priority_queue
pq=[]
for i in range(N):
# Insert elements into
# the priority queue
bisect.insort(pq,arr[i])
# If size of the priority
# queue exceeds k+1
if(len(pq)>(K+1)):
pq.pop()
# Print the (K+1)th maximum element
print(pq[0])
# Driver Code
arr=[2,4,8,2]
K=2
N=len(arr)
minimumSize(arr,N,K)
# This code is contributed by Aman Kumar.
Java
import java.util.PriorityQueue;
public class Main {
// Function to find the minimum value of the maximum
// element of the array by splitting at most K array
// element into perfect powers of 2
public static void minimumSize(int[] arr, int N, int K)
{
// If count of 0 is equal to N
if (isZeroArray(arr, N)) {
System.out.println(0);
// Otherwise, if K is greater than or equal to N
}
else if (K >= N) {
System.out.println(1);
// Otherwise
}
else {
// Finding (K+1)th maximum element using a
// priority_queue
PriorityQueue<Integer> pq
= new PriorityQueue<>();
for (int i = 0; i < N; ++i) {
// Insert elements into the priority queue
pq.add(arr[i]);
// If size of the priority queue exceeds k+1
if (pq.size() > (K + 1)) {
pq.poll();
}
}
// Print the (K+1)th maximum element
System.out.println(pq.peek());
}
}
// Function to check if the given array only contains
// zeros
private static boolean isZeroArray(int[] arr, int N)
{
for (int i = 0; i < N; i++) {
if (arr[i] != 0) {
return false;
}
}
return true;
}
// Driver code
public static void main(String[] args)
{
int[] arr = { 2, 4, 8, 2 };
int K = 2;
int N = arr.length;
minimumSize(arr, N, K);
}
} // this code is contributed by devendra1
JavaScript
// Define a function to find the minimum value of the maximum
// element of the array by splitting at most K array element into perfect powers of 2
function minimumSize(arr, N, K)
{
// If count of 0 is equal to N
if (isZeroArray(arr, N)) {
console.log(0);
// Otherwise, if K is greater than or equal to N
}
else if (K >= N) {
console.log(1);
// Otherwise
}
else
{
// Finding (K+1)th maximum element using a priority_queue
// Create an empty array to serve as the priority queue
const pq = [];
for (let i = 0; i < N; ++i)
{
// Insert elements into the priority queue
pq.push(arr[i]);
// Sort the array in descending order
pq.sort((a, b) => b - a);
// If size of the priority queue exceeds k+1
if (pq.length > (K + 1))
{
// Remove the smallest element from the queue
pq.pop();
}
}
// Print the (K+1)th maximum element
console.log(pq[K]);
}
}
// Function to check if the given array only contains zeros
function isZeroArray(arr, N) {
for (let i = 0; i < N; i++) {
if (arr[i] !== 0) {
return false;
}
}
return true;
}
// Driver code
const arr = [2, 4, 8, 2];
const K = 2;
const N = arr.length;
minimumSize(arr, N, K);
C#
using System;
using System.Collections.Generic;
using System.Linq;
public class Program
{
// Function to find the minimum value
// of the maximum element of the array
// by splitting at most K array element
// into perfect powers of 2
public static void minimumSize(int[] arr, int N, int K)
{
// If count of 0 is equal to N
if (arr.Count(x => x == 0) == N)
{
Console.WriteLine(0);
}
// Otherwise, if K is greater
// than or equal to N
else if (K >= N)
{
Console.WriteLine(1);
}
// Otherwise
else
{
// Finding (K+1)th maximum element
// using a priority_queue
var pq = new SortedSet<int>();
foreach (var x in arr)
{
// Insert elements into
// the priority queue
pq.Add(x);
// If size of the priority
// queue exceeds k+1
if (pq.Count > (K + 1))
{
pq.Remove(pq.Max);
}
}
// Print the (K+1)th maximum element
Console.WriteLine(pq.Min);
}
}
// Driver Code
public static void Main()
{
int[] arr = { 2, 4, 8, 2 };
int K = 2;
int N = arr.Length;
minimumSize(arr, N, K);
}
}
Time Complexity: O(N*log(K))
Auxiliary Space: O(K)
Similar Reads
Minimize the maximum of Array by replacing any element with other element at most K times
Given an array arr[] of size N and an integer K, the task is to minimize the value of the maximum element of the array arr[] after replacing any element of the array with any other element of that array at most K times.Examples:Input: arr[] = {5, 3, 3, 2, 1}, K = 3Output: 2Explanation: Replace the e
8 min read
Minimize maximum array element possible by at most K splits on the given array
Given an array arr[] consisting of N positive integers and a positive integer K, the task is to minimize the maximum element present in the array by splitting at most K array elements into two numbers equal to their value. Examples: Input: arr[] = {2, 4, 8, 2}, K = 4Output: 2Explanation:Following se
9 min read
Minimize the max of Array by breaking array elements at most K times
Given an integer array arr[] of size N and a positive integer K, the task is to minimize the maximum of the array by replacing any element arr[i] into two positive elements (X, Y) at most K times such that arr[i] = X + Y. Examples: Input: arr = {9}, K = 2Output: 3Explanation: Operation 1: Replace el
15+ min read
Maximize first array element by performing given operations at most K times
Given an array arr[] of size N an integer K, the task is to find the maximize the first element of the array by performing the following operations at most K times: Choose a pair of indices i and j (0 ? i, j ? N-1) such that |i ? j| = 1 and arri > 0.Set arri = arri ? 1 and arrj = arrj + 1 on thos
7 min read
Maximize count of 1s in an array by repeated division of array elements by 2 at most K times
Given an array arr[] of size N and an integer K, the task to find the maximum number of array elements that can be reduced to 1 by repeatedly dividing any element by 2 at most K times. Note: For odd array elements, take its ceil value of division. Examples: Input: arr[] = {5, 8, 4, 7}, K = 5Output:
6 min read
Make all array elements equal by reducing array elements to half minimum number of times
Given an array arr[] consisting of N integers, the task is to minimize the number of operations required to make all array elements equal by converting Ai to Ai / 2. in each operation Examples: Input: arr[] = {3, 1, 1, 3}Output: 2Explanation: Reducing A0 to A0 / 2 modifies arr[] to {1, 1, 1, 3}. Red
6 min read
Maximize Kth largest element after splitting the given Array at most C times
Given an array arr[] and two positive integers K and C, the task is to maximize the Kth maximum element obtained after splitting an array element arr[] into two parts(not necessarily an integer) C number of times. Print -1 if there doesn't exist Kth maximum element. Note: It is compulsory to do spli
7 min read
Minimize cost for reducing array by replacing two elements with sum at most K times for any index
Given an array arr[] of size N and an integer K. The task is to find the minimum cost required to collect the sum of the array. The sum of the array is collected by picking any element and adding it to an element of any index in the array. The addition of elements at the same index is allowed for at
11 min read
Minimize the max of Array by doing at most K increment and decrement
Given a positive array arr[] of size N (2 ⤠N ⤠105) and a positive integer K, the task is to minimize the maximum value of arr[] by performing at most K operations where in each operation, you can select any two distinct integers i and j (0 ⤠i, j < N), then increase the value of arr[i] by 1 and
9 min read
Maximum possible middle element of the array after deleting exactly k elements
Given an integer array of size n and a number k. If the indexing is 1 based then the middle element of the array is the element at index (n + 1) / 2, if n is odd otherwise n / 2. The task is to delete exactly k elements from the array in such a way that the middle element of the reduced array is as
8 min read