numpy.asfortranarray() in Python Last Updated : 25 Nov, 2022 Comments Improve Suggest changes Like Article Like Report numpy.asfortranarray() function is used when we want to convert input to a array which is laid out in Fortran order in memory. Input includes scalar, lists, lists of tuples, tuples, tuples of tuples, tuples of lists and ndarrays. Syntax : numpy.asfortranarray(arr, dtype=None) Parameters : arr : [array_like] Input data, in any form that can be converted to an float type array. This includes scalar, lists, lists of tuples, tuples, tuples of tuples, tuples of lists and ndarrays. dtype : By default, the data-type is inferred from the input data. Return : The input arr in Fortran, or column-major, order. Code #1 : List to fortranarray Python # Python program explaining # numpy.asfortranarray() function import numpy as geek my_list = [1, 3, 5, 7, 9] print ("Input list : ", my_list) out_arr = geek.asfortranarray(my_list) print ("output fortranarray from input list : ", out_arr) Output : Input list : [1, 3, 5, 7, 9] output fortranarray from input list : [1 3 5 7 9] Code #2 : Tuple to fortran array Python # Python program explaining # numpy.asfortranarray() function import numpy as geek my_tuple = ([1, 3, 9], [8, 2, 6]) print ("Input tuple : ", my_tuple) out_arr = geek.asfortranarray(my_tuple, dtype ='int8') print ("output fortran array from input tuple : ", out_arr) Output : Input tuple : ([1, 3, 9], [8, 2, 6]) output fortran array from input tuple : [[1 3 9] [8 2 6]] Code #3 : Scalar to fortranarray Python # Python program explaining # numpy.asfortranarray() function import numpy as geek my_scalar = 15 print ("Input scalar : ", my_scalar) out_arr = geek.asfortranarray(my_scalar, dtype ='float') print ("output fortran array from input scalar : ", out_arr) Output : Input scalar : 15 output fortran array from input scalar : [ 15.] Code #4 : array to fortranarray Python # Python program explaining # numpy.asfortranarray() function import numpy as geek in_arr = geek.arange(9).reshape(3, 3) print ("Input array : ", in_arr) # checking if it is fortranarray print(in_arr.flags['F_CONTIGUOUS']) out_arr = geek.asfortranarray(in_arr, dtype ='float') print ("output array from input array : ", out_arr) # checking if it has become fortranarray print(out_arr.flags['F_CONTIGUOUS']) Output : Input array : [[0 1 2] [3 4 5] [6 7 8]] False output array from input array : [[ 0. 1. 2.] [ 3. 4. 5.] [ 6. 7. 8.]] True Comment More infoAdvertise with us Next Article numpy.asfortranarray() in Python jana_sayantan Follow Improve Article Tags : Python Python-numpy Python numpy-arrayManipulation Practice Tags : python Similar Reads numpy.asanyarray() in Python numpy.asanyarray()function is used when we want to convert input to an array but it pass ndarray subclasses through. Input can be scalars, lists, lists of tuples, tuples, tuples of tuples, tuples of lists and ndarrays. Syntax : numpy.asanyarray(arr, dtype=None, order=None) Parameters : arr : [array_ 2 min read numpy.asfarray() in Python numpy.asfarray()function is used when we want to convert input to a float type array. Input includes scalar, lists, lists of tuples, tuples, tuples of tuples, tuples of lists and ndarrays. Syntax : numpy.asfarray(arr, dtype=type 'numpy.float64') Parameters : arr : [array_like] Input data, in any for 2 min read numpy.asarray() in Python numpy.asarray()function is used when we want to convert input to an array. Input can be lists, lists of tuples, tuples, tuples of tuples, tuples of lists and arrays. Syntax : numpy.asarray(arr, dtype=None, order=None) Parameters : arr : [array_like] Input data, in any form that can be converted to a 2 min read NumPy Array in Python NumPy (Numerical Python) is a powerful library for numerical computations in Python. It is commonly referred to multidimensional container that holds the same data type. It is the core data structure of the NumPy library and is optimized for numerical and scientific computation in Python. Table of C 2 min read numpy.ascontiguousarray() in Python numpy.ascontiguousarray()function is used when we want to return a contiguous array in memory (C order). Syntax : numpy.ascontiguousarray(arr, dtype=None) Parameters : arr : [array_like] Input data, in any form that can be converted to an array. This includes scalars, lists, lists of tuples, tuples, 2 min read numpy.asscalar() in Python numpy.asscalar() function is used when we want to convert an array of size 1 to its scalar equivalent. Syntax : numpy.asscalar(arr) Parameters : arr : [ndarray] Input array of size 1. Return : Scalar representation of arr. The output data type is the same type returned by the inputâs item method. Co 1 min read numpy.defchararray.add() in Python numpy.core.defchararray.add(arr1, arr2): Concatenates two strings element-wise. Parameters: arr1 : array-like or string. arr2 : array-like or string. Returns : Concatenates String. Code #1: Python3 1== # Python Program illustrating # numpy.char.add() method import numpy as np arr1 = ['vdteteAAAa', ' 1 min read numpy.arange() in Python numpy.arange() function creates an array of evenly spaced values within a given interval. It is similar to Python's built-in range() function but returns a NumPy array instead of a list. Let's understand with a simple example:Pythonimport numpy as np #create an array arr= np.arange(5 , 10) print(arr 2 min read numpy.isfortran() in Python numpy.isfortran(array) : This is a logical function that checks whether array is Fortran contiguous or not. Order : [C-contiguous, F-contiguous, A-contiguous; optional] C-contiguous order in memory(last index varies the fastest). C order means that operating row-rise on the array will be slightly qu 2 min read numpy.array_str() in Python numpy.array_str()function is used to represent the data of an array as a string. The data in the array is returned as a single string. This function is similar to array_repr, the difference being that array_repr also returns information on the kind of array and its data type. Syntax : numpy.array_st 2 min read Like