numpy.ma.masked_values() function | Python

Last Updated : 05 May, 2020
Comments
Improve
Suggest changes
Like Article
Like
Report
numpy.ma.masked_values() function return a MaskedArray, masked where the data in array arr are approximately equal to value, determined using isclose. The default tolerances for masked_values are the same as those for isclose.
Syntax : numpy.ma.masked_values(arr, value, rtol = 1e-05, atol = 1e-08, copy = True, shrink = True) Parameter : arr : [array_like] Array to mask. value : [float] Masking value. rtol, atol : [float, optional] Must be convertible to an array of booleans with the same shape as data. True indicates a masked data. copy : [bool, optional] Whether to return a copy of arr. shrink : [bool, optional] Whether to collapse a mask full of False to nomask. Return : [MaskedArray] The result of masking arr where approximately equal to value.
Code #1 : Python3
# Python program explaining
# numpy.ma.masked_values() function

# importing numpy as geek 
# and numpy.ma module as ma 
import numpy as geek 
import numpy.ma as ma
 
arr = geek.array([1, 1.5, 2, 1.5, 3])

gfg = ma.masked_values(arr, 1.5)

print (gfg)
Output :
[1.0 -- 2.0 -- 3.0]
  Code #2 : Python3
# Python program explaining
# numpy.ma.masked_values() function

# importing numpy as geek 
# and numpy.ma module as ma 
import numpy as geek 
import numpy.ma as ma
 
arr = geek.array([1, 2, 3, 4, 5, 6])

gfg = ma.masked_values(arr, 4)

print (gfg)
Output :
[1 2 3 -- 5 6]

Next Article

Similar Reads