Numpy MaskedArray.cumsum() function | Python Last Updated : 18 Oct, 2019 Comments Improve Suggest changes Like Article Like Report numpy.MaskedArray.cumsum() Return the cumulative sum of the masked array elements over the given axis.Masked values are set to 0 internally during the computation. However, their position is saved, and the result will be masked at the same locations. Syntax : numpy.ma.cumsum(axis=None, dtype=None, out=None) Parameters: axis :[ int, optional] Axis along which the cumulative sum is computed. The default (None) is to compute the cumsum over the flattened array. dtype : [dtype, optional] Type of the returned array, as well as of the accumulator in which the elements are multiplied. out : [ndarray, optional] A location into which the result is stored. -> If provided, it must have a shape that the inputs broadcast to. -> If not provided or None, a freshly-allocated array is returned. Return : [cumsum_along_axis, ndarray] A new array holding the result is returned unless out is specified, in which case a reference to out is returned. Code #1 : Python3 # Python program explaining # numpy.MaskedArray.cumsum() method # importing numpy as geek # and numpy.ma module as ma import numpy as geek import numpy.ma as ma # creating input array in_arr = geek.array([[1, 2], [ 3, -1], [ 5, -3]]) print ("Input array : ", in_arr) # Now we are creating a masked array. # by making entry as invalid. mask_arr = ma.masked_array(in_arr, mask =[[1, 0], [ 1, 0], [ 0, 0]]) print ("Masked array : ", mask_arr) # applying MaskedArray.cumsum # methods to masked array out_arr = mask_arr.cumsum() print ("cumulative sum of masked array along default axis : ", out_arr) Output: Input array : [[ 1 2] [ 3 -1] [ 5 -3]] Masked array : [[-- 2] [-- -1] [5 -3]] cumulative sum of masked array along default axis : [-- 2 -- 1 6 3] Code #2 : Python3 # Python program explaining # numpy.MaskedArray.cumsum() method # importing numpy as geek # and numpy.ma module as ma import numpy as geek import numpy.ma as ma # creating input array in_arr = geek.array([[1, 0, 3], [ 4, 1, 6]]) print ("Input array : ", in_arr) # Now we are creating a masked array. # by making one entry as invalid. mask_arr = ma.masked_array(in_arr, mask =[[ 0, 0, 0], [ 0, 0, 1]]) print ("Masked array : ", mask_arr) # applying MaskedArray.cumsum methods # to masked array out_arr1 = mask_arr.cumsum(axis = 0) print ("cumulative sum of masked array along 0 axis : ", out_arr1) out_arr2 = mask_arr.cumsum(axis = 1) print ("cumulative sum of masked array along 1 axis : ", out_arr2) Output: Input array : [[1 0 3] [4 1 6]] Masked array : [[1 0 3] [4 1 --]] cumulative sum of masked array along 0 axis : [[1 0 3] [5 1 --]] cumulative sum of masked array along 1 axis : [[1 1 4] Comment More infoAdvertise with us Next Article Numpy MaskedArray.cumsum() function | Python jana_sayantan Follow Improve Article Tags : Python Python-numpy Python numpy-arrayManipulation Practice Tags : python Similar Reads Numpy MaskedArray.cumprod() function | Python numpy.MaskedArray.cumprod() Return the cumulative product of the masked array elements over the given axis.Masked values are set to 1 internally during the computation. However, their position is saved, and the result will be masked at the same locations. Syntax : numpy.ma.cumprod(axis=None, dtype=N 3 min read Numpy MaskedArray.anom() function | Python In many circumstances, datasets can be incomplete or tainted by the presence of invalid data. For example, a sensor may have failed to record a data, or recorded an invalid value. The numpy.ma module provides a convenient way to address this issue, by introducing masked arrays.Masked arrays are arra 2 min read Numpy MaskedArray.compressed() function - Python numpy.MaskedArray.compressed() function return all the non-masked data as a 1-D array. Syntax : numpy.MaskedArray.compressed(self) Return : [ndarray] A new ndarray holding the non-masked data is returned. Code #1 : Python3 # Python program explaining # numpy.MaskedArray.compressed() function # impor 1 min read numpy.ma.MaskedArray.count() function - Python numpy.ma.MaskedArray.count() function count the non-masked elements of the array along the given axis. Syntax : numpy.ma.MaskedArray.count(self, axis=None, keepdims = no value) Parameters : axis : [None or int or tuple of ints, optional] Axis along which the count is performed. The default axis is N 2 min read Numpy MaskedArray.all() function | Python In many circumstances, datasets can be incomplete or tainted by the presence of invalid data. For example, a sensor may have failed to record a data, or recorded an invalid value. The numpy.ma module provides a convenient way to address this issue, by introducing masked arrays. Masked arrays are arr 3 min read Numpy MaskedArray.dot() function | Python numpy.MaskedArray.dot() function is used to calculate the dot product of two mask arrays. Syntax : numpy.ma.dot(arr1, arr2, strict=False) Parameters: arr1, arr2:[ ndarray] Inputs arrays. strict : [bool, optional] Whether masked data are propagated (True) or set to 0 (False) for the computation. Defa 3 min read Numpy MaskedArray.argmin() function | Python In many circumstances, datasets can be incomplete or tainted by the presence of invalid data. For example, a sensor may have failed to record a data, or recorded an invalid value. The numpy.ma module provides a convenient way to address this issue, by introducing masked arrays.Masked arrays are arra 3 min read Numpy MaskedArray.argmax() function | Python In many circumstances, datasets can be incomplete or tainted by the presence of invalid data. For example, a sensor may have failed to record a data, or recorded an invalid value. The numpy.ma module provides a convenient way to address this issue, by introducing masked arrays.Masked arrays are arra 3 min read Numpy MaskedArray.astype() function | Python In many circumstances, datasets can be incomplete or tainted by the presence of invalid data. For example, a sensor may have failed to record a data, or recorded an invalid value. The numpy.ma module provides a convenient way to address this issue, by introducing masked arrays.Masked arrays are arra 2 min read Numpy MaskedArray.any() function | Python In many circumstances, datasets can be incomplete or tainted by the presence of invalid data. For example, a sensor may have failed to record a data, or recorded an invalid value. The numpy.ma module provides a convenient way to address this issue, by introducing masked arrays.Masked arrays are arra 3 min read Like