numpy.minimum() in Python Last Updated : 28 Nov, 2018 Comments Improve Suggest changes Like Article Like Report numpy.minimum() function is used to find the element-wise minimum of array elements. It compare two arrays and returns a new array containing the element-wise minima. If one of the elements being compared is a NaN, then that element is returned. If both elements are NaNs then the first is returned. Syntax : numpy.minimum(arr1, arr2, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, ufunc 'minimum') Parameters : arr1 : [array_like] Input array. arr2 : [array_like] Input array. out : [ndarray, optional] A location into which the result is stored. -> If provided, it must have a shape that the inputs broadcast to. -> If not provided or None, a freshly-allocated array is returned. **kwargs : allows you to pass keyword variable length of argument to a function. It is used when we want to handle named argument in a function. where : [array_like, optional]True value means to calculate the universal functions(ufunc) at that position, False value means to leave the value in the output alone. Return : [ndarray or scalar] Result. The minimum of arr1 and arr2, element-wise. This is a scalar if both arr1 and arr2 are scalars. Code #1 : Working Python # Python program explaining # minimum() function import numpy as geek in_num1 = 10 in_num2 = 21 print ("Input number1 : ", in_num1) print ("Input number2 : ", in_num2) out_num = geek.minimum(in_num1, in_num2) print ("minimum of 10 and 21 : ", out_num) Output : Input number1 : 10 Input number2 : 21 minimum of 10 and 21 : 10 Code #2 : Python # Python program explaining # minimum() function import numpy as geek in_arr1 = [2, 8, 125] in_arr2 = [3, 3, 15] print ("Input array1 : ", in_arr1) print ("Input array2 : ", in_arr2) out_arr = geek.minimum(in_arr1, in_arr2) print ("Output array after selecting minimum: ", out_arr) Output : Input array1 : [2, 8, 125] Input array2 : [3, 3, 15] Output array after selecting minimum: [ 2 3 15] Code #3 : Python # Python program explaining # minimum() function import numpy as geek in_arr1 = [geek.nan, 0, geek.nan] in_arr2 = [geek.nan, geek.nan, 0] print ("Input array1 : ", in_arr1) print ("Input array2 : ", in_arr2) out_arr = geek.minimum(in_arr1, in_arr2) print ("Output array after selecting minimum: ", out_arr) Output : Input array1 : [nan, 0, nan] Input array2 : [nan, nan, 0] Output array after selecting minimum: [ nan nan nan] Comment More infoAdvertise with us Next Article numpy.minimum() in Python jana_sayantan Follow Improve Article Tags : Python Python-numpy Python numpy-Mathematical Function Practice Tags : python Similar Reads numpy.fmin() in Python numpy.fmin() function is used to compute element-wise minimum of array elements. This function compare two arrays and returns a new array containing the element-wise minima. If one of the elements being compared is a NaN, then the non-nan element is returned. If both elements are NaNs then the first 2 min read numpy.nanmin() in Python numpy.nanmin()function is used when to returns minimum value of an array or along any specific mentioned axis of the array, ignoring any Nan value. Syntax : numpy.nanmin(arr, axis=None, out=None) Parameters : arr :Input array. axis :Axis along which we want the min value. Otherwise, it will consider 2 min read numpy.amin() in Python The numpy.amin() function returns minimum of an array or minimum along axis(if mentioned). Syntax : numpy.amin(arr, axis = None, out = None, keepdims = <class numpy._globals._NoValue>) Parameters : arr : [array_like]input dataaxis : [int or tuples of int]axis along which we want the min value. 2 min read numpy.argmin() in Python The numpy.argmin() method returns indices of the min element of the array in a particular axis. Syntax : numpy.argmin(array, axis = None, out = None) Parameters : array : Input array to work on axis : [int, optional]Along a specified axis like 0 or 1 out : [array optional]Provides a feature to inser 2 min read numpy.nanargmin() in Python The numpy.nanargmin() function returns indices of the min element of the array in a particular axis ignoring NaNs. The results cannot be trusted if a slice contains only NaNs and Infs. Syntax:  numpy.nanargmin(array, axis = None) Parameters : array : Input array to work on axis : [int, optional]A 2 min read numpy.negative() in Python numpy.negative() function is used when we want to compute the negative of array elements. It returns element-wise negative value of an array or negative value of a scalar. Syntax : numpy.negative(arr, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature, ext 2 min read numpy.floor() in Python The numpy.floor() function returns the largest integer less than or equal to each element in the input array. It effectively rounds numbers down to the nearest whole number. Let's understand with an example:Pythonimport numpy as np a = [0.5, 1.5, 2.5, 3, 4.5, 10.1] res = np.floor(a) print("Floored:" 1 min read Python | Numpy numpy.ndarray.__lt__() With the help of numpy.ndarray.__lt__() method of Numpy, We can find that which element in an array is less than the value which is provided in the parameter. It will return you numpy array with boolean type having only values True and False. Syntax: ndarray.__lt__($self, value, /) Return: self<v 1 min read Python | Numpy np.ma.mini() method With the help of np.ma.mini() method, we can get the minimum value of masked array by using np.ma.mini() method. Syntax : np.ma.mini() Return : Return the minimum value of masked array. Example #1 : In this example we can see that by using np.ma.mini() method, we are able to get the minimum value of 1 min read Numpy recarray.min() function | Python In numpy, arrays may have a data-types containing fields, analogous to columns in a spreadsheet. An example is [(a, int), (b, float)], where each entry in the array is a pair of (int, float). Normally, these attributes are accessed using dictionary lookups such as arr['a'] and arr['b']. Record array 4 min read Like