Python | numpy.nanmean() function Last Updated : 01 Jun, 2021 Comments Improve Suggest changes Like Article Like Report numpy.nanmean() function can be used to calculate the mean of array ignoring the NaN value. If array have NaN value and we can find out the mean without effect of NaN value. Syntax: numpy.nanmean(a, axis=None, dtype=None, out=None, keepdims=))Parameters: a: [arr_like] input array axis: we can use axis=1 means row wise or axis=0 means column wise. out: output array dtype: data types of array overwrite_input: If True, then allow use of memory of input array a for calculations. The input array will be modified by the call to median. keepdims: If this is set to True, the axes which are reduced are left in the result as dimensions with size one. With this option, the result will broadcast correctly against the original a.Returns: Returns the average of the array elements Example #1: Python3 # Python code to demonstrate the # use of numpy.nanmean import numpy as np # create 2d array with nan value. arr = np.array([[20, 15, 37], [47, 13, np.nan]]) print("Shape of array is", arr.shape) print("Mean of array without using nanmean function:", np.mean(arr)) print("Using nanmean function:", np.nanmean(arr)) Output: Shape of array is (2, 3) Mean of array without using nanmean function: nan Using nanmean function: 26.4 Example #2: Python3 # Python code to demonstrate the # use of numpy.nanmean # with axis = 0 import numpy as np # create 2d matrix with nan value arr = np.array([[32, 20, 24], [47, 63, np.nan], [17, 28, np.nan], [10, 8, 9]]) print("Shape of array is", arr.shape) print("Mean of array with axis = 0:", np.mean(arr, axis = 0)) print("Using nanmedian function:", np.nanmean(arr, axis = 0)) Output: Shape of array is (4, 3) Mean of array with axis = 0: [ 26.5 29.75 nan] Using nanmedian function: [ 26.5 29.75 16.5 ] Example #3: Python3 # Python code to demonstrate the # use of numpy.nanmedian # with axis = 1 import numpy as np # create 2d matrix with nan value arr = np.array([[32, 20, 24], [47, 63, np.nan], [17, 28, np.nan], [10, 8, 9]]) print("Shape of array is", arr.shape) print("Mean of array with axis = 1:", np.mean(arr, axis = 1)) print("Using nanmedian function:", np.nanmean(arr, axis = 1)) Output: Shape of array is (4, 3) Mean of array with axis = 1: [ 25.33333333 nan nan 9. ] Using nanmedian function: [ 25.33333333 55. 22.5 9. ] Comment More infoAdvertise with us Next Article Python | numpy.nanmean() function S shrikanth13 Follow Improve Article Tags : Python Python-numpy Python numpy-Statistics Functions Practice Tags : python Similar Reads Python | Numpy nanmedian() function numpy.nanmedian() function can be used to calculate the median of array ignoring the NaN value. If array have NaN value and we can find out the median without effect of NaN value. Let's see different type of examples about numpy.nanmedian() method. Syntax: numpy.nanmedian(a, axis=None, out=None, ove 2 min read numpy.nanstd() function - Python numpy.nanstd() function compute the standard deviation along the specified axis, while ignoring NaNs. Syntax : numpy.nanstd(arr, axis = None, dtype = None, out = None, ddof = 0, keepdims) Parameters : arr : [array_like] Calculate the standard deviation of the non-NaN values. axis : [{int, tuple of i 2 min read numpy.i0() function | Python numpy.i0() function is the modified Bessel function of the first kind, order 0. it's usually denoted by I0. Syntax : numpy.i0(x) Parameters : x : [array_like, dtype float or complex] Argument of the Bessel function. Return : [ndarray, shape = x.shape, dtype = x.dtype] The modified Bessel function ev 1 min read numpy.ma.make_mask() function | Python numpy.ma.make_mask() function is used to create a boolean mask from an array. This function can accept any sequence that is convertible to integers, or nomask. It does not require that contents must be 0s and 1s, values of 0 are interpreted as False, everything else as True. Return m as a boolean ma 2 min read numpy.nanmin() in Python numpy.nanmin()function is used when to returns minimum value of an array or along any specific mentioned axis of the array, ignoring any Nan value. Syntax : numpy.nanmin(arr, axis=None, out=None) Parameters : arr :Input array. axis :Axis along which we want the min value. Otherwise, it will consider 2 min read numpy.pad() function in Python numpy.pad() function is used to pad the Numpy arrays. Sometimes there is a need to perform padding in Numpy arrays, then numPy.pad() function is used. The function returns the padded array of rank equal to the given array and the shape will increase according to pad_width. Syntax: numpy.pad(array, p 2 min read Numpy ndarray.dot() function | Python The numpy.ndarray.dot() function computes the dot product of two arrays. It is widely used in linear algebra, machine learning and deep learning for operations like matrix multiplication and vector projections.Example:Pythonimport numpy as np a = np.array([1, 2, 3]) b = np.array([4, 5, 6]) result = 2 min read numpy.ma.fix_invalid() function | Python numpy.ma.fix_invalid() function return input with invalid data masked and replaced by a fill value. Where invalid data means values of nan, inf, etc. Syntax : numpy.ma.fix_invalid(arr, mask = False, copy = True, fill_value = None) Parameter : arr : [array_like] Input array. mask : [sequence, optiona 2 min read numpy.ma.filled() function - Python numpy.ma.filled() function return input as an array with masked data replaced by a fill value. If arr is not a MaskedArray, arr itself is returned. If arr is a MaskedArray and fill_value is None, fill_value is set to arr.fill_value. Syntax : numpy.ma.filled(arr, fill_value = None) Parameters : arr : 1 min read numpy.ma.make_mask_none() function | Python numpy.ma.make_mask_none() function return a boolean mask of the given shape, filled with False. This function returns a boolean ndarray with all entries False, that can be used in common mask manipulations. If a complex dtype is specified, the type of each field is converted to a boolean type. Synta 1 min read Like