Reversal algorithm for right rotation of an array
Last Updated :
01 Aug, 2022
Given an array, right rotate it by k elements.

After K=3 rotation

Examples:
Input: arr[] = {1, 2, 3, 4, 5,
6, 7, 8, 9, 10}
k = 3
Output: 8 9 10 1 2 3 4 5 6 7
Input: arr[] = {121, 232, 33, 43 ,5}
k = 2
Output: 43 5 121 232 33
Note : In the below solution, k is assumed to be smaller than or equal to n. We can easily modify the solutions to handle larger k values by doing k = k % n
Algorithm:
rotate(arr[], d, n)
reverse(arr[], 0, n-1) ;
reverse(arr[], 0, d-1);
reverse(arr[], d, n-1);
Below is the implementation of above approach:
C++
// C++ program for right rotation of
// an array (Reversal Algorithm)
#include <bits/stdc++.h>
/*Function to reverse arr[]
from index start to end*/
void reverseArray(int arr[], int start,
int end)
{
while (start < end)
{
std::swap(arr[start], arr[end]);
start++;
end--;
}
}
/* Function to right rotate arr[]
of size n by d */
void rightRotate(int arr[], int d, int n)
{
// if in case d>n,this will give segmentation fault.
d=d%n;
reverseArray(arr, 0, n-1);
reverseArray(arr, 0, d-1);
reverseArray(arr, d, n-1);
}
/* function to print an array */
void printArray(int arr[], int size)
{
for (int i = 0; i < size; i++)
std::cout << arr[i] << " ";
}
// driver code
int main()
{
int arr[] = {1, 2, 3, 4, 5,
6, 7, 8, 9, 10};
int n = sizeof(arr)/sizeof(arr[0]);
int k = 3;
rightRotate(arr, k, n);
printArray(arr, n);
return 0;
}
Java
// Java program for right rotation of
// an array (Reversal Algorithm)
import java.io.*;
class GFG
{
// Function to reverse arr[]
// from index start to end
static void reverseArray(int arr[], int start,
int end)
{
while (start < end)
{
int temp = arr[start];
arr[start] = arr[end];
arr[end] = temp;
start++;
end--;
}
}
// Function to right rotate
// arr[] of size n by d
static void rightRotate(int arr[], int d, int n)
{
reverseArray(arr, 0, n - 1);
reverseArray(arr, 0, d - 1);
reverseArray(arr, d, n - 1);
}
// Function to print an array
static void printArray(int arr[], int size)
{
for (int i = 0; i < size; i++)
System.out.print(arr[i] + " ");
}
public static void main (String[] args)
{
int arr[] = {1, 2, 3, 4, 5,
6, 7, 8, 9, 10};
int n = arr.length;
int k = 3;
rightRotate(arr, k, n);
printArray(arr, n);
}
}
// This code is contributed by Gitanjali.
Python3
# Python3 program for right rotation of
# an array (Reversal Algorithm)
# Function to reverse arr
# from index start to end
def reverseArray( arr, start, end):
while (start < end):
arr[start], arr[end] = arr[end], arr[start]
start = start + 1
end = end - 1
# Function to right rotate arr
# of size n by d
def rightRotate( arr, d, n):
reverseArray(arr, 0, n - 1);
reverseArray(arr, 0, d - 1);
reverseArray(arr, d, n - 1);
# function to print an array
def printArray( arr, size):
for i in range(0, size):
print (arr[i], end = ' ')
# Driver code
arr = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
n = len(arr)
k = 3
# Function call
rightRotate(arr, k, n)
printArray(arr, n)
# This article is contributed
# by saloni1297
C#
// C# program for right rotation of
// an array (Reversal Algorithm)
using System;
class GFG {
// Function to reverse arr[]
// from index start to end
static void reverseArray(int []arr, int start,
int end)
{
while (start < end)
{
int temp = arr[start];
arr[start] = arr[end];
arr[end] = temp;
start++;
end--;
}
}
// Function to right rotate
// arr[] of size n by d
static void rightRotate(int []arr, int d, int n)
{
reverseArray(arr, 0, n - 1);
reverseArray(arr, 0, d - 1);
reverseArray(arr, d, n - 1);
}
// Function to print an array
static void printArray(int []arr, int size)
{
for (int i = 0; i < size; i++)
Console.Write(arr[i] + " ");
}
// Driver code
public static void Main ()
{
int []arr = {1, 2, 3, 4, 5,
6, 7, 8, 9, 10};
int n = arr.Length;
int k = 3;
rightRotate(arr, k, n);
printArray(arr, n);
}
}
// This code is contributed by vt_m.
PHP
<?php
// PHP program for right rotation of
// an array (Reversal Algorithm)
/*Function to reverse arr[]
from index start to end*/
function reverseArray(&$arr, $start, $end)
{
while ($start < $end)
{
$temp = $arr[$start];
$arr[$start] = $arr[$end];
$arr[$end] = $temp;
$start++;
$end--;
}
}
/* Function to right rotate arr[]
of size n by d */
function rightRotate(&$arr, $d, $n)
{
reverseArray($arr, 0, $n - 1);
reverseArray($arr, 0, $d - 1);
reverseArray($arr, $d, $n - 1);
}
/* function to print an array */
function printArray(&$arr, $size)
{
for ($i = 0; $i < $size; $i++)
echo $arr[$i] . " ";
}
// Driver code
$arr = array(1, 2, 3, 4, 5,
6, 7, 8, 9, 10);
$n = sizeof($arr);
$k = 3;
rightRotate($arr, $k, $n);
printArray($arr, $n);
// This code is contributed by ita_c
?>
JavaScript
<script>
// JavaScript program for right rotation of
// an array (Reversal Algorithm)
/*Function to reverse arr[]
from index start to end*/
function reverseArray(arr, start, end){
while (start < end){
let temp = arr[start];
arr[start] = arr[end];
arr[end] = temp;
start++;
end--;
}
return arr;
}
/* Function to right rotate arr[]
of size n by d */
function rightRotate(arr, d, n){
arr = reverseArray(arr, 0, n-1);
arr = reverseArray(arr, 0, d-1);
arr = reverseArray(arr, d, n-1);
return arr;
}
/* function to print an array */
function printArray( arr, size){
for (let i = 0; i < size; i++)
document.write( arr[i] + " ");
}
// driver code
let arr = [1, 2, 3, 4, 5,
6, 7, 8, 9, 10];
let n = arr.length;
let k = 3;
arr = rightRotate(arr, k, n);
printArray(arr, n);
</script>
Output8 9 10 1 2 3 4 5 6 7
Time Complexity: O(n), as we are using a while loop to traverse N times.
Auxiliary Space: O(1), as we are not using any extra space.
Similar Reads
DSA Tutorial - Learn Data Structures and Algorithms DSA (Data Structures and Algorithms) is the study of organizing data efficiently using data structures like arrays, stacks, and trees, paired with step-by-step procedures (or algorithms) to solve problems effectively. Data structures manage how data is stored and accessed, while algorithms focus on
7 min read
Quick Sort QuickSort is a sorting algorithm based on the Divide and Conquer that picks an element as a pivot and partitions the given array around the picked pivot by placing the pivot in its correct position in the sorted array. It works on the principle of divide and conquer, breaking down the problem into s
12 min read
Merge Sort - Data Structure and Algorithms Tutorials Merge sort is a popular sorting algorithm known for its efficiency and stability. It follows the divide-and-conquer approach. It works by recursively dividing the input array into two halves, recursively sorting the two halves and finally merging them back together to obtain the sorted array. Merge
14 min read
SQL Commands | DDL, DQL, DML, DCL and TCL Commands SQL commands are crucial for managing databases effectively. These commands are divided into categories such as Data Definition Language (DDL), Data Manipulation Language (DML), Data Control Language (DCL), Data Query Language (DQL), and Transaction Control Language (TCL). In this article, we will e
7 min read
Bubble Sort Algorithm Bubble Sort is the simplest sorting algorithm that works by repeatedly swapping the adjacent elements if they are in the wrong order. This algorithm is not suitable for large data sets as its average and worst-case time complexity are quite high.We sort the array using multiple passes. After the fir
8 min read
Data Structures Tutorial Data structures are the fundamental building blocks of computer programming. They define how data is organized, stored, and manipulated within a program. Understanding data structures is very important for developing efficient and effective algorithms. What is Data Structure?A data structure is a st
2 min read
Breadth First Search or BFS for a Graph Given a undirected graph represented by an adjacency list adj, where each adj[i] represents the list of vertices connected to vertex i. Perform a Breadth First Search (BFS) traversal starting from vertex 0, visiting vertices from left to right according to the adjacency list, and return a list conta
15+ min read
Binary Search Algorithm - Iterative and Recursive Implementation Binary Search Algorithm is a searching algorithm used in a sorted array by repeatedly dividing the search interval in half. The idea of binary search is to use the information that the array is sorted and reduce the time complexity to O(log N). Binary Search AlgorithmConditions to apply Binary Searc
15 min read
Insertion Sort Algorithm Insertion sort is a simple sorting algorithm that works by iteratively inserting each element of an unsorted list into its correct position in a sorted portion of the list. It is like sorting playing cards in your hands. You split the cards into two groups: the sorted cards and the unsorted cards. T
9 min read
Dijkstra's Algorithm to find Shortest Paths from a Source to all Given a weighted undirected graph represented as an edge list and a source vertex src, find the shortest path distances from the source vertex to all other vertices in the graph. The graph contains V vertices, numbered from 0 to V - 1.Note: The given graph does not contain any negative edge. Example
12 min read