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ABSTRACT

Projections of historical and future changes in climate extremes are examined by applying the bias-correction

spatial disaggregation (BCSD) statistical downscaling method to five general circulation models (GCMs) from

phase 5 of the CoupledModel Intercomparison Project (CMIP5). For this analysis, 11 extreme temperature and

precipitation indices that are relevant across multiple disciplines (e.g., agriculture and conservation) are chosen.

Over the historical period, the simulated means, variances, and cumulative distribution functions (CDFs) of

each of the 11 indices are first compared with observations, and the performance of the downscaling method is

quantitatively evaluated. For the future period, the ensemble average of the five GCM simulations points to

more warm extremes, fewer cold extremes, and more precipitation extremes with greater intensities under all

three scenarios. The changes are larger under higher emissions scenarios. The inter-GCM uncertainties and

changes in probability distributions are also assessed. Changes in the probability distributions indicate an in-

crease in both the number and interannual variability of future climate extreme events. The potential de-

ficiencies of the method in projecting future extremes are also discussed.

1. Introduction

The Intergovernmental Panel on Climate Change

(IPCC) Fourth Assessment Report (AR4) indicates that

the global mean surface temperature has risen by 0.78C
over the last 100 years, with changes in temperature ex-

tremes consistent with warming and substantial increases

in heavy precipitation events (Trenberth et al. 2007).

Climate extremes have attracted increasing attention

because of their large societal impact on multiple sectors,

such as agriculture, the economy, and human health

(Easterling et al. 2000; Meehl and Tebaldi 2004; Negri

et al. 2005). Significant increasing trends in many climate

extreme indicators have been reported overmany regions

using a variety of datasets and methods (Frich et al. 2002;

Alexander et al. 2006; Ning and Qian 2009).

General circulation models (GCMs) based on well-

established physical principles reproduce observed fea-

tures of recent climate (Randall et al. 2007), and they are

the major tools used to project future climate, including

temperature and precipitation extremes (Meehl et al.

2007). However, since some climate extremes, especially

precipitation extremes, are mainly controlled by subgrid
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processes, the coarse resolution of GCMs cannot meet

the requirements of end users who need to apply changes

of climate extremes to interdisciplinary studies, such as

hydrology, conservation, and climate risk assessment

(Prudhomme et al. 2002; Diaz-Nieto andWilby 2005). To

bridge this gap, downscaling methods have been de-

veloped and widely applied (Wilby and Wigley 1997;

Christensen et al. 2007; Maraun et al. 2010). Usually, the

downscaling methods are categorized into two kinds:

dynamical downscaling, using GCM output to drive re-

gional climate models (RCMs) (e.g., Chen et al. 2003;

Plummer et al. 2006), and statistical downscaling, build-

ing relationships between observed synoptic circulation

and local climate anomalies and then applying this re-

lationship to GCM-simulated synoptic circulation (e.g.,

Hewitson andCrane 2006; Ning et al. 2012a,b) or building

relationships between synoptic-scale outputs of GCMs

and local-scale inputs for hydrologic or other land surface

process models (e.g., Wood et al. 2002).

Compared to dynamical downscaling, statistical

downscaling is generally flexible and less computation-

ally demanding and can effectively remove errors in

historical simulated values; however, statistical down-

scaling is based on the key assumption that the relation-

ship between large-scale weather systems and local

climate will remain constant over time (Melillo et al. 2014;

Walsh et al. 2014). When applying statistical downscaling

methods to simulations of climate extremes, a critical

factor is the ability to generate complete distributions of

daily variables so they can be used to randomize the

downscaled results and thus better represent local vari-

ability and extremes (Maraun et al. 2010). The Statistical

and Regional Dynamical Downscaling of Extremes for

European Regions (STARDEX; http://www.cru.uea.ac.

uk/projects/stardex/) project has systematically developed

and evaluated 22 different statistical downscalingmethods

in terms of their ability to reproduce extreme temperature

and precipitation indices and has demonstrated that these

downscaling methods can be used to construct scenar-

ios of extremes (Goodess et al. 2005). Fowler et al.

(2007) reviewed the strengths and weaknesses of

downscaling methods for different climate extremes

and found that indices related to the frequency of ex-

tremes were better reproduced than those related to

the magnitude of events, which were generally too

moderate compared with observations. Bürger et al.
(2012) compared five statistical downscaling methods

with respect to their representation of climatic ex-

tremes, and all the statistical downscaling methods,

especially the bias-correction spatial disaggregation

(BCSD) method, were able to reproduce the statistics

of observed climate extremes, with relatively better

performances on temperature-related indices.

To evaluate the performances of statistical down-

scaling methods over specific regions, Haylock et al.

(2006) compared six statistical and two dynamical

downscaling models with regard to their ability to

downscale seven seasonal indices of heavy precipitation

in northwestern and southeastern England and found

that winter indices and indices indicative of rainfall oc-

currence are generally downscaled better than summer

indices and those indicative of rainfall intensity. Schmidli

et al. (2007) also evaluated six statistical downscaling

models and three RCMs in their ability to downscale

daily extreme precipitation statistics over the European

Alps and concluded that there is relatively good agree-

ment between the downscaling models for most pre-

cipitation statistics, although they also contribute to the

uncertainty of regional climate projections, especially for

the summer precipitation climate. Over the northeastern

United States, when applying both statistical and dy-

namical downscaling methods to GCM output, Hayhoe

et al. (2008) found that the downscaling methods can

improve simulations of spatial and temporal variability in

temperature and precipitation across the region. Ahmed

et al. (2013) also found that, after applying a statistical

downscaling method to both multiple GCM and RCM

simulations over the northeastern United States, the

agreement among the GCM and RCM outputs increased

in predicting extreme events in the future climate.

The northeastern United States encompasses enor-

mous diversity in geography, climate, ecological re-

sources, and human land use. It includes 7 of the 21

regions established for the national Landscape Conser-

vation Cooperative (LCC) program and a human pop-

ulation of 131 million (41% of the U.S. population;

Palmer et al. 2011). Consequently, the northeastern

United States region poses many unique challenges for

understanding, adapting to, and mitigating the effects of

climate change (Horton et al. 2014; Corell et al. 2014;

Ning and Bradley 2014, 2015). In this paper, to better

prepare for future climate impacts, historical and future

changes of climate extremes over the northeastern

United States are systematically investigated through

application of the BCSD statistical downscalingmethod,

and it is applied for the first time to five GCMs from

phase 5 of the Coupled Model Intercomparison Project

(CMIP5). First, this paper systematically evaluates the

performance of BCSD on climate extreme estimation

over the northeasternUnited States during the historical

period, since BCSD has become widely used to assess

climate change impacts. Then, the downscaling method

is applied to late twenty-first-century CMIP5 runs under

three future emissions [representative concentration

pathways (RCPs)] scenarios (Moss et al. 2010; van

Vuuren et al. 2011), and probabilistic estimates for
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future changes in temperature and precipitation ex-

tremes are determined. We focus on uncertainties re-

sulting from the RCP scenarios and different GCM

parameterization schemes, since these are likely to

dominate other sources of uncertainty by the end of the

twenty-first century (Hawkins and Sutton 2009). The

downscaled probabilistic changes in climate extremes

provide useful insights that will be of interest to a wide

range of stakeholders and decision-makers involved in the

influence of climate change on hydrology, ecosystems, and

agriculture, as well as in adaption and mitigation efforts

across the northeastern United States.

2. Data and methodology

a. Data

The study area ranges from 368 to 508Nand from 908 to
688W, encompassing the United States and Canada (see

Fig. 2). The high-resolution (1/88) observed monthly and

dailymaximum temperature, minimum temperature, and

precipitation data used in the statistical downscaling are

for the period 1950–99 (Maurer et al. 2002).

The GCM monthly maximum temperature, minimum

temperature and precipitation data for the periods 1950–

99 and 2050–99 are taken from World Climate Research

Programme (WCRP) CMIP5 under the historical em-

issions scenario and three future RCP scenarios for five

different models: 1) the Community Climate System

Model, version 4.0 (CCSM4); 2) the Community Earth

System Model, version 1 (Community Atmosphere

Model, version 5) [CESM1(CAM5)]; 3) the Hadley Cen-

tre Global Environment Model, version 2–Earth System

(HadGEM2-ES); 4) the Max Planck Institute Earth Sys-

tem Model, medium resolution (MPI-ESM-MR); and 5)

the Max Planck Institute Earth System Model, low reso-

lution (MPI-ESM-LR). These five models were selected

because of their better performances on large-scale simu-

lations of historical climate extremes evaluated in previous

studies (Sillmann et al. 2013). The corresponding daily

maximum and minimum temperatures from these five

GCMs are also used to investigate the future changes of

daily temperature variability. The historical scenario is

forced by observed atmospheric composition changes, and

the three future RCP scenarios, which include one high

emissions scenario (RCP8.5), one midrange mitigation

emissions scenario (RCP4.5), and one low emissions sce-

nario (RCP2.6) (Taylor et al. 2012). The monthly maxi-

mum and minimum temperature data from another 10

GCMs—CanESM2, CNRM-CM5, CSIRO Mk3.6.0,

GFDL CM3, GISS-E2-H, HadGEM2-AO, IPSL-CM5A-

MR, MIROC5, MRI-CGCM3, and NorESM1-M (model

name expansions are available at http://www.ametsoc.org/

PubsAcronymList)—under these four scenarios are also

used to examine the spreads of future maximum and

minimum temperature changes. The data and descriptions

of the GCMs can be found at the Program for Climate

Model Diagnosis and Intercomparison (PCMDI) website

(http://pcmdi9.llnl.gov/esgf-web-fe/).

b. Statistical downscaling procedure

In this study, the BCSD method is applied to the

GCMs’ output. BCSD is one of the most widely used

statistical downscaling methods, used to generate high-

resolution temperature and precipitation data with sig-

nificantly reduced climatological biases (Wood et al.

2002, 2004; Maurer 2007).

BCSD contains two major steps: bias correction and

spatial disaggregation, and it is applied to each of 12months

(January–December) for each of the three variables (i.e.,

maximum temperature, minimum temperature, and pre-

cipitation), separately. For the bias-correction step, the

biases from raw GCM-simulated monthly fields, which are

already aggregated to the same coarse 28 resolution, are
removed by adjusting the modeled cumulative distribution

functions (CDFs) to the observed instrumental CDFs.

Then, change factors calculated between the low-resolution

bias-corrected GCM fields and observed climatology at 28
are spatially disaggregated to high resolution (1/88) by in-

terpolation. Next, the bias-corrected high-resolution GCM

fields are calculated by adding (for maximum or minimum

temperature) or multiplying (for precipitation) the high-

resolution change factors and the observed climatology at
1/88. Finally, for each month, these fields are temporally

disaggregated to a daily scale through randomly picking

a month from the observational period and shifting the ob-

served daily values by a fixed additive constant so that the

monthlymeanmatches the downscaledmonthly value. The

major procedures are shown in Fig. 1. For example, for the

downscaledmaximum temperature of January 1950, one of

the 50 observed Januarys (e.g., January 1960) is randomly

selected, and then the observed daily maximum tempera-

ture values are shifted so that the monthly average maxi-

mum temperature equals the downscaled monthly average

maximum temperature. The procedure is similar for pre-

cipitation, with the only difference being that the observed

daily precipitation values are scaled by a multiplicative

constant to match the downscaled monthly precipitation.

For more details about the BCSD method, readers are re-

ferred to previous studies (Wood et al. 2002, 2004; Maurer

2007). The downscaled climate extremes from BCSD over

British Columbia for present climate and future projection

were evaluated and compared with several other down-

scaling methods (Bürger et al. 2012, 2013). When assessing

the impact of climate changes on streamflow in the Colo-

rado River basin, Harding et al. (2012) pointed out that the

BCSD may perform poorly where daily meteorological
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climatologies are highly skewed or exhibit threshold be-

havior (e.g., the U.S. Southwest, with intermittency and

resulting skewness of precipitation). Ahmed et al. (2013)

applied the statistical downscaling and bias correction

(SDBC), which is a modification of BCSD method, to six

GCMsand fourRCMs to predict future climate extremes in

the U.S. Northeast. They indicate that bias correction is an

effective tool to derive fine-resolutionpredictions fromboth

GCM and RCM outputs, and can lead to a higher level of

agreement among the models in predicting the magnitude

and capturing the spatial pattern of the extreme climate

indices.

c. Indices of climate extremes

The 11 indices of climate extremes used in this study

along with their expansions are listed in Table 1. Most of

these indices are taken from the dictionary of the Euro-

pean ClimateAssessment andDataset project (ECA&D),

which has been commonly used in previous studies about

climate extremes (Frich et al. 2002; Meehl and Tebaldi

2004; Alexander et al. 2006). Precise definitions of the full

list of indices are available at the ECA&Dwebsite (http://

eca.knmi.nl/indicesextremes/indicesdictionary.php). The

definitions of GSL and high values of HWI are adopted

FIG. 1. The major procedures of the BCSD downscaling method.
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from Frich et al. (2002) and Meehl and Tebaldi (2004),

separately. Since we are concerned about the changes of

the absolute extreme precipitation amount more than

the percentage, the definition of R95pTOT is slightly

different from the original definition in the ECA&D

dictionary.

These 11 indices cover a wide range of interdisciplinary

interests and concerns about the potential impacts of

climate change. For example, the total number of FD and

the GSL are important in future agricultural decision-

making. High values of HWI can have serious impacts on

human health. The number of days with daily pre-

cipitation larger than 10mm is an important factor when

driving hydrological models.

3. Results

First, the downscaled climate extremes are systemati-

cally compared with observations described in section 2a

over the historical period 1950–99 over the northeastern

United States. Then future changes of the climate ex-

treme indices are presented, based on the ensemble av-

erage across the five GCMs under the three RCP

scenarios, and the corresponding uncertainties from the

emissions scenarios and differentGCMs’ responses to the

increase in greenhouse gases are discussed.

a. BCSD’s performance on reproducing historical
climate extremes

In a previous study, Bürger et al. (2012) showed that

BCSD performed differently in reproducing different

observed climate extremes. In this section, BCSD’s

performances in reproducing the 11 climate indices over

the northeastern United States are first quantitatively

evaluated on three aspects:

1) The downscaled averages are compared with obser-

vations through a t test.

2) The downscaled variances are compared with obser-

vations through an F test.

3) The downscaled CDFs are compared with observa-

tion through a Kolmogorov–Smirnov test (K–S test).

In each test, the percentage of the grid points with

significant differences (p 5 0.05) between downscaled

results and observations is calculated for each index.

In this case, a smaller percentage indicates better

performance.

Figure 2 shows the spatial distributions of the differ-

ences between downscaled and observed averages of the

11 extreme indices over the period 1950–99. Among the

seven temperature extremes, the downscaling generally

overestimates the magnitudes of GSL and HWI and

underestimates the magnitudes of FD over most of the

region, indicating mainly warm biases on these three

indices. In Figs. 2 and 3, color scales are applied so that

red indicates warm (dry) biases and blue indicates cold

(wet) biases. The biases range from 23 to 16 days for

GSL, from 24 to 21 days for FD, and from 08 to 10.58C
for HWI. The corresponding percentages of grid points

with significant differences based on a t test (stippled re-

gion in Fig. 2) for these three indices are 10.8%, 53.1%,

and 29.6%, respectively. For the other four temperature

extremes (i.e., Tx90p, Tx10p, Tn90p, and Tn10p) the

magnitudes of differences between the downscaled results

TABLE 1. The definitions and units of the 11 climate extreme indices used in this study (for precise definitions, see http://eca.knmi.nl/

indicesextremes/indicesdictionary.php).

Index Definition Unit

Temperature indices GSL Growing season length: length between the first period and last period of

5 continuous days with daily average temperature higher than 58C.
Days

Tx90p Warm days: number of days with maximum temperature higher than 90th

percentile of daily maximum temperature.

Days

Tx10p Cold days: number of days with maximum temperature lower than 10th

percentile of daily maximum temperature.

Days

FD Frost days: number of days with daily minimum temperature lower than 08C. Days

HWI Heat wave intensity: maximum average daily minimum temperature

of 3 continuous days.

Degrees Celsius

Tn90p Warm nights: number of days with minimum temperature higher than

90th percentile of daily minimum temperature.

Days

Tn10p Cold nights: number of days with minimum temperature lower than 10th

percentile of daily minimum temperature.

Days

Precipitation indices R95p Number of days with daily precipitation larger than 95th percentile of daily

precipitation amount.

Days

R95pTOT Total precipitation amount due to daily precipitation larger than 95th

percentile of daily precipitation amount.

Millimeters

Rx5day Maximum total precipitation over 5 continuous days. Millimeters

R10mm Number of days with daily precipitation larger than 10mm. Days
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and observations are really small (within 63 days), and

fewer than 5% of total grid points show significant differ-

ences. It can be concluded that the downscaling is good at

reproducing themeans of GSL, Tx90p, Tx10p, Tn90p, and

Tn10p, while the performances of FD and HWI are not as

good as the previous five indices.

For R95p and R95pTOT, the downscaling over-

estimates the magnitudes over most of the region, and

FIG. 2. The spatial distributions of differences between the downscaled and the observed averages of the 11 extreme indices for the

period 1950–99. The number in the upper-right corner of each panel shows the percentage of grid points with significant differences.

Stippling indicates changes significant at the p 5 0.05 level based on a t test.
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the percentages of grid points with significant differ-

ences are 11.4% and 21.4%. The bias distribution of

Rx5day is not uniform, with some significant differences

over the southern part and coastal region, and the

percentage of grid points with significant differences is

11.2%. For the R10mm, the downscaled results show

uniform dry biases (;2 days) over the whole region, and

2.8% of total grid points have significant differences.

FIG. 3. The spatial distributions of differences between the downscaled and the observed variances of the 11 extreme indices for the

period 1950–99. The number in the upper-right corner of each panel shows the percentage of grid points with significant differences.

Stippling indicates changes significant at the p 5 0.05 level based on an F test.
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Generally, for these four precipitation extremes, BCSD

does not perform as well as for temperature extremes.

The variances of the downscaled extreme indices are

compared with the observation in Fig. 3. For GSL and

FD, BCSD underestimates the variances toward the

coastal region but overestimates the variances over the

rest of the region, and the percentages of grid points with

significant differences based on anF test (stippled region

in Fig. 3) are 11.5% and 8.3%. BCSD overestimates the

HWI variances over nearly the whole region, with

17.5% of total grid points showing significant differ-

ences. For Tx90p, Tx10p, Tn90p, and Tn10p, BCSD

usually underestimates the variances over most of the

region, and corresponding percentages are 5.2%, 3.5%,

42.8%, and 14.1%.

The variances of R95p are underestimated over the

eastern part of the study region but overestimated over

the western part of the study region. The corresponding

percentage of grid points with significant differences is

14.2%. The spatial patterns of R95pTOT and Rx5day

are similar, with significant negative differences along

the coastal region and overestimation over a small area

in the west, with overall percentages of grid points with

significant differences of 12.3% and 40.4%. For R10mm,

BCSD slightly underestimates the variances over most

of the region, and the percentage of grid points with

significant differences is 32.0%. From this figure, it can be

concluded that the variances of the seven temperature

extremes (except Tn90p and HWI) are usually better

simulated by the downscaling method than those of the

four precipitation extremes. Among the four precip-

itation extremes, the variances of the two extremes de-

fined by absolute values (i.e., Rx5day and R10mm) are

not reproduced as well as the other two, defined by the

relative thresholds (i.e., R95p and R95pTOT).

The third test is the K–S test, which examines whether

the CDFs of the downscaled extremes are significantly

different from the observed CDFs, and the corre-

sponding p values of the test are given in Fig. 4. Among

the seven temperature extremes, GSL, Tx90p, Tx10p,

Tn90p, and Tn10p usually have small differences (large

p values) between the downscaled and observed CDFs

over the whole domain with fewer than 10% of total grid

points showing significant differences (stippled region in

Fig. 4). For FD and HWI, the differences are larger, and

about 20% and 30% of total grid points show signifi-

cant differences. For R95p, Rx5day, and R10mm, the

p values are usually smaller than 0.5, and the percent-

ages for the first two extremes are about 5%, while the

percentage for R10mm is larger, at 1.5%. The p values

for R95pTOT are larger than those other three pre-

cipitation extremes, and 20.1% of total grid points show

significant differences.

From these three figures, it can be concluded that

BCSD performs differently for the three aspects of the

11 extreme indices, generally reproducing the character

of temperature extremes better than precipitation ex-

tremes, consistent with conclusions from Bürger et al.
2012. Table 2 summarizes the percentages of grid points

with significant differences for three tests over all ex-

treme indices. Among the seven temperature indices,

BCSD properly reproduces the means, variances, and

CDFs on GSL, Tx90p, Tx10p, and Tn10p, with all per-

centages smaller than 15%, showing a relatively higher

confidence level. For FD and HWI, BCSD does not

perform as well as other temperature extremes in re-

producing the means, with percentages of 53.1% and

29.6%, respectively. The downscaled variances of Tn90p

are also significantly different from observations, over

42.8% of total grid points. This means the confidence in

these three temperature indices is lower than for the

previous four.

Among the four precipitation extremes, downscaling

only shows high confidence forR95p, with all percentages

smaller than 15% on three aspects. BCSD does not per-

form well in reproducing means of R95pTOT (21.4%)

and variances of Rx5day (40.4%) and R10mm (32%),

indicating lower confidence in these three extremes.

Figure 5 shows regionally averaged time series for

GSL, the first of the 11 climate extremes indices. The

observed time series is shown, along with time series

from each individual downscaled GCM and the

ensemble average. From the figure, it can be con-

cluded that the downscaled ensemble regional average

(average 5 218.79 days and standard deviation 5 9.99

days) is close to the observation (average5 217.05 days

and standard deviation 5 10.35 days) for both average

and variance. Similar results for the remaining 10 climate

extremes are shown in Figs. S1–S7 of the supplemen-

tary material.

b. Future changes of climate extremes

Figure 6 shows the spatial distributions of ensemble-

averaged future changes of GSL under the three RCP

scenarios (RCP2.6, RCP4.5, and RCP8.5). In this sec-

tion, the future changes are defined by the difference

between the future period average (2050–99) and the

historical period average (1950–99). A Student’s t test is

employed for the significance test. The ensemble-

averaged GSL will increase under all three scenarios,

because the growing season will start earlier and end

later as a result of the background of continuous

warming, with larger magnitude increases in the higher

emissions scenarios. Under the RCP2.6 scenario, the

increases range from 10 days in the southern part of the

domain to 30 days in the northern part of the U.S.
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Northeast (Fig. 6a). These magnitudes increase to 20–40

days, with the largest increases around the Great Lakes

under the RCP4.5 scenario (Fig. 6b). Under the RCP8.5

scenario, the increases are even higher, ranging from 30

days at the southern part to more than 50 days over the

northern part and Great Lakes (Fig. 6c). The increase in

GSL is larger over the Appalachian Mountains (358–
408N, 788–828W) than in the surrounding region, in-

dicating that the impact of climate change on the agri-

cultural growing season is enhanced over the region with

FIG. 4. The spatial distributions of differences between the downscaled and the observed CDFs of the 11 extreme indices for the period

1950–99. The number in the upper-right corner of each panel shows the percentage of grid points with significant differences. Stippling

indicates changes significant at the p 5 0.05 level based on a K–S test.
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higher elevations (Diaz et al. 2014). All of these changes

are significant at the 5% level.

Ensemble-averaged future changes in warm days

(Tx90p) and cold days (Tx10p) are shown in Fig. 7. The

threshold values are described in Table 1. Because of the

warmer future climate, there are significant increases in

the number of warm days and decreases in the number

of cold days for all three emissions scenarios.Warm days

increase by 10–30 days under the RCP2.6 scenario, with

larger increases over the southern part of the domain,

especially over the Ohio River valley (Fig. 7a). This

spatial pattern is more obvious in the RCP4.5 scenario

(Fig. 7c), with increases of 20 days over the northern

part and 50–60 days over the southern part and Ohio

River valley. Under the RCP8.5 scenario, there are over

70-day increases over the southern part of the domain,

compared with about 50-day increases over the northern

part (Fig. 7e). The spatial patterns of future changes in

cold days (Figs. 7b,d,f) are similar to those of GSL, with

larger magnitudes around the Great Lakes and smaller

magnitudes over the southern part of the region. The

decreases range from 6 to 18 days for the RCP2.6 sce-

nario, from 9 to 24 days for the RCP4.5 scenario, and

from more than 20 to 30 days for the RCP8.5 scenario.

The smaller magnitudes of decreases in cold days com-

pared with increases in warm days indicate that the

lower tail of the daily maximum temperature distribu-

tion is not as sensitive to greenhouse gas increases as the

upper tail, which exhibits a larger and more spatially

varied response.

Two additional indices describing cold extremes (FD

and Tn10p in Figs. S8 and S9b,d,f of the supplementary

material, respectively) show ensemble-averaged future

decreases with similar spatial patterns to those of cold

days (Figs. 7b,d,f). Likewise, warm nights (Figs. S9a,c,e)

show future increases with similar spatial patterns to

warm days (Figs. 7a–c). Increases in the HWI (Fig. 8),

however, show a spatial pattern that is unique from the

other indices previously discussed, with more uniform

increases over the whole region (18C for RCP2.6, 38C for

RCP4.5, and 58C for RCP8.5) and slightly higher in-

creases of about 0.58C over the AppalachianMountains.

Because of increases in water vapor brought about by

future warming (Collins et al. 2010), all four indices

relevant to daily precipitation [i.e., R95p (Figs. 9a,c,e),

R95pTOT (Figs. 9b,d,f), Rx5day (Fig. S10 in the sup-

plemental material), and R10mm (Fig. S11 in the sup-

plemental material)] show increases throughout the

region because of higher specific humidity (Ning et al.

2012b), with magnitudes increasing with higher emis-

sions scenarios. Within the four indices, only changes of

themaximum total precipitation amount of 5 continuous

days are not significant at the 5% level across the entire

domain (Fig. S10). The physical mechanism underlying

this relationship is that larger convective available po-

tential energy (CAPE) will be induced by future larger

specific humidity (Riemann-Campe et al. 2009), so

stronger convection will occur as a result of the larger

atmospheric instability, resulting in more extreme pre-

cipitation. These increases tend to be larger along the

coast and smaller inland, consistent with previous stud-

ies (Ahmed et al. 2013). For example, for R95p and

R95pTOT, the increases range from 1 to 3 days and from

20 to 30mm for the RCP2.6 scenario (Figs. 9a,b), from1

to 3 days and from 30 to 40mm for RCP4.5 scenario

(Figs. 9c,d), and from 2 to 5 days and 40mm for the

RCP8.5 scenario (Figs. 9e,f). All of these increases are

significant at the 5% level. One potential reason for this

spatial pattern is that water vapor increases are larger

TABLE 2. Summary of percentages of the grid points with sig-

nificant differences (p 5 0.05) between observation and down-

scaled results over 11 climate extremes for the period 1950–99.

Indices t test F test K–S test

Temperature indices GSL (days) 10.8% 11.5% 6.1%

Tx90p (days) 0.2% 5.2% 0.2%

Tx10p (days) 0.9% 3.5% 0.1%

FD (days) 53.1% 8.3% 31.1%

HWI (8C) 29.6% 17.5% 21.9%

Tn90p (days) 4.9% 42.8% 5.2%

Tn10p (days) 3.3% 14.1% 1.4%

Precipitation indices R95p (days) 11.4% 14.2% 5.0%

R95pTOT(mm) 21.4% 12.3% 20.1%

Rx5day (mm) 11.2% 40.4% 6.5%

R10mm (days) 2.8% 32.0% 1.5%

FIG. 5. The observed and downscaled time series of GSL (days) for

period 1950–99.
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near the coast than they are inland because of warming

of sea surface temperatures (SSTs). However, in-

vestigation of the corresponding mechanism is beyond

the scope of this paper, so this potential mechanism will

be examined further in a future analysis. Another

characteristic of the spatial distribution is that, for the

two indices relevant to the precipitation intensity (i.e.,

R95pTOT and Rx5day), there are also significant in-

creases over the Ohio River valley in addition to along

the coastal region (Figs. 9b,d,f and Figs. S10a–c), espe-

cially for the higher emissions scenarios.We suggest that

this indicates future warming over the Gulf of Mexico

will lead to more water vapor being transported to the

Ohio River valley to enhance precipitation intensity in

that region, but further analysis of this hypothesis is

needed.

From the spatial distributions of the ensemble-

averaged future changes of the 11 climate extreme in-

dices, it can be concluded that under future global

warming, there will be more warm extremes and fewer

cold extremes, and there will be more precipitation ex-

tremes, with larger intensities. For the temperature ex-

tremes, the magnitudes of the changes usually increase

with the higher emissions scenarios. The magnitudes of

the precipitation extreme changes also usually increase

with the emissions scenario as a result of water vapor in-

creases brought about by the warming. Moreover, the

changes of temperature extremes are usually more spa-

tially uniform than the precipitation extremes. This in-

dicates that precipitation extremes are more highly

dependent on subgrid processes, such as local convection.

Comparing with the similar results based on raw GCM

simulations (Sillmann et al. 2013), although these changes

are also spatially homogeneous, they are based on in-

fluences of the large-scale warming on probability distri-

bution functions (PDFs) over the high-resolution grid

points, so some small-scale effects, such as topography, are

taken into consideration in the downscaling procedure.

To characterize uncertainties associated with GCM

differences, themultimodel ensemble spread is shown in

Fig. 10 for regionally averaged changes in the 11 ex-

tremes indices and three emissions scenarios. For each

of the 11 indices, the sign of the changes (either in-

creasing or decreasing) is the same across all five GCMs

and for all three emissions scenarios. For the tempera-

ture indices, with the exception of the HWI, the inter-

GCM spread does not generally depend too strongly on

the emissions scenario. The multimodel ensemble

spread of the HWI is about 1.58C under the RCP2.6

scenario and increases to about 38C under the RCP8.5

scenario. The GSL and FD have model spreads with

magnitudes of approximately 20 days. Warm days and

warmnights havemodel spreads of approximately 25 days,

larger than the ranges of cold days and cold nights, which

are about only 7 days. Across the seven indices relevant

to temperature, HadGEM2-ES always has the largest

increasing/decreasing magnitudes, while MPI-ESM-MR

FIG. 6. The spatial distributions of future changes of GSL under

the (a) RCP2.6, (b) RCP4.5, and (c) RCP8.5 emissions scenarios

(days) for the period 2050–99 relative to period 1950–99. Stippling

indicates changes significant at the p 5 0.05 level.
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FIG. 7. The spatial distributions of future changes of (a),(c),(e) Tx90p and (b),(d),(f) Tx10p under the (a),(b) RCP2.6, (c),(d) RCP4.5,

and (e),(f) RCP8.5 emissions scenarios (days) for the period 2050–99 relative to period 1950–99. Stippling indicates changes significant at

the p 5 0.05 level.
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and MPI-ESM-LR always have the smallest increasing/

decreasing magnitudes, except for heat wave intensity and

warmnights inRCP4.5 andRCP8.5, for whichCCSM4has

the smallest increases.

For the four indices relevant to precipitation, multi-

model ensemble spread depends on the emissions sce-

nario, with the largest spread for theRCP8.5 scenario and

the smallest spread for the RCP4.5 scenario. R95p and

R95pTOT show the largest model spreads of about 2.5

days and 65mm under the RCP8.5 scenario, followed by

2 days and 55mm under the RCP2.6 scenario, and the

smallest spreads of 1.5 days and 35mm under the RCP4.5

scenario. For Rx5day and R10mm, the model spreads

under RCP2.6 and RCP8.5 are similar, with magnitudes

of 6mm and 4 days, and the ranges under RCP4.5 are

smaller, with magnitudes of 4.5mm and 3 days. This in-

dicates that these inter-GCMuncertainties do not change

with the emission scenarios linearly. Among the five

GCMs, CCSM4 always has the smallest increases of all

four precipitation indices for three scenarios, andCESM1

(CAM5) and MPI-ESM-MR have the largest increases

for the RCP2.6 and RCP8.5 scenarios (Fig. 10b), sug-

gesting that the different responses may be due to dif-

ferent cloud microphysics parameterization schemes.

Although the magnitudes of the future changes in-

crease significantly with the emissions scenarios, the

inter-GCM uncertainties for the temperature-relevant

indices do not change very much. In contrast, the inter-

GCM uncertainties for the precipitation-relevant in-

dices are more dependent on the emissions scenario,

indicating that the GCMs’ responses to the emissions

scenarios on temperature extremes are more consistent

than for precipitation extremes.

In general, uncertainties represented by the multi-

model ensemble spread and uncertainties associated

with different possible future RCP scenarios both

appear to contribute a substantial portion to the

overall uncertainty in future projections of the 11

climate extremes indices. For the temperature indices,

emissions scenario–related uncertainties appear to

dominate over the model-related uncertainties. In

contrast, for the precipitation indices, model-related un-

certainties appear to be as important as, if not more so,

the uncertainties resulting from the different emissions

scenarios. Other uncertainties not characterized in this

plot include: 1) uncertainties resulting from lack of in-

variance in model biases for both model means and in-

terannual variances (e.g., Maurer et al. 2013; C. Spence

and C. Brown 2014, personal communication), 2) un-

certainties resulting from changing relationships be-

tween monthly climate anomalies and the daily

weather patterns, 3) uncertainties resulting from nat-

ural multidecadal variability not accurately repre-

sented in themodel spread (e.g., Deser et al. 2012), and

4) uncertainties from sampling errors at the far tails of

the temperature and precipitation distributions be-

cause of the limited historical record.

FIG. 8. The spatial distributions of future changes of HWI under

the (a) RCP2.6, (b) RCP4.5, and (c) RCP8.5 emissions scenarios

(8C) for the period 2050–99 relative to period 1950–99. Stippling

indicates changes significant at the p 5 0.05 level.
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FIG. 9. The spatial distributions of future changes of (a),(c),(e) R95p (days) and (b),(d),(f) R95pTOT (mm) of extreme precipitation

under the (a),(b) RCP2.6, (c),(d) RCP4.5, and (e),(f) RCP8.5 emissions scenarios for the period 2050–99 relative to period 1950–99.

Stippling indicates changes significant at the p 5 0.05 level.
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FIG. 10. The multimodel GCM ensemble spread for changes of the (a) temperature and (b) precipitation extreme indices under the

RCP2.6 (blue), RCP4.5 (green), and RCP8.5 (red) scenarios for the period 2050–99 relative to period 1950–99.
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Figure 11 shows probability distributions representing

interannual variability of the indices over the 50-yr

historical and 50-yr future simulations. The indices are

averaged over the region and over the five GCMs.

Since the downscaling method employs the observed

daily probability distributions at the temporal dis-

aggregation step, for the future downscaling, the

GCM-simulated future changes of temperatures and

precipitation will be transferred to generate totally

new probability distributions of daily maximum tem-

perature, minimum temperature, and precipitation,

which are different from the historical period. There-

fore, when examining the future changes of probability

distributions on an interannual scale, the downscaling

method can add considerable values to the projections

of climate extremes by combining the GCM-predicted

changes and observed probability distributions on

a daily scale.

When comparing the probability distributions from

the four scenarios (Fig. 11), obvious shifts can be seen

in the distributions of the seven extreme indices relevant

to the temperature. Five of seven temperature-relevant

indices (i.e., GSL, Tx90p, FD, HWI, and Tn90p) have

larger widths compared with the historical period, in-

dicating not only shifts in the index magnitudes, but also

larger interannual variability in the future. The re-

maining two indices (i.e., Tx10p and Tn90p) have

smaller widths compared with the historical period,

showing reduced interannual variability in the future. In

both cases, the interannual variability is dependent on

the emissions scenario, with higher emissions scenarios

causing larger variance shifts compared with the his-

torical simulations.

Of particular note are the distributions of warm days

and warm nights under the highest emissions scenario

(RCP 8.5). Because of increases in the mean index

values, together with a quite remarkable broadening of

the interannual PDF, we see that extreme warm tem-

perature days and nights are expected to occur 2.5–3

times as often during the most severe years in the future,

as they do during severe years in the historical record.

Even mild years in the future, under this emissions

scenario, are expected to be more severe than the most

severe years experienced in the past. The heat wave

index shows a similar characteristic, with the highest

emissions scenario leading to a future distribution that

does not overlap with conditions that have occurred in

the past.

For the four indices relevant to daily precipitation, the

distribution shifts and shape changes of the PDFs are

smaller than and not as significant as those of tempera-

ture, especially for the maximum precipitation amount

of 5 consecutive days, consistent with previous results.

The magnitudes of the distribution shifts increase with

the emissions scenarios, but the differences between

RCP2.6 (blue) and RCP4.5 (green) are small.

FIG. 11. Probability distributions representing interannual variability of the 11 extremes indices under the historical (black), RCP2.6

(blue), RCP4.5 (green), and RCP8.5 (red) scenarios.

3304 JOURNAL OF CL IMATE VOLUME 28



4. Discussion

Selecting global climate models for regional climate

change studies through downscaling is a challenging

question (Pierce et al. 2009). In this study, the future

projections of climate extremes are based on the down-

scaled results based on five GCMs, which are only part of

the CMIP5 data archive. To investigate how representa-

tive the warming from the five GCMs is, compared to the

whole CMIP5 dataset, the ensemble-averaged future

changes of maximum and minimum temperatures from

the five GCMs are compared with a larger dataset con-

taining 15 GCMs (Fig. 12). The comparison shows that

changes from the five GCMs can really capture the

changes over most months from the larger dataset, with

small differences under all three emission scenarios. The

spreads of the maximum and minimum temperature

changes from the five GCMs are also comparable to re-

sults from the 15 GCMs, with similar magnitudes of

standard deviations over different months. To quantita-

tively evaluate the differences between the five-GCM

subsets and 15-GCM ensembles, a bootstrap with re-

placement (Efron 1982) is applied to the five-GCM sub-

set for each month to generate 100 five-GCM subsets

through random sampling 100 times. Then, a t test is

applied to the ensemble of the 100 five-GCM subsets and

15-GCM ensemble to investigate whether they are sta-

tistically different at p 5 0.05 level. This procedure is

repeated 10 times for each month, and frequency of sig-

nificant differences is calculated. The results show that,

for most months, the 100-member ensembles are not

significantly different from the 15-GCM ensembles. The

only four differences exist in maximum temperature for

December under the RCP8.5 scenario (1/10), minimum

temperature for January under the RCP2.6 scenario (7/10),

December under the RCP4.5 scenario (1/10), and Decem-

ber under the RCP8.5 scenario (9/10), as shown in Fig. 12.

Because the future changes of the climate extremes are

highly related to the mean changes of maximum and

minimum temperature based on the downscaling pro-

cedure, it is clear that the results from the five GCMs can

capture most of the inter-GCM uncertainties in the

CMIP5 archive.

One potential limitation of BCSD is that it applies

historical daily maximum temperature, minimum tem-

perature, and precipitation values but shifting/factoring

the monthly means to the downscaled monthly means in

the future downscaling. That means that BCSD assumes

FIG. 12. Comparison of the averages (boxes) and standard deviations (whiskers) of the mean future (a)–(c)

maximum temperature and (d)–(f) minimum temperature changes for the 12 months based on the raw simulations of

5 GCMs (blue) and 15 GCMs (red) for the period 2050–99 relative to period 1950–99.
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that the variability of daily maximum and minimum

temperatures and number of rainy days do not change in

the future, since the historical daily variability is used in

step 6 (Fig. 1). How this assumption influences the re-

sults is assessed through a comparison of changes of

variability of daily maximum and minimum tempera-

tures and number of rainy days from the raw GCM

projection.

For maximum temperature (Figs. 13a–c), the future

changes of variability defined as standard deviations of

daily maximum temperature anomalies after removing

the annual cycle show decreases over the northern part

and increases over the southern part of the region, with

magnitudes within 60.38C. The corresponding per-

centages are 66% (Figs. S12a–c in the supplemental

material). For minimum temperature (Figs. 13d–f), the

future changes of variability of daily minimum temper-

ature anomalies show negative values over most of the

region, and the magnitudes decrease from about

20.258C under the RCP2.6 scenario to about 20.68C
under the RCP8.5 scenario. The corresponding per-

centages range from 24% to 210% (Figs. S12d–f).

The future changes of numbers of rainy days show

obvious differences over four seasons (Fig. 14), with

mainly increases in winter, decreases in autumn,

southern increases–northern decreases in summer, and

decreases–increases with scenarios in spring. Usually,

the magnitudes of the changes increase with higher RCP

scenarios, and all the changes are within 61.5 days,

corresponding to 610% (Fig. S13 in the supplemental

material).

From these results, we can see that GCMs simulate

slightly different changes of dailymaximumandminimum

temperature variability and precipitation frequency,

which are inconsistent with the BCSD assumptions of

fixed temperature PDF shapes and precipitation fre-

quency. Although the changes are small, this incon-

sistencymay still introduce some biases in the downscaled

future projections of climate extremes. Therefore, readers

are reminded here about this potential limitation of the

downscaling method.

5. Conclusions

In the paper, historical and future changes of tem-

perature and precipitation extremes over the north-

eastern United States are examined by applying the

BCSD statistical downscaling method to five GCMs

from the new CMIP5 archive projects under historical

and three future emissions scenarios. The performances

of the downscaling method in reproducing historical

means, variances and CDFs of the observed 11 climate

extremes are first quantitatively evaluated. Over the

historical period 1950–99, downscaling shows best per-

formances for GSL, Tx90p, Tx10p, Tn10p, and R95p,

followed by lower confidence level for FD, HWI, Tn90p,

R95pTOT, Rx5day, and R10mm.

By the end of this century, the downscaling projects

more warm temperature extremes, fewer cold temper-

ature extremes, and more and intensified precipitation

extremes under all three future emissions scenarios.

When applying a Student’s t test to these changes, the

changes in all temperature extremes and most pre-

cipitation extremes, (except the maximum total pre-

cipitation amount of 5 continuous days), are significant

at the 5% level across the entire domain. The spatial

distribution of changes in temperature extremes is usu-

ally more uniform than for precipitation extremes, since

the precipitation extremes are also influenced by other

local factors. These changes (e.g., increases of growing

season length, decreases of number of frost days, and

increases of number of days with daily precipitation

larger than 10mm) are consistent with previous studies

(e.g., Ahmed et al. 2013), indicating a shift toward higher

daily temperature and larger daily precipitation in the

future PDFs (Hayhoe et al. 2008).

The magnitudes of the changes increase with the

emissions scenario and indicate that the temperature

extremes are highly sensitive to future greenhouse gas

emissions. Precipitation extremes are also sensitive to

corresponding water vapor increases brought about by

the warming. Although all five GCMs are consistent in

showing future increases or decreases of the 11 indices,

inter-GCM uncertainties still exist. The inter-GCM

uncertainties of the temperature-relevant indices are

not sensitive to the emissions scenarios, but the inter-

GCM uncertainties of the precipitation-relevant indices

are largest under the RCP8.5 scenario. The future

probability distributions of temperature-relevant in-

dices have obvious shifts and shape changes compared

with the historical period, and the magnitudes increase

with the emissions scenario. The shifts and shape

changes in the probability distributions of precipitation

indices are smaller than those of temperature.

These changes of probability distributions indicate

not only more climate extreme events in the future, but

also different interannual variability, requiring decision-

makers to prepare adaptions and mitigations in antici-

pation of future changes of climate extreme events over

this region. The uncertainties, originally from emission

scenarios and GCM parameterization schemes, can be

reduced by the downscaling method but cannot be to-

tally removed (Ning et al. 2012b). Moreover, the

downscaling method’s potential deficiency of keeping

the variability of daily maximum and minimum tem-

peratures and precipitation frequency unchanged in the
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FIG. 13. Spatial distributions of future changes of variability of (a)–(c) daily maximum temperature and (d)–(f) minimum temperature

anomalies (8C) from the raw simulations of the five GCMs for the period 2050–99 relative to period 1950–99.

15 APRIL 2015 N I NG ET AL . 3307



future may also introduce some new uncertainties,

as BCSD may induce some different daily patterns not

taken from the GCMs, although the changes of vari-

ability of daily maximum and minimum temperatures

and numbers of rainy days are not large. Therefore, we

would like to remind the readers to pay attention to the

uncertainties resulting from the random errors induced

by the downscaling method itself when they apply these

probabilistic projections of climate extremes to inter-

disciplinary studies to investigate the influences of cli-

mate changes on regional water resources, ecosystems,

forests, and agriculture.
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