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Abstract. An approach for perceptual segmentation of colour image
textures is described. A multiscale representation of the texture image,
generated by a multiband smoothing algorithm based on human psy-
chophysical measurements of colour appearance is used as the input.
Initial segmentation is achieved by applying a clustering algorithm to
the image at the coarsest level of smoothing. Using these isolated core

clusters 3D colour histograms are formed and used for probabilistic as-
signment of all other pixels to the core clusters to form larger clusters
and categorise the rest of the image. The process of setting up colour his-
tograms and probabilistic reassignment of the pixels is then propagated
through �ner levels of smoothing until a full segmentation is achieved at
the highest level of resolution.

1 Introduction

The topics of texture segmentation and colour segmentation have attracted the
attention of many researchers. At �rst sight it might seem trivial to solve the
problem of colour texture segmentation, as it may appear that the obvious route
would be to combine the knowledge gained from the research in the texture area
with that gained in the colour area. However, there is a fundamental property
which characterises colour texture and which has just emerged from the research
in psychophysics [1]: Human perception of colour depends on the spatial fre-
quency of the colour component. In other words, the perceptual response of the
human visual system to a certain part of the electromagnetic spectrum depends
on the frequency with which this stimulus is spatially distributed. Thus, colours
that appear in a multicolour pattern are perceived di�erently from colours that
form uniform areas (e.g. it has been shown [2] that any coloured pattern with
frequency higher than 8 cycles per 1� of visual angle is seen as black). Zhang
and Wandell [1] actually proposed a new colour system, called SCIE-Lab, which
takes into consideration exactly this property of the visual system.

At least two issues seem relevant here. Firstly, the human vision system is
able to extract colour textures as single entities without di�culties, with colour



being a segmentation cue that is an integral part of pre-attentive vision. Sec-
ondly, image features which characterise a texture at a certain resolution may
be entirely di�erent from image features that characterise the same texture at
another resolution. Another important characteristic of the human vision sys-
tem is that it works as a process, with the analysis of a frame relying on a
previous grosser analysis. This is achieved either with the help of peripheral vi-
sion followed by foveation to the area of interest, or by increasing the physical
proximity of the viewed object. The former approach relies on the mechanism
of switching sensors (going from the information obtained by the rods to that
obtained by the cones). The latter approach, however, relies on using the same
sensor but changing the number of degrees of visual angle it occupies in the �eld
of view, in other words changing the spatial frequency a pattern extents to the
eye. Both approaches are characterised by causality: the information ows from
the coarse level to the �ner level of resolution as the coarser analysis precedes
the one performed at the �ner level.

The reason we are concerned with the human colour perception is because
the criteria by which we judge a segmentation to be good or not are subjective.
In the absence of speci�c application requirement, we expect the segmentation
of an image to agree with that performed by our own vision system. Thus, our
interest in colour texture perception here concerns the way di�erent textures
can be perceived as separate homogeneous regions in the preattentive stage of
vision.

Inspired by the above observations, in this paper we are proposing a mecha-
nism of segmenting colour textures, by constructing a causal, multiscale tower of
image versions based on perceptual considerations. The reason we call it \tower"
and not a \pyramid" is because we do not perform subsampling and thus we
preserve the same number of pixels at all levels. The levels of the tower are con-
structed with the help of blurring masks put forward by Zhang and Wandell [1],
by assuming that the same colour-textured object is seen at 1,2,3,... meters dis-
tance. Hence, each coarser version of the image imitates the blurred version
the human vision system would have \seen" at the corresponding distance. The
analysis of the image starts at the coarsest level and proceeds towards the �nest
level, just like it would have happened if a person was slowly approaching a dis-
tant object. The mechanism with which information is transfered from a coarse
to a �ner level is probability theory that makes use of causality. We do not
advocate that this is actually the mechanism deployed by humans; we use this
approach because it is a sound mathematical tool that allows the incorporation
of both features and preliminary conclusions that refer to many di�erent levels
of analysis.

The originality of the work presented is twofold: While multiresolution pyra-
mids have been proposed and successfully utilised for several tasks, including
texture segmentation [3{6], it is the �rst time that a multiscale/multilevel repre-
sentation of the image which emulates the human colour perception, and which
most signi�cantly, takes into consideration the change in spatial frequency of
the perceived pattern, is used for segmentation. Secondly, although the issue of



transfer of information from one level of resolution to the next has been tackled
by several researchers, and probabilistic relaxation has been used in multiresolu-
tion pyramid representations of data [7{10], it is the �rst time that a probabilistic
relaxation theory, appropriate for operating across di�erent levels of scale and
exploiting a dictionary of permissible label con�gurations appropriate for region
labelling, as opposed to edge or line labelling [10], is developed.

In the next section we shall give a brief literature review of the relevant issues.
We must stress that there is very little work that is directly concerned with colour
textures. In Section 3 we shall describe the method by which the perceptual tower
of images is created. In Section 4, we shall present our probabilistic framework
of propagating information in the causal direction across the levels of the tower,
and in Section 5, the application of the probabilistic framework to colour texture
images will be described. In Section 6, we shall present results of our approach
when used to segment several colour texture images. We shall compare them with
the results obtained by the recently proposed method in [11]. Our conclusions
are presented in Section 7.

2 Literature Survey

The main consideration of texture perception in the Computer Vision literature
has been with the derivation of descriptive features of the underlying texture.
For example, Julesz and Bergen [12] used descriptions such as colour, widths,
lengths, and orientations of local features, namely textons, to explain di�er-
ences in arti�cially generated images. Also, Malik and Perona [13] provided a
comparison of their computational model of human texture perception with psy-
chophysical data obtained in texture discrimination experiments, while Tamura
et al. [14] approximated computationally some basic textural features such as
coarseness, directionality, line-likeness, contrast, roughness and regularity, which
correspond to human visual perception. Most of these studies did not consider
colour information, and moreover, their features are useful when viewing a scene
from a �xed distance only.

Segmentation of texture images is a major �eld of research in Computer
Vision. Textures may be regular or randomly structured, and various struc-
tural, statistical and spectral approaches have been proposed towards segmenting
them [15{17]. One example of a recent technique is by Jain and Farrokhnia [18]
who presented a texture segmentation algorithm focussed on a multi-channel
Gabor �ltering approach which is believed to characterise the processing of vi-
sual information in the early stages of the human visual system. Multi-scale
approaches for texture analysis are few and far in-between. Unser and Eden[19]
extracted texture energy measures form the image and smoothed the output
of the extraction �lter bank using Gaussian smoothing at di�erent scales. The
features in these multiscale planes are reduced, by diagonalising scatter matrices
evaluated at two di�erent spatial resolutions, and thresholded to yield texture
segmentation. Matalas et al.[20], used a B-spline transform in order to obtain
images at several smoothing levels to calculate vector dispersion and gradient ori-



entation at di�erent scales. A small disparity function is then applied to segment
textures. Roan et al. [21] describe a method for classi�cation of textured surfaces
viewed at di�erent resolutions, i.e. viewed at di�erent scales or distances, while
the image size remains constant. They used greylevel cooccurrence matrices and
the Fourier power spectrum of an unknown texture image, taken at one of any
several resolutions, to classify it as one of six known textures.

None of the above approaches is concerned with colour textures. On the other
hand, there is a vast forum of work on colour image segmentation e.g. [22{27, 11].
In general, most colour texture representation schemes either use a combination
of gray level texture features together with pure colour features, or they derive
texture features computed separately in each of the three colour spectral chan-
nels. For example, Coleman and Andrews [28] used K-means clustering in each
colour band and maximised a cluster �delity parameter for a more psychovisually
acceptable segmented image. Tan and Kittler [29] used eight DCT texture fea-
tures computed from the intensity image and six colour features derived from the
colour histogram of a textured image for classi�cation. Panjwani and Healey[30]
presented an unsupervised segmentation technique based on Markov Random
Fields which clustered a colour image in the RGB space. Their Markov Random
Fields approach made use of the spatial interaction of RGB pixels within each
colour plane and the interaction between di�erent colour planes. Matas and Kit-
tler [11] grouped colour pixels by taking into account simultaneously both their
feature space similarity and spatial coherence.

None of the above approaches or any other colour segmentation work known
to the authors have taken into consideration the interaction between colour and
spatial frequency of patterns.

3 Building the Perceptual Tower

The resolution of an image signi�es the area in physical units a pixel corresponds
to. For example, 1 pixel = 3�3mm2 in the scene. When the same physical object
is seen at a di�erent distance, the resolution of the image changes, for example,
1 pixel = 3 � 3cm2. At the same time, the number of \pixels" the image of
the object occupies in the retina reduces. Each pixel now carries the (blurred)
information from several other pixels in the �ner resolution version. Thus, when
one blurs the image to imitate human vision, one should subsequently subsample
the image as well. This way, a pyramid of image resolutions is created. We chose
not to perform this subsampling, hence we create a tower of images instead of
a pyramid. The reason is dual: (1) we like to keep the redundant information
in the coarse levels to increase the robustness of the system, (2) we maintain a
direct correspondence between the pixels across the resolution/scale levels. As
we do not perform subsampling, the sizes of the blurring masks we use become
larger and larger in number of pixels as we proceed to compute the coarser levels
of the tower. Seen in this way, our approach is multiscale as �lters of various
scale sizes are employed. Therefore, throughout this paper, we do not distinguish
between the terms multiresolution and multiscale.



The response characteristics of the human visual mechanism are functions
of not only the spectral properties of the stimuli, but also of the temporal and
spatial variations of these stimuli. When an observer deals with multi-coloured
objects, with �ne textures, their colour matching behaviour is a�ected by the
spatial properties of the observed pattern. Furthermore, the human visual sys-
tem will experience loss of detail at increasing distances away from the object. It
perceives coloured textures at a large distance as areas of fairly uniform colour,
whereas variations in luminance, e.g. at the borders between two textured areas,
are still perceived. Therefore it is necessary to introduce a multiscale smooth-
ing algorithm that smooths an image according to human perception. Zhang
and Wandell [1] studied recently systematically the colour perception of hu-
man subjects for di�erent frequencies of spatial colour variation. They proposed
an algorithm for perceptual smoothing appropriate for evaluating image coding
schemes. It is based on measurements in psychophysical studies which showed
that discrimination and appearance of small-�eld or �ne patterned colours dif-
fer from similar measurements made using large uniform �elds. The human eye
perceives high spatial frequencies of colour as a uniform colour instead of be-
ing able to separate these colours. An algorithm, which takes this into account
must smooth the image in luminance and chrominance colour planes separately
with di�erent �lter matrices for the planes. Zhang and Wandell[1] advocated
the use of the opponent colour space, which consists of three di�erent colour
planes, O1, O2, O3, representing the luminance, the red-green and the blue-
yellow planes respectively. In the O1O2O3 colour space, each of the planes is
smoothed separately with two-dimensional spatial kernels, de�ned as sums of
Gaussian functions with di�erent values of �. The result of this operation is
that the luminance plane is blurred lightly, whereas the red-green and the blue-
yellow planes are blurred more strongly. This spatial processing technique is
pattern-colour separable. Zhang and Wandell's �ltered representation was then
transformed back to CIE-XYZ and then to CIE-Lab resulting in their Spatial
CIE-Lab space, namely SCIE-Lab.

In this application, we set up three convolution matrices for the colour planes
for each separate viewing distance. In any particular set, each of the three matri-
ces consists of a weighted sum of Gaussian kernels. The matrices are computed
according to[1]:
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The values for (wi; �i) which have been determined from psychological mea-
surements of colour appearance on human subjects are given in [1] for a distance
of 18 inches from the screen. We have derived new values for various distances by
appropriate scaling. Divisor ni in equation 1 is introduced to normalise the sum
of the matrix elements of each individual Gaussian kernel before the weighted
sum is applied. Divisor m normalises the sum of the �nal matrix to 1. These
kernels are scaled, so that they each sum up to one.



Fig. 1. (Row 1) Real texture collage image (Row 2) perceptual and (Row 3) Gaussian
smoothed transformations corresponding to viewing distances of 1, 5, and 10 meters
respectively.

Fig. 2. Real texture collage image with initial clusters and derived core clusters.



Once the kernels are applied to the image in the opponent colour space, we
transform the image data from the O1O2O3 to the CIE-Luv space and use it
as input in the ensuing steps of the algorithm. This step is performed because
the CIE-Luv space is a perceptually uniform space and therefore more suitable
for carrying out colour measurements. Figure 1 shows a real texture collage and
its associated smoothed images at varying distances for both perceptual and
Gaussian smoothing. Clearly, the perceptually smoothed images provide a more
realistic representation and blurring of an \object" viewed at varying distances.
Most particularly, the Gaussian has vastly mixed and smoothed the colour values
when convolved with each of the three colour channels.

4 Multiscale Probabilistic Relaxation

The problem of multiscale probabilistic labelling of the input image using a set
of perceptually blurred versions of the image can be stated as follows. Let l

indicate the levels of coarsening with l = 1; :::; L, representing the levels from
full resolution to the coarsest level. Let i; i = 1; :::; N be a pixel and xli, the
associated measurement vector for that pixel at resolution level l. We de�ne a
label set 
;
 = f!1; !2; :::; !mg, which contains all possible labels of the image
for m possible perceptual categories. Thus, each pixel i has label �i that can
take on values from 
.

We wish to choose for pixel i the most probable label �i given all the available
information. In other words we wish to set:

�i = argfmax
k

P (�i = !k j x
l
j ;8j;8l)g (2)

For simplicity and clarity of exposition we shall restrict ourselves in consid-
ering only two successive levels of resolution l and l+1. Then, using Bayes's rule
we have:
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l
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j ;8j) =
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(3)

We can expand the terms in the numerator and the denominator by applying
the theorem of total probability:
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The joint probability that appears in equation 4 can be factorised as follows:
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N ) (5)



As we try to emulate here perceptual segmentation, we can imagine that due
to causality, measurements obtained at level l + 1 (the coarser level) can not
possibly depend on measurements obtained at level l. Thus, the �rst factor on
the right hand side of equation 5 can be simpli�ed as follows:

P (xl+11 ; :::;xl+1N j �1 = !�1 ; :::; �N = !�N ;x
l
1; :::;x

l
N ) =

P (xl+11 ; :::;xl+1N j �1 = !�1 ; :::; �N = !�N ) (6)

We also expect that the measurement concerning a certain pixel depends on
the identity of that pixel alone and on nothing else. Therefore, we can further
write:

P (xl+11 ; :::;xl+1N j �1 = !�1 ; :::; �N = !�N ) =

Y

j
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Y
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where p̂(xl+1j ) is the prior probability of measurements xl+1j to arise, and p̂(�j =
!�j ) is the prior probability of label !�j . Now consider the second factor on the
right hand side of equation 5:
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We can further expand the second term on the right hand side of equation 8
to write:
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For the same reasons explained earlier, we expect that the measurement
obtained for a particular object depends on the identity of the object itself and
on nothing else. Thus, all factors on the right hand side of equation 9, except
the last one, can be simpli�ed to express dependence only on the identity of the
object they refer to. The last factor is the joint probability of a certain label
assignment to arise. So we have:
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Now by substituting from equations 7 and 10 in equation 5 we obtain:
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Then, upon substitution in equation 4:
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where
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In the above expression p̂(xl+1i ) is independent of the summation indices
and cancels in the numerator and denominator. Therefore, equation 12 further
simpli�es to:
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At the �nest resolution equations 2 and 14 give the �nal labelling result.

5 Application to Colour texture Segments

In the previous two sections we presented the basic ingredients of our algorithm.
The core of the multilevel probabilistic relaxation lies in the implementation
of equations 13 and 14 and the estimation of the quantities that appear in
them. The method works in a bootstrapping manner to estimate the various
quantities needed. Thus, it is almost wholly unsupervised, with the possible
exception of specifying the initial number of clusters in the coarsest level, if the
K-means clustering method is used. It is possible to eliminate totally even this
requirement by using a self-organising initial segmentation algorithm, like for
example a watershed approach, or the method presented in [11], but we consider
this as a point of secondary importance at present. In what follows we shall
describe how each quantity that appears in 13 and 14 is estimated.



5.1 Core Clusters

The core clusters describe groups of pixels which can be con�dently associated
with the same region of texture in the image. The core clusters form the basis
for setting up the colour histograms at di�erent levels. To derive core clusters
from the initial clusters, we need to fuzzify the segmentation/classi�cation result
obtained at the coarsest initialisation level. As this is only a step to help start
the iteration process, we are adopting a rather simplistic approach: we �rst
calculate the standard deviation �c of each cluster c; c = 1; ::; C where C is the
total number of clusters. Then, we associate with every pixel a con�dence, p̂ic,
with which it may be associated with each cluster:
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where di
2

c is the squared distance of pixel i from the mean of cluster c. Note
that this formula has the property of giving a con�dence higher than 50% to
pixels that are closer than 1 � from the mean of the cluster to belong to that
cluster. Each core cluster is formed from the pixels that can be associated with
it with a con�dence of at least 80%. Figure 2 shows an example image with both
its initial clusters and the subsequently derived core clusters.

Quantities p̂ic are also used to initialise the values of P (�i = !�i j x
l+1
i ) which

appear in 13 and 14. Thus, we set:

P (�i = !c j x
L
i ) = p̂ic 8i;8c: (16)

At all other levels l < L these quantities are the probability label assignments
computed for each pixel at level l + 1.

5.2 Prior Probabilities

The relative sizes of the core clusters are used as measures of the prior proba-
bilities of the cluster labels, i.e. quantity p̂(�j = !�j ) appearing in equation 13.

This is based on the observation that the larger clusters will appear most
dominant when a texture mosaic is viewed from a large distance, and at the same
time the prior probability of a pixel to belong to each cluster is proportional to
the size of each cluster, in absence of any other information concerning the pixel.

5.3 3D Colour Histograms

The core clusters formed at resolution level l+1 are mapped back into the image
at resolution l and using the colour pixel values in those regions, a three dimen-
sional colour histogram is set up (dynamically) for each region. This provides
a statistical characterisation for each di�erent texture at each resolution. From
these colour histograms, the likelihood of a pixel i at smoothing stage l to have
label !k can be calculated using the colour of this pixel. This likelihood is rep-
resented by P (xli j �i = !k). Note that this way the distribution of the features
that characterise a texture at each resolution level can be derived.



5.4 The Q-Function Pattern Dictionary

Equation 13 involves a summation over all possible labels of all pixels other
than the pixel under consideration. Clearly, such a summation is impossible
due to the enormous number of combinations one would have to consider. We
prune the number of possibilities by imposing a limit to the number of pixels
we shall consider as inuencing the labelling of the pixel under consideration.
Thus, instead of examining all other N � 1 pixels, we handle only a subset of
them constituting a local neighbourhood around the pixel. We restrict this to
be a 3 � 3 neighbourhood. This allows us then to introduce a dictionary of
permissible label con�gurations within each 3 � 3 patch. As junctions are rare
events in images, in most cases we have only 1 or at most 2 regions present in
any 3 � 3 patch. Hence, we restrict the entries of our dictionary to be of the
form presented in Figure 3 where A and B stand for any pair of cluster labels
present in the image. All entries of the dictionary are assigned equal probability,
thus factor P (�1 = !�1 ; :::; �N = !�N ) in 13 becomes a constant and therefore
redundant. Label combinations that do not appear in the dictionary have zero
probability to exist and so they do not enter the summation on the right hand
side of 13. Thus, equation 13 simpli�es to

Q(�i = !�i) =
1

p̂(�i = !�i)

X
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X

=
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@

P (xlj j �j = !�j )P (�j = !�j j x
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j )

p̂(�j = !�j )
(17)

where < is the set of all patterns in the dictionary, = is the set containing all
possible combinations of two labels where centre pixel has label !�i , and @ is the
set of 3� 3 pixel neighbourhood entries in dictionary

An improvement of the Q-function is possible by expanding the pattern dic-
tionary to patterns with more than two di�erent labels. It is also possible to
calculate the Q-function for a neighbourhood larger than 3� 3 pixels.
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Fig. 3. Entries in pattern dictionary



6 Experimental Results

The results in this section are shown using arbitrarily selected colours to high-
light di�erent regions. All images tested were smoothed at di�erent scales \or
distances" (every meter up to 10m) using the perceptual smoothing kernels. The
processing commences from the distance at which the cluster histograms can be
regarded as having separated modes. The results for the Gaussianly smoothed
images were simply very wrong. To save space we do not report them here. In-
stead, we compare the results to an alternative approach (Matas and Kittler [11])
which is a more objective and comparable exercise.

The images shown on the left of Figure 4 are the original images of real tex-
ture collages put together from ceramic tile and granite stone textures. These
textures are inherently random in nature. Our segmentation results are shown
in the rightmost column while in the middle column the results from Matas
and Kittler's [11] approach (hereafter referred to as MK) are demonstrated. MK
exploit global and local image statistics simultaneously while also incorporat-
ing connectivity information. They discard the intensity information and form a
2D histogram of the chromaticity components. The image feature space is then
partitioned by locating locally unimodal parts of the histogram. The spatial
consistency of this segmentation is then examined and re�ned by incorporating
neighbourhood connectivity. In the latter sense, our Q-function is also involving
neighbourhood information. Moreover, we also consider more global contextual
information by incorporating the prior label probabilities and the iterative re-
�nement of the initial segmentation. More poignantly, we encompass information
from all three bands in our 3D histograms. Ignoring the intensity information
can be useful if observing non-at objects where the changes in intensity will de-
ceive the observer's true colour perception. However, our purpose is to segment
the scene as the observer views it, and not necessarily as the scene colours truly
are. Therefore, considering the intensity band is very important.

As we have ground-truth information on these cases, the error measures for
incorrectly classi�ed pixels in both MK's and our perceptual segmentation are
compared in Table 1. In every case we achieve a better segmentation. In the
di�cult test case T1, MK's technique �nds a slightly smaller circle, therefore
quite a number of pixels along the perimeter of the circle are misclassi�ed. In
test case T2, MK's technique has incorrectly combined the top-left and bottom-
right patches as one class, while the latter is riddled with noisy segmentation;
this is due to the non-unimodal representation of the guilty texture in MK's
histograms, while it also is a�ected in a di�erent way through its association
with other types of texture in the image. In case T4, in which the image is a
combination of real granite stone textures, the pixel values are quite spread out
in the histogram, and there is little gradient there for MK's algorithm to work,
while by perceptual segmentation the image can be correctly segmented (98.3%).

It is noteworthy that the perceptual segmentation algorithm has the ability to
recover from incorrectly assigned pixels through the iterative relaxation process.
Pixels already assigned to the wrong cluster, change their label again in future



Test Image T1 T2 T3 T4

Matas & Kittler 2.2% 30% 1.3% -

Perceptual 0.02% 1.2% % 0.04% 1.7%

Table 1. Error percentages of incorrectly classi�ed pixels

steps thanks to the re�nement in context, new neighbourhood information, and
higher resolution information at consecutive levels.

The next set of results are more subjective and are expected to provide a more
perception based representation of an image. Figures 5, 6, 7 respectively show
the perceptual segmentation of a forest scene, the painting La seine �a argenteuil

by Claude Monet, and an aerial image. In all these cases, there are no nice
straight edges that the Q-function could take advantage of to give an \accurate"
segmentation. This is in fact the desired result as these images demonstrate the
typical fuzzy segmentation of a scene that an observer may view from a distance.

Other important issues to note are that the histogram resolution in our ex-
periments allows each bucket to cover an interval of 3:5 units in each direction in
the Luv colour space. This is the resolution for the minimum perceivable colour
distance for human vision. The clustering parameters are naturally very impor-
tant since they determine the quality of the initial clusters on which our percep-
tual segmentation technique is based. However, we hope to use a parameter-free
clustering approach in the future such as histogram watershed clustering[31].

The relaxation process can be iterated not only through the smoothed images,
but also at each smoothed image for further incorporation and validation of
image context. Naturally, this would add to the computational cost. At present,
the smoothing stage demands a high computational cost due to the convolution
�lter sizes of Zhang and Wandell. However, the clustering and the relaxation
process take approximately 60 seconds on a Silicon Graphics R10000 processor
for a 128� 128 image.

7 Discussions and Conclusions

Colour is an important parameter in the human visual experience. Most work in
the past on texture analysis and segmentation has been concerned with deriving
structural descriptors of texture, e.g. coarseness, regularity, blobiness, orientation
etc., with the colour information perhaps used as an extra cue.

In this paper we treated the interplay of colours and their spatial distribution
in an inseparable way as they are actually perceived during the pre-attentive
stage of human colour vision. To do this we developed a tower of blurred versions
of an image created by masks imitating the blurring the human vision sensors
experience for scenes viewed at di�erent distances, and allowed the information
in this tower to ow in a causal direction, from the most blurred level to the most
focussed. The creation of the tower made use of the latest results of psychophysics
research, while the framework developed for the causal transfer of information



is quite general and can be applied for image segmentation where the features
used could be other than colour.

Finally, the probabilistic relaxation methodology developed works in the op-
posite sense than other probabilistic relaxation schemes where the ow of in-
formation starts from the immediate neighbours of a pixel and, as the iteration
steps progress, the inuence of more distant pixels is incorporated through the
succession of immediate neighbour interactions. In our case, probabilistic relax-
ation works in the same sense as all other multiresolution/multiscale schemes
where �rst the information of long-range interaction is absorbed, followed by
the information from the shorter range interaction. As we do not perform sub-
sampling when we create the levels of the multiscale tower and we keep only the
same immediate neighbours as contextual neighbourhood of a pixel, it may ap-
pear that we lack the mechanism to incorporate information from distant pixels.
This is not so, because through the increasing size of the blurring masks we use
to create the multiscale tower, the information from larger and larger distances
is \smeared" into the immediate neighbours of a pixel and through interaction
with them is incorporated into it.
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Fig. 4. Four test cases (T1-T4) and their segmentation by applying (mid-column)
Matas & Kittler's approach and (right-column) perceptual segmentation.



Fig. 5. Forest image and its perceptual segmentation.

Fig. 6. Monet's painting and its perceptual segmentation.

Fig. 7. Land image and its perceptual segmentation.


