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ABSTRACT

We present a probabilistic model that uses both prosodideadd
cal cues for the automatic segmentation of speech into tapts.
The approach combines hidden Markov models, statistiogilage
models, and prosody-based decision trees. Lexical infliormas
obtained from a speech recognizer, and prosodic featugesxar
tracted automatically from speech waveforms. We evaluatep-
proach on the Broadcast News corpus, using standard eiealuat
metrics. Results show that the prosodic model alone owtpast
the word-based segmentation method. Furthermore, we\echie
additional reduction in error by combining the prosodic avatd-
based knowledge sources.

1. Introduction

Topic segmentation deals with the problem of automatichiliding
a stream of text or speech into topically homogeneous blfidks
That is, given a sequence of (written or spoken) words, theisi
to find the boundaries where topics change. Topic segmentsti
an important task for various language understanding egiins,
such as information extraction and retrieval, and text sanmation.
In this paper, we present our work on fully automatic detectf
topic boundaries from speech input.

Past automatic topic segmentation systems have dependgty mo
on lexical information [6, 4, 1, 16, among others]. One peoifor
applying the text-based approach to speech input is thedhigk
pographic cues (such as headers, paragraphs, sententegtiomc
and capitalization). On the other hand, speech providesddi a
tional, nonlexical knowledge source through its duratipireona-
tional, and energy characteristics, i.e.jtesody

Prosodic cues are known to be relevant to discourse stauatur
spontaneous speech [8, 7, 14, among others], and can treebefo
expected to play a role in indicating topic transitions. tRarmore,
prosodic cues by their nature are relatively unaffected bgchviden-
tity, and should therefore improve the robustness of léxigzc seg-
mentation methods based on automatic speech recognition.

Past segmentation studies involving prosodic informatiave gen-
erally relied on hand-coded cues (with the notable excepti¢5]).
We therefore believe the present work to be the first that doasb
fully automatic extraction of both lexical and prosodicdmmhation
for topic segmentation. Furthermore, we have adopted ftfiet st
evaluation paradigm used by the government-administe 262
(Topic Detection and Tracking Phase 2) [15] program, alimafair
comparisons of various approaches both within this studyimne-
lation to other work. The general framework for combiningjdal
and prosodic cues for tagging speech with various kinds iofdén”
structural information is a further development of our ieanvork

on sentence segmentation and disfluency detection for zpeots
speech[10, 12, 13].

2. Approach

Topic segmentation in the paradigm used by us and otherp[b5]
ceeds in two phases. In the first phase, the input is dividad in
contiguous strings of words assumed to belong to one topih.ea
We refer to this step as “chopping”. For example, in textoalit,
the natural units for chopping are sentences (as can beddférom
punctuation and capitalization). For continuous speepltinthe
choices are less obvious; we compare several possibilitiasr ex-
perimental evaluation. Here, for simplicity, we will useetgence”
to refer to units of chopping, regardless of the criterioedisIn
the second phase, the sentences are further grouped irttguznrs
stretches belonging to one topic, i.e., the sentence boigsdare
classified into “topic boundaries” and “nontopic boundsitie

Topic segmentation is thus reduced to a boundary clasgificat
problem. We will usel’ to denote the string of binary boundary
classifications. Furthermore, our two knowledge sourcestlae
(chopped) word sequend®& and the stream of prosodic features
F'. Our approach aims to find the classificatiomvith highest prob-
ability given the information i/ and F°

argmax P(T|W, F)
T

using statistical modeling techniques. In the followingtfns, we
describe each of the elements of the overall model in turst, fir
model of the dependency between prosddgnd topic segmenta-
tion T'; second, a model relating word® and7’; and finally, an
approach for combining the models.

2.1. Prosodic M ode€

For modeling topic boundaries prosodically we used a widgea

of features that were automatically extracted from the .dagd F;

be the features extracted from a window around ithepotential
topic boundary (chopping boundary), and ¥t be the boundary
type (boundary/no-boundary) at that position. We trainddRT-
style decision trees [2] to predict thth boundary type, i.e., to esti-
mate P (1;| F;, W). The decision is only weakly conditioned on the
word sequenc#’/, insofar as some of the prosodic features depend
on the phonetic alignment of the word models. We can thusaxpe
the prosodic model estimates to be robust to recognitiarerr

For training, we automatically aligned and extracted fesgtdrom
70 hours of the Linguistic Data Consortium (LDC) 1997 Broastc

Twe do not consider the problem of detecting recurring, ditiooous
instances of the same topic, a task known as “topic trackinghe TDT
paradigm.



News (BN) corpus. Topic boundary information determinecdhby
man labelers was extracted from the markup accompanyirnvgdree
transcripts of this corpus.

We started with a large set of prosodic features capturirigws.du-
rational and intonational aspects of speech prosody, a0 We
included features that, based on descriptive literatueepealieved
should reflect breaks in the temporal and intonational amtd/e
developed versions of such features that could be definedddt e
inter-word boundary, and which could be extracted by coteple
automatic means (no human labeling). Furthermore, theifest
were designedto the extent possible to be independent afidken-
tities, for use with recognizer output.

The greedy nature of the decision tree learning algorithiplies
that larger initial feature sets can give worse results thaaller
subsets. Furthermore, it is desirable to remove redunéariies
for computational efficiency and to simplify interpretatiof re-
sults. For this purpose we developed an iterative featulecse
tion algorithm to find useful task-specific feature subsétse al-
gorithm combined elements of brute-force search with presly
determined heuristics about good groupings of features.u¥¢el
the entropy reduction of the overall tree after cross-eiah, as a
method for selecting a good set of features. Entropy reonds
the difference in test-set entropy between the prior clésslltion
and the posterior distribution estimated by the tree; itrisose fine-
grained metric than classification accuracy, and is als@maevant
to the model combination approach described later. Theitigo
proceeds in two phases: in the first phase, the number ofréesaitu
reduced, checking the effect of each feature on the perfocenby
leaving out one feature at a time. The second phase theg wiiint
the reduced number of features, and performs a beam seancalbv
possible subsets of features. The decision tree paradgma#dbws
us to add, and automatically select, other (nonprosodidjifes that
might be relevant to the task.

We started with a set of 73 potential features. The iteradigm-

rithm reduced this to a set of 5 features helpful for our tddgon

inspection, the following characteristics are modeledigtiee. We
provide for each characteristic the relative frequencywihich as-
sociated features are queried in the final decision treg gikies an
approximate indication of feature importance.

1. FO differences across the boundary (44.0%).

3. Speaker change (15.5%). Whether or not a speaker change
occurred at the boundary.

4. Gender (4.2%). We found stylistic differences betweefema
and females in the use of FO at topic boundaries. This is
true even after proper normalization, e.g., equating tmelge
specific non-topic boundary distributions. Additionallye
noted that non-topic pauses (i.e., chopping boundaries) ar
more likely to occur in male speech, a phenomenon that could
have several causes and awaits further analysis.

2.2. Language M odel

For word-based modeling, we use standard language mod#is an
hidden Markov model (HMM) based tagger. Similar to the Drago
HMM segmentation approach [16], we built an HMM, in which
the states are topic clusters, and the observations arereest(or
chopped units). The resulting HMM forms a complete gragbyal
ing transition between any two topic clusters. The exactlemof
topic clusters is not important, as long as it is large endaghake
two adjacent topics in the same cluster unlikely. The oletem
likelihoods for the HMM state represent the probability ehgrat-
ing a given sentence in a particular topic. The likelihoods@m-
puted from unigram language models trained on the clustdrish
are determined automatically using an unsupervised ciongtalgo-
rithm, on the training data. All transitions within the satopic are
given probability 1, while all transitions between topics get to a
globaltopic switch penaltywhich is optimized on held-out training
data. This parameter enables us to trade off between fasasabnd
misses. Once the HMM is trained, we use the Viterbi algoritom
search for the best state sequence and corresponding sagjoren

In addition to the basic HMM segmenter developed by Dragan, w
incorporated two additional states, for modeling the dhigind final
sentences of a topic segment. We reasoned that this appraach
capture formulaic speech patterns used by broadcast spebike-
lihoods for the start and end models are obtained as theamigr
language model probabilities of the topic-initial and fisahtences,
respectively, in the training data. Note that a single stad end
state are shared for all topics. Also, traversal of theahdind final
states is optional in the HMM topology. We observed a 5% rela-
tive reduction in segmentation error over the baseline HMpbt-
ogy using initial and final states. Because the topic-in#iad final

Several fesstates are optional, our training of this model is probabilycpti-

tures compare the FO following the boundary to FO beforemal. Instead of labeling all topic-initial and final traigirsentences
the boundary. The FOs are measured over the duration of thas data for the corresponding states, we should be trainéngodel
words adjacent to the boundary, or over a fixed length win-by using repeated forced alignments to find actual good ekemnaf
dow of 200 milliseconds. Values are either mean FO, or min-initial and final sentences (an approximate version of etgtien-
imum/maximum FO, in the regions surrounding the boundary.maximization [3]).

The mean captures a range effect; the minimum and maximum

values make the measure more sensitive to local variatimt, s

While constructing the topic language models, we used tlodeplo

as rising to accented syllables, and final pitch falls. Rathe TDT Pilot and TDT-2 training data, which covers the transtioins
than using raw pitch tracks, all FO features are based on-an ex0f Broadcast News from January 1992 through June 1994 and fro

plicit model of pitch-halving/doubling, using straiglin¢ styl-
izations for improved robustness [11].

2. Pause duration (36.3%). The duration of the nonspeeeh int
val occurring at the boundaty.

2The importance of pause duration is actually underestithatethis
measure of feature use; as explained later, pause duratiersdready used
during the chopping process, so that the decision tree ifieappnly to
boundaries exceeding a certain duration. Separate expasmsing bound-

January 1998 through February 1998, respectively (thipusis
distinct from the 1997 BN acoustic corpus used for prosodidenh
training and overall testing). We removed stories with fethan

aries below our chopping threshold show that the tree make®ftishorter
pauses for segmentation decisions as well.

3For example, it could be that male speaker in BN are assigeget
topic segments on average, or that male speaker are more fr@ausing
in general, or that males dominate the spontaneous speetbngovhere
pausing is naturally more frequent.



300 and more than 3000 words, leaving 19,916 stories witlvan a

chopping criteria. Table 1 gives the error rates for the foomdi-

age length of 538 words without any stop words. Then we automa tions, using the true word transcripts for testing. For tA&JSE

ically constructed 100 topic language models, using theipads
k-means algorithm described in [16]. We did not smooth thé ind
vidual topic language models, but instead interpolatehtivith the
global unigram language model, which gave better results.

condition, we empirically determined an optimal minimunupa
duration threshold to use. Specifically, we considered paex-
ceeding 0.66 second as potential topic boundaries in tiid &
later) experiment. For the FIXED condition, a block lengfhlo

words was found to work best.

2.3. Model Combination

The word-based HMM was modified to use probabilities from the Chopping Criterion Error Rate on
decision tree estimator as additional likelihood scorat) an em- Forced Alignments
pirically optimized weighting. To this end, we inserted dificus FIXED 10.84%
boundaryobservation between adjacent sentences, and introduced TURN 25.78%

two more “boundary” states into the HMM topology. Between-se SENTENCE 30.56%
tences, the model must pass one of the boundary states jrdenot PAUSE 19.50%

either the presence or absence of a topic boundary.

Likelihoods P( F;|T;) for the boundary states are obtained from the Table 1: Error rates with various chopping criteria.

prosodic model. The decision tree posterior probabilitiesst be
converted to likelihoods, either by dividing them by priars by
training the decision trees on a balanced training set. \&&eped
the resampling method, so the following equations hold:

We conclude that a simple prosodic feature, pause dur&dsosm
excellent criterion for the chopping step, working as welbabetter
than standard sentence boundaries.

P(F|T)P(T;
P(T:|Fi) = % o P(Fi|Ti) P(T:) o P(Fi|T:) As a side issue in our experiments, we wanted to verify thatesi
' data (from the 1997 BN corpus) was comparable in difficultyht®
official test corpus of the 1998 TDT-2 evaluations, for whietnhad
only recognizer output (from a different system) availabiable 2
shows that the two test sets exhibit very similar resultstifiying

our use of the 1997 BN corpus for practical reasbns.

Note P( F;) is a constant for differerif;, andP(7;) = 0.5 by virtue
of resampling.

3. Experiments and Results
Various models were evaluated on three hours (6 shows) fnem t

1997 BN corpus. To make best use of the available test data, we Test set Error Rate on Error Rate on
used a two-fold jack-knifing procedure to tune the model patars Forced Alignments| Recognized Wordg
(topic switch penalties, and model combination weightsjrame- TDT-2 NA 20.40%

ters were tuned on each of two halves of the data, and thesdtest BN'O7 19.50% 20.86%

on the respective other half. Reported results represeravérages
of these two trials. The error rates obtained in all expenim@re
according to the procedures set out in the DARPA Topic Dietect
and Tracking Project [15], with the NIST-TDT evaluation teedre.
They represent a weighted detection error, using a paatichioice
of costs for false alarms and misses.

Two test conditions were used: forced alignments using rine t
words, and recoghized words as obtained using a simplifiesiore
of the SRI Broadcast News recognizer [9], with a word errée tf
29%. We first present baseline results with word informasitome,
followed by results for the prosodic model and the combinedeh

3.1. Chopping and Segmentation by Language
Model

Unlike written text, the output of the automatic speech geiper
contains no sentence boundaries. Therefore, groupingswotd
(pseudo-)sentences (chopping) is a nontrivial problemenio-
cessing speech. Some pre-segmentation into roughly senten
length units is necessary since otherwise the observatisssci-
ated with HMM states are too inhomogeneous with regard t@ top
choice, causing very poor performance.

We investigated fixed-length blocks (based on number of g)ord
turn boundaries (speaker change locations), pauses, @nefér-
ence, actual sentence boundaries obtained from the tiptssas

Table 2: Error rates using different corpora.

3.2. Segmentation using Prosody and Combined
Models

Table 3 gives our results with forced alignments and recaghi
words for each of the individual models and the combined rhdke
shown, the error rate for the prosody model alone is lowar that
for the language model, and combining both models givefidurt
improvement. With the combined model, the error rate deszréay
22.97% relative to the language model, for the correct wamd by
19.27% for recognized words.

As discussed earlier, the results with the language modeéahake
use of prosody in the chopping step.

4. Summary and Discussion

Results so far indicate that prosodic information provide®xcel-
lent source of information for automatic topic segmentatimth by

4In particular, we chose the 1997 BN corpus because of théahiiy
of detailed annotated transcripts for a variety of othekgasuch as sen-
tence segmentation and named entities) that are the sobatent lexical-
prosodic modeling research at SRI.



Model Error Rate on Error Rate on 1
Forced Alignments| Recognized Wordsg

LM Only 19.50% 20.86%

Prosody Only 18.87% 19.85%

Combined 15.02% 16.84% 2

Table 3: Summary of error rates with individual and combirmexti-
els, using pause duration as a chopping criterion.

3

4
itself and in conjunction with lexical information. Pausgration, a
simple prosodic feature that is readily available as a lmgpct of
speech recognition, proved extremely effective in thaahithop- 5.
ping phase, as well as being the most important feature uged b
prosodic decision trees. Additional prosodic featuregtdam pitch
were are also found to be relevant (and feasible) for autcraag- 6
mentation.
The HMM-based lexical topic segmentation approach [165kilg
extended to incorporate the decision tree posterior piibitied (as 7
long as the tree is trained on a uniform prior distributiohifpe fact
that the model combination gives a significant win indicaied the
lexical and prosodic knowledge sources are sufficientlymemen- 8.
tary for this simple combination approach (which assunwissical
independence).

9

The results obtained with recognized words (at a 29% worokr err
rate) did not differ greatly from those obtained with cotremrd
transcripts (7% error increase with LM, 5% error increaséhwi
prosody). Still, part of the appeal of prosodic segmentatdhat it

is inherently robust to recognition errors. This charastiermakes 10.

it even more attractive for use in domains with higher erates due
to poor acoustic conditions or more conversational spegdtiyles.

Several aspects of our system are suboptimal. For examge, w 11
have not yet optimized the chopping stage relative to thebiosa
model (only relative to the lexical-only segmenter). Aldioe use
of prosodic features other than just pause should furtherdwe
the overall performance. Ultimately, we want to elimindte heed
to separate chopping and HMM classification stages, whiblotls
theoretically unappealing and inconvenientin the optation of the
overall system.

13.

5. Conclusion

We have presented our work on automatic topic segmentatiom f
speech, using a combination of lexical and prosodic cues.r&u
sults show that the prosodic model alone outperforms thedwor

based segmentation method, and an additional reductiominean 14.

be achieved by combining the lexical and prosodic models.

15.
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