Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Synthesis of intrinsic dual-emission type N,S-doped carbon dots for ratiometric fluorescence detection of Cr (VI) and application in cellular imaging

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

In this paper, intrinsic dual-emission fluorescent carbon dots (CDs) doped with N and S atoms have been firstly fabricated. The characterization results show that CDs are successfully synthesized with two separate fluorescence emissions at 468 nm and 628 nm, respectively. The strong and selective interaction of Cr (VI) ions with CDs lead to obvious fluorescence decrease of CDs at 468 nm, which is caused by a mixed quenching mechanism. At the same time, the fluorescence at 628 nm increase. Interestingly, the CDs solution show obvious color change under the daylight and UV light, so visualization detection of Cr (VI) can be realized in water samples. Based on the data of the emission intensity ratios of F468/F628, Cr (VI) can be detected from 3.8 to 38.9 μM combined with the linear correlation coefficient of 0.998, and the lowest detection concentration is 47.2 nM. The platform is satisfactorily applied to the detection of Cr (VI) ions in water samples. In addition, the CDs could be applied as fluorescent probes for cell imaging with dual fluorescent emission.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Sheng LY, Huangfu BH, Xu QH, Tian WL, Li ZJ, Meng A, et al. A highly selective and sensitive fluorescent probe for detecting Cr(VI) and cell imaging based on nitrogen-doped graphene quantum dots. J Alloy Compd. 2020;820. https://doi.org/10.1016/j.jallcom.2019.153191.

  2. Yahyazadeh E, Shemirani F. Arginine-derived carbon nanoparticles for determination of Cr(VI) in water samples. Luminescence. 2020;35(5):694–701. https://doi.org/10.1002/bio.3774.

    Article  CAS  PubMed  Google Scholar 

  3. Zhang D, Jia B, Li M, Guo J, Wang T, Cao C, et al. A ratiometric fluorescent probe for sensitive and selective detection of chromium (VI) in aqueous solutions. Microchem J. 2020;159. https://doi.org/10.1016/j.microc.2020.105337.

  4. Jigyasa, Kumar D, Arora P, Singh H, Rajput JK. Polyhydroquinoline nanoaggregates: a dual fluorescent probe for detection of 2,4,6-trinitrophenol and chromium (VI). Spectrochim Acta A Mol Biomol Spectrosc. 2020;230:118087. https://doi.org/10.1016/j.saa.2020.118087.

    Article  CAS  PubMed  Google Scholar 

  5. Huang S, Yang E, Yao J, Chu X, Liu Y, Xiao Q. Nitrogen, phosphorus and sulfur tri-doped carbon dots are specific and sensitive fluorescent probes for determination of chromium(VI) in water samples and in living cells. Mikrochim Acta. 2019;186(12):851. https://doi.org/10.1007/s00604-019-3941-4.

    Article  CAS  PubMed  Google Scholar 

  6. Powell MJ, Boomer DW. Determination of chromium species in environmental samples using high-pressure liquid chromatography direct injection nebulization and inductively coupled plasma mass spectrometry. Anal Chem. 1995;67:2474–8. https://doi.org/10.1021/ac00110a023.

    Article  CAS  Google Scholar 

  7. Song OY, Islam MA, Son JH, Jeong JY, Kim HE, Yeon LS, et al. Elemental composition of pork meat from conventional and animal welfare farms by inductively coupled plasma-optical emission spectrometry (ICP-OES) and ICP-mass spectrometry (ICP-MS) and their authentication via multivariate chemometric analysis. Meat Sci. 2021;172: 108344. https://doi.org/10.1016/j.meatsci.2020.108344.

    Article  CAS  PubMed  Google Scholar 

  8. Silva AS, Brandao GC, Matos GD, Ferreira SLC. Direct determination of chromium in infant formulas employing high-resolution continuum source electrothermal atomic absorption spectrometry and solid sample analysis. Talanta. 2015;144:39–43. https://doi.org/10.1016/j.talanta.2015.05.046.

    Article  CAS  PubMed  Google Scholar 

  9. Li M, He R, Wang S, Feng C, Wu H, Mei H. Visible light driven photoelectrochemical sensor for chromium(VI) by using BiOI microspheres decorated with metallic bismuth. Mikrochim Acta. 2019;186(6):345. https://doi.org/10.1007/s00604-019-3463-0.

    Article  CAS  PubMed  Google Scholar 

  10. Assi N, Aberoomand Azar P, Saber Tehrani M, Husain SW, Darwish M, Pourmand S. Selective solid-phase extraction using 1,5-diphenylcarbazide-modified magnetic nanoparticles for speciation of Cr(VI) and Cr(III) in aqueous solutions. Int J Environ Sci Technol. 2018;16(8):4739–48. https://doi.org/10.1007/s13762-018-1868-7.

    Article  CAS  Google Scholar 

  11. Tai D, Liu C, Liu J. Facile synthesis of fluorescent carbon dots from shrimp shells and using the carbon dots to detect chromium(VI). Spectrosc Lett. 2019;52(3–4):194–9. https://doi.org/10.1080/00387010.2019.1607879.

    Article  CAS  Google Scholar 

  12. De Acha N, Elosua C, Corres JM, Arregui FJ. Fluorescent sensors for the detection of heavy metal ions in aqueous media. Sensors. 2019;19(3):599–633. https://doi.org/10.3390/s19030599.

    Article  CAS  PubMed Central  Google Scholar 

  13. Faraz M, Abbasi A, Naqvi FK, Khare N, Prasad R, Barman I, et al. Polyindole/cadmium sulphide nanocomposite based turn-on, multi-ion fluorescence sensor for detection of Cr3+, Fe3+ and Sn2+ ions. Sensor Actuat B: Chem. 2018;269:195–202. https://doi.org/10.1016/j.snb.2018.04.110.

    Article  CAS  Google Scholar 

  14. Burratti L, Ciotta E, De Matteis F, Prosposito P. Metal nanostructures for environmental pollutant detection based on fluorescence. Nanomaterials. 2021;11(2):276. https://doi.org/10.3390/nano11020276.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Luo XL, Han Y, Chen XM, Tang WZ, Yue TL, Li ZH. Carbon dots derived fluorescent nanosensors as versatile tools for food quality and safety assessment: a review. Trends Food Sci Technol. 2020;95:149–61. https://doi.org/10.1016/j.tifs.2019.11.017.

    Article  CAS  Google Scholar 

  16. Rao H, Liu W, He K, Zhao S, Lu Z, Zhang S, et al. Smartphone-based fluorescence detection of Al3+ and H2O based on the use of dual-emission biomass carbon dots. ACS Sustain Chem Eng. 2020;8(23):8857–67. https://doi.org/10.1021/acssuschemeng.0c03354.

    Article  CAS  Google Scholar 

  17. Luo Q, Huang X, Luo Y, Yuan H, Ren T, Li X, et al. Fluorescent chitosan-based hydrogel incorporating titanate and cellulose nanofibers modified with carbon dots for adsorption and detection of Cr(VI). Chem Eng J. 2021;407. https://doi.org/10.1016/j.cej.2020.127050.

  18. Wu L, Guo Q-S, Liu Y-Q, Sun Q-J. Fluorescence resonance energy transfer-based ratiometric fluorescent probe for detection of Zn2+ using a dual-emission silica-coated quantum dots mixture. Anal Chem. 2015;87(10):5318–23. https://doi.org/10.1021/acs.analchem.5b00514.

    Article  CAS  PubMed  Google Scholar 

  19. Yao C, Liu Q, Zhao N, Liu J-M, Fang G, Wang S. Ratiometric determination of Cr(VI) based on a dual-emission fluorescent nanoprobe using carbon quantum dots and a smartphone app. Microchim Acta. 2021;188(3):89. https://doi.org/10.1007/s00604-021-04747-8.

    Article  CAS  Google Scholar 

  20. Cheng D, Pan Y, Wang L, Zeng Z, Yuan L, Zhang X, et al. Selective visualization of the endogenous peroxynitrite in an inflamed mouse model by a mitochondria-targetable two-photon ratiometric fluorescent probe. J Am Chem Soc. 2017;139(1):285–92. https://doi.org/10.1021/jacs.6b10508.

    Article  CAS  PubMed  Google Scholar 

  21. Tan Q, An X, Pan S, Liu H, Hu X. Hydrogen peroxide assisted synthesis of sulfur quantum dots for the detection of chromium (VI) and ascorbic acid. Spectrochim Acta A Mol Biomol Spectrosc. 2021;247:119122. https://doi.org/10.1016/j.saa.2020.119122.

    Article  CAS  PubMed  Google Scholar 

  22. Shojaeifard Z, Hemmateenejad B, Shamsipur M. Efficient on–off ratiometric fluorescence probe for cyanide ion based on perturbation of the interaction between gold nanoclusters and a copper(II)-phthalocyanine complex. ACS Appl Mater Inter. 2016;8(24):15177–86. https://doi.org/10.1021/acsami.6b01566.

    Article  CAS  Google Scholar 

  23. Huang X, Song J, Yung BC, Huang X, Xiong Y, Chen X. Ratiometric optical nanoprobes enable accurate molecular detection and imaging. Chem Soc Rev. 2018;47(8):2873–920. https://doi.org/10.1039/C7CS00612H.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wang H, Yang L, Chu S, Liu B, Zhang Q, Zou L, et al. Semiquantitative visual detection of lead ions with a smartphone via a colorimetric paper-based analytical device. Anal Chem. 2019;91(14):9292–9. https://doi.org/10.1021/acs.analchem.9b02297.

    Article  CAS  PubMed  Google Scholar 

  25. Babaee E, Barati A, Gholivand MB, Taherpour AA, Zolfaghar N, Shamsipur M. Determination of Hg(2+) and Cu(2+) ions by dual-emissive Ag/Au nanocluster/carbon dots nanohybrids: switching the selectivity by pH adjustment. J Hazard Mater. 2019;367:437–46. https://doi.org/10.1016/j.jhazmat.2018.12.104.

    Article  CAS  PubMed  Google Scholar 

  26. Wang Y, Zhang C, Chen X, Yang B, Yang L, Jiang C, et al. Ratiometric fluorescent paper sensor utilizing hybrid carbon dots-quantum dots for the visual determination of copper ions. Nanoscale. 2016;8(11):5977–84. https://doi.org/10.1039/c6nr00430j.

    Article  CAS  PubMed  Google Scholar 

  27. Song Y, Chen J, Hu D, Liu F, Li P, Li H, et al. Ratiometric fluorescent detection of biomakers for biological warfare agents with carbon dots chelated europium-based nanoscale coordination polymers. Sensor Actuat B: Chem. 2015;221:586–92. https://doi.org/10.1016/j.snb.2015.07.008.

    Article  CAS  Google Scholar 

  28. Bai H, Tu Z, Liu Y, Tai Q, Guo Z, Liu S. Dual-emission carbon dots-stabilized copper nanoclusters for ratiometric and visual detection of Cr2O7(2-) ions and Cd(2+) ions. J Hazard Mater. 2020;386: 121654. https://doi.org/10.1016/j.jhazmat.2019.121654.

    Article  CAS  PubMed  Google Scholar 

  29. Wang Y, He J, Zheng M, Qin M, Wei W. Dual-emission of Eu based metal-organic frameworks hybrids with carbon dots for ratiometric fluorescent detection of Cr(VI). Talanta. 2019;191:519–25. https://doi.org/10.1016/j.talanta.2018.08.078.

    Article  CAS  PubMed  Google Scholar 

  30. Ma Y, Chen Y, Liu J, Han Y, Ma S, Chen X. Ratiometric fluorescent detection of chromium(VI) in real samples based on dual emissive carbon dots. Talanta. 2018;185:249–57. https://doi.org/10.1016/j.talanta.2018.03.081.

    Article  CAS  PubMed  Google Scholar 

  31. Cui Y, Liu R, Ye F, Zhao S. Single-excitation, dual-emission biomass quantum dots: preparation and application for ratiometric fluorescence imaging of coenzyme A in living cells. Nanoscale. 2019;11(19):9270–5. https://doi.org/10.1039/c9nr01809c.

    Article  CAS  PubMed  Google Scholar 

  32. Jiang X, Qin D, Mo G, Feng J, Zheng X, Deng B. Facile preparation of boron and nitrogen codoped green emission carbon quantum dots for detection of permanganate and captopril. Anal Chem. 2019;91(17):11455–60. https://doi.org/10.1021/acs.analchem.9b02938.

    Article  CAS  PubMed  Google Scholar 

  33. Liu J, Dong Y, Ma Y, Han Y, Ma S, Chen H, et al. One-step synthesis of red/green dual-emissive carbon dots for ratiometric sensitive ONOO(-) probing and cell imaging. Nanoscale. 2018;10(28):13589–98. https://doi.org/10.1039/c8nr04596h.

    Article  CAS  PubMed  Google Scholar 

  34. Zhang M, Su R, Zhong J, Fei L, Cai W, Guan Q, et al. Red/orange dual-emissive carbon dots for pH sensing and cell imaging. Nano Res. 2019;12(4):815–21. https://doi.org/10.1007/s12274-019-2293-z.

    Article  CAS  Google Scholar 

  35. Hu Y, Yang Z, Lu X, Guo J, Cheng R, Zhu L, et al. Facile synthesis of red dual-emissive carbon dots for ratiometric fluorescence sensing and cellular imaging. Nanoscale. 2020;12(9):5494–500. https://doi.org/10.1039/d0nr00381f.

    Article  CAS  PubMed  Google Scholar 

  36. Shao K, Yang Y, Ye S, Gu D, Wang T, Teng Y, et al. Dual-colored carbon dots-based ratiometric fluorescent sensor for high-precision detection of alkaline phosphatase activity. Talanta. 2020;208: 120460. https://doi.org/10.1016/j.talanta.2019.120460.

    Article  CAS  PubMed  Google Scholar 

  37. Wu S, Li W, Sun Y, Zhang X, Zhuang J, Hu H, et al. Synthesis of dual-emissive carbon dots with a unique solvatochromism phenomenon. J Colloid Interface Sci. 2019;555:607–14. https://doi.org/10.1016/j.jcis.2019.07.089.

    Article  CAS  PubMed  Google Scholar 

  38. Wang Y, Lu L, Peng H, Xu J, Wang F, Qi R, et al. Multi-doped carbon dots with ratiometric pH sensing properties for monitoring enzyme catalytic reactions. Chem Commun (Camb). 2016;52(59):9247–50. https://doi.org/10.1039/c6cc02874h.

    Article  CAS  Google Scholar 

  39. Yu L, Zhang L, Ren G, Li S, Zhu B, Chai F, et al. Multicolorful fluorescent-nanoprobe composed of Au nanocluster and carbon dots for colorimetric and fluorescent sensing Hg2+ and Cr6+. Sensor Actuators B Chem. 2018;262:678–86. https://doi.org/10.1016/j.snb.2018.01.192.

    Article  CAS  Google Scholar 

  40. Xiang GQ, Ren Y, Zhang H, Fan HH, Jiang XM, He LJ, et al. Carbon dots based dual-emission silica nanoparticles as ratiometric fluorescent probe for chromium speciation analysis in water samples. Can J Chem. 2018;96(1):72–7. https://doi.org/10.1139/cjc-2017-0472.

    Article  CAS  Google Scholar 

  41. Zhang HY, Wang Y, Xiao S, Wang H, Wang JH, Feng L. Rapid detection of Cr(VI) ions based on cobalt(II)-doped carbon dots. Biosens Bioelectron. 2017;87:46–52. https://doi.org/10.1016/j.bios.2016.08.010.

    Article  CAS  PubMed  Google Scholar 

  42. Li B, Ma H, Zhang B, Qian J, Cao T, Feng H, et al. Dually emitting carbon dots as fluorescent probes for ratiometric fluorescent sensing of pH values, mercury(II), chloride and Cr(VI) via different mechanisms. Mikrochim Acta. 2019;186(6):341. https://doi.org/10.1007/s00604-019-3437-2.

    Article  CAS  PubMed  Google Scholar 

  43. Zhang S, Jin L, Liu J, Wang Q, Jiao L. A label-free yellow-emissive carbon dot-based nanosensor for sensitive and selective ratiometric detection of chromium (VI) in environmental water samples. Mater Chem Phys. 2020;248. https://doi.org/10.1016/j.matchemphys.2020.122912.

  44. Cao M, Li Y, Zhao Y, Shen C, Zhang H, Huang Y. A novel method for the preparation of solvent-free, microwave-assisted and nitrogen-doped carbon dots as fluorescent probes for chromium (VI) detection and bioimaging. Rsc Adv. 2019;9(15):8230–8. https://doi.org/10.1039/c9ra00290a.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Mutuyimana FP, Liu J, Nsanzamahoro S, Na M, Chen H, Chen X. Yellow-emissive carbon dots as a fluorescent probe for chromium (VI). Mikrochim Acta. 2019;186(3):163. https://doi.org/10.1007/s00604-019-3284-1.

    Article  CAS  PubMed  Google Scholar 

  46. Roshni V, Misra S, Santra MK, Ottoor D. One pot green synthesis of C-dots from groundnuts and its application as Cr (VI) sensor and in vitro bioimaging agent. J Photochem Photobiol A Chem. 2019;373:28–36. https://doi.org/10.1016/j.jphotochem.2018.12.028.

    Article  CAS  Google Scholar 

  47. Liu S, Cui J, Huang J, Tian B, Jia F, Wang Z. Facile one-pot synthesis of highly fluorescent nitrogen-doped carbon dots by mild hydrothermal method and their applications in detection of Cr (VI) ions. Spectrochim Acta A Mol Biomol Spectrosc. 2019;206:65–71. https://doi.org/10.1016/j.saa.2018.07.082.

    Article  CAS  PubMed  Google Scholar 

  48. Ji X, Wang S, Luo Y, Yuan X, Wei Y, Zhang Q, et al. Green synthesis of weissella-derived fluorescence carbon dots for microbial staining, cell imaging and dual sensing of vitamin B12 and hexavalent chromium. Dyes Pigments. 2021;184. https://doi.org/10.1016/j.dyepig.2020.108818.

  49. Sun XH, Yang SH, Guo MZ, Ma S, Zheng MD, He J. Reversible fluorescence probe based on N-doped carbon dots for the determination of mercury ion and glutathione in waters and living cells. Anal Sci. 2017;33:761–7. https://doi.org/10.2116/analsci.33.761.

    Article  CAS  PubMed  Google Scholar 

  50. Li G, Fu H, Chen X, Gong P, Chen G, Xia L, et al. Facile and sensitive fluorescence sensing of alkaline phosphatase activity with photoluminescent carbon dots based on inner filter effect. Anal Chem. 2016;88(5):2720–6. https://doi.org/10.1021/acs.analchem.5b04193.

    Article  CAS  PubMed  Google Scholar 

  51. Zhang Y, Fang X, Zhao H, Li Z. A highly sensitive and selective detection of Cr (VI) and ascorbic acid based on nitrogen-doped carbon dots. Talanta. 2018;181:318–25. https://doi.org/10.1016/j.talanta.2018.01.027.

    Article  CAS  PubMed  Google Scholar 

  52. Wang Y, Hu X, Li W, Huang X, Li Z, Zhang W, et al. Preparation of boron nitrogen co-doped carbon quantum dots for rapid detection of Cr(VI). Spectrochim Acta A Mol Biomol Spectrosc. 2020;243: 118807. https://doi.org/10.1016/j.saa.2020.118807.

    Article  CAS  PubMed  Google Scholar 

  53. Liu J, Chen Y, Wang L, Na M, Chen H, Chen X. Modification-free fabricating ratiometric nanoprobe based on dual-emissive carbon dots for nitrite determination in food samples. J Agric Food Chem. 2019;67(13):3826–36. https://doi.org/10.1021/acs.jafc.9b00024.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (No. 21874087) and Research Project Supported by Shanxi Scholarship Council of China (2021-011).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Junfen Li or Chuan Dong.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 6215 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mei, X., Wang, D., Wang, S. et al. Synthesis of intrinsic dual-emission type N,S-doped carbon dots for ratiometric fluorescence detection of Cr (VI) and application in cellular imaging. Anal Bioanal Chem 414, 7253–7263 (2022). https://doi.org/10.1007/s00216-022-04277-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-022-04277-z

Keywords