Abstract
The evolutionary behavior of temporal networks has gained the attention of researchers with its ubiquitous applications in a variety of real-world scenarios. Learning evolutionary behavior of networks is directly related to link prediction problem, as the addition or removal of new links or edges over time leads to the network evolution. With the rise of large-scale temporal networks such as social networks, temporal link prediction has become an interesting field of study. In this work, we provide a detailed survey of various researches carried out in the direction of temporal link prediction. We build a taxonomy of temporal link prediction methods based on various approaches used and discuss the works which come under each category. Further, we present the challenges and directions for future works.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Abdi, H.: The eigen-decomposition: Eigenvalues and eigenvectors. In: Encyclopedia of Measurement and Statistics, pp. 304–308 (2007)
Adamic, L.A., Adar, E.: Friends and neighbors on the web. Soc. Netw. 25(3), 211–230 (2003)
Ahmed, N.M., Chen, L.: New approaches for link prediction in temporal social networks. Comput. Model. New Technol. 18, 87–94 (2014)
Ahmed, N.M., Chen, L.: An efficient algorithm for link prediction in temporal uncertain social networks. Inf. Sci. 331, 120–136 (2016)
Ahmed, N.M., Chen, L., Wang, Y., Li, B., Li, Y., Liu, W.: Sampling-based algorithm for link prediction in temporal networks. Inf. Sci. 374, 1–14 (2016)
Ahmed, N.M., Chen, L., Wang, Y., Li, B., Li, Y., Liu, W.: Deepeye: link prediction in dynamic networks based on non-negative matrix factorization. Big Data Min. Anal. 1(1), 19–33 (2018)
Aiello, L.M., Barrat, A., Schifanella, R., Cattuto, C., Markines, B., Menczer, F.: Friendship prediction and homophily in social media. ACM Trans. Web (TWEB) 6(2), 9 (2012)
Al Hasan, M., Chaoji, V., Salem, S., Zaki, M.: Link prediction using supervised learning. In: SDM06: Workshop on Link Analysis, Counter-terrorism and Security (2006)
Al Hasan, M., Zaki, M.J.: A survey of link prediction in social networks. In: Social Network Data Analytics, pp. 243–275. Springer, Boston, MA (2011)
Backstrom, L., Leskovec, J.: Supervised random walks: predicting and recommending links in social networks. In: Proceedings of the 4th ACM International Conference on Web Search and Data Mining, pp. 635–644. ACM (2011)
Bliss, C.A., Frank, M.R., Danforth, C.M., Dodds, P.S.: An evolutionary algorithm approach to link prediction in dynamic social networks. J. Comput. Sci. 5(5), 750–764 (2014)
Blondel, V.D., Guillaume, J.L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. J. Stat. Mech. Theory Exp. 2008(10), P10008 (2008)
Brockwell, P.J., Davis, R.A., Calder, M.V.: Introduction to Time Series and Forecasting, vol. 2. Springer, Cham (2002)
Bütün, E., Kaya, M., Alhajj, R.: Extension of neighbor-based link prediction methods for directed, weighted and temporal social networks. Inf. Sci. 463, 152–165 (2018)
Casteigts, A., Flocchini, P., Quattrociocchi, W., Santoro, N.: Time-varying graphs and dynamic networks. Int. J. Parallel Emerg. Distrib. Syst. 27(5), 387–408 (2012)
Chen, H.H., Gou, L., Zhang, X.L., Giles, C.L.: Discovering missing links in networks using vertex similarity measures. In: Proceedings of the 27th Annual ACM Symposium on Applied Computing, pp. 138–143 (2012)
Chib, S., Greenberg, E.: Understanding the metropolis-hastings algorithm. Am. Statist. 49(4), 327–335 (1995)
Chiu, C., Zhan, J.: Deep learning for link prediction in dynamic networks using weak estimators. In: IEEE Access, pp. 35937–35945 (2018)
Cholette, P.A.: Prior information and ARIMA forecasting. J. Forecast. 1(4), 375–383 (1982)
Choudhury, N., Uddin, S.: Evolutionary community mining for link prediction in dynamic networks. In: International Conference on Complex Networks and their Applications, pp. 127–138. Springer (2017)
Clauset, A., Moore, C., Newman, M.E.: Hierarchical structure and the prediction of missing links in networks. Nature 453(7191), 98 (2008)
Das, S., Das, S.K.: A probabilistic link prediction model in time-varying social networks. In: 2017 IEEE International Conference on Communications (ICC), pp. 1–6. IEEE (2017)
Dong, L., Li, Y., Yin, H., Le, H., Rui, M.: The algorithm of link prediction on social network. Math. Probl. Eng. 2013 (2013)
Dunlavy, D.M., Kolda, T.G., Acar, E.: Temporal link prediction using matrix and tensor factorizations. ACM Trans. Knowl. Discov. Data (TKDD) 5(2), 10 (2011)
Estrada, E., Hatano, N.: Communicability in complex networks. Phys. Rev. E 77(3), 036111 (2008)
Faber, N.K.M., Bro, R., Hopke, P.K.: Recent developments in CANDECOMP/PARAFAC algorithms: a critical review. Chemom. Intell. Lab. Syst. 65(1), 119–137 (2003)
Fang, C., Kohram, M., Meng, X., Ralescu, A.: Graph embedding framework for link prediction and vertex behavior modeling in temporal social networks. In: Proceedings of the SIGKDD Workshop on Social Network Mining and Analysis (2011)
Friedman, N., Getoor, L., Koller, D., Pfeffer, A.: Learning probabilistic relational models. In: IJCAI, vol. 99, pp. 1300–1309 (1999)
Gael, J.V., Teh, Y.W., Ghahramani, Z.: The infinite factorial hidden Markov model. In: Advances in Neural Information Processing Systems, pp. 1697–1704 (2009)
Gao, S., Denoyer, L., Gallinari, P.: Temporal link prediction by integrating content and structure information. In: Proceedings of the 20th ACM International Conference on Information and Knowledge Management, pp. 1169–1174. ACM (2011)
Golub, G.H., Reinsch, C.: Singular value decomposition and least squares solutions. In: Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971)
Goyal, P., Kamra, N., He, X., Liu, Y.: Dyngem: deep embedding method for dynamic graphs (2018). arXiv:1805.11273
Guimerà, R., Sales-Pardo, M.: Missing and spurious interactions and the reconstruction of complex networks. Proc. Natl. Acad. Sci. 106(52), 22073–22078 (2009)
Güneş, İ., Gündüz-Öğüdücü, Ş., Çataltepe, Z.: Link prediction using time series of neighborhood-based node similarity scores. Data Min. Knowl. Discov. 30(1), 147–180 (2016)
Hansen, N., Ostermeier, A.: Completely derandomized self-adaptation in evolution strategies. Evolut. Comput. 9(2), 159–195 (2001)
Heckerman, D., Meek, C., Koller, D.: Probabilistic entity-relationship models, PRMs, and plate models. In: Introduction to Statistical Relational Learning, pp. 201–238 (2007)
Hisano, R.: Semi-supervised graph embedding approach to dynamic link prediction. In: International Workshop on Complex Networks, pp. 109–121. Springer, Cham (2018)
Holme, P., Saramäki, J.: Temporal networks. Phys. Rep. 519(3), 97–125 (2012)
Ibrahim, N.M.A., Chen, L.: Link prediction in dynamic social networks by integrating different types of information. Appl. Intell. 42(4), 738–750 (2015)
Jaccard, P.: Étude comparative de la distribution florale dans une portion des Alpes et des jura. Bull. Soc. Vaudoise Sci. Nat. 37, 547–579 (1901)
Juszczyszyn, K., Musial, K., Budka, M.: Link prediction based on subgraph evolution in dynamic social networks. In: 3rd IEEE International Conference on Privacy, Security, Risk and Trust and Third IEEE International Conference on Social Computing, pp. 27–34 (2011)
Kashima, H., Abe, N.: A parameterized probabilistic model of network evolution for supervised link prediction. In: 6th International Conference on Data Mining (ICDM’06), pp. 340–349. IEEE (2006)
Katz, L.: A new status index derived from sociometric analysis. Psychometrika 18(1), 39–43 (1953)
Kim, M., Leskovec, J.: The network completion problem: inferring missing nodes and edges in networks. In: Proceedings of the 2011 SIAM International Conference on Data Mining, pp. 47–58. Society for Industrial and Applied Mathematics (2011)
Kossinets, G.: Effects of missing data in social networks. Soc. Netw. 28(3), 247–268 (2006)
Kostakos, V.: Temporal graphs. Phys. A Stat. Mech. Appl. 388(6), 1007–1023 (2009)
Kunegis, J., Lommatzsch, A.: Learning spectral graph transformations for link prediction. In: Proceedings of the 26th Annual International Conference on Machine Learning, pp. 561–568. ACM (2009)
Lakshmi, T.J., Bhavani, S.D.: Temporal probabilistic measure for link prediction in collaborative networks. Appl. Intell. 47(1), 83–95 (2017)
Lei, K., Qin, M., Bai, B., Zhang, G.: Adaptive multiple non-negative matrix factorization for temporal link prediction in dynamic networks. In: Proceedings of the 2018 Workshop on Network Meets AI & ML, pp. 28–34. ACM (2018)
Li, J., Cheng, K., Wu, L., Liu, H.: Streaming link prediction on dynamic attributed networks. In: Proceedings of the Eleventh ACM International Conference on Web Search and Data Mining, pp. 369–377. ACM (2018)
Li, T., Zhang, J., Philip, S.Y., Zhang, Y., Yan, Y.: Deep dynamic network embedding for link prediction. IEEE Access 6, 29219–29230 (2018)
Li, X., Du, N., Li, H., Li, K., Gao, J., Zhang, A.: A deep learning approach to link prediction in dynamic networks. In: Proceedings of the 2014 SIAM International Conference on Data Mining, pp. 289–297. SIAM (2014)
Liaw, A., Wiener, M.: Classification and regression by randomforest. R News 2(3), 18–22 (2002)
Liben-Nowell, D., Kleinberg, J.: The link-prediction problem for social networks. J. Am. Soc. Inf. Sci. Technol. 58(7), 1019–1031 (2007)
Lichtenwalter, R.N., Chawla, N.V.: Vertex collocation profiles: subgraph counting for link analysis and prediction. In: Proceedings of the 21st International Conference on World Wide Web, pp. 1019–1028. ACM (2012)
Liu, W., Lü, L.: Link prediction based on local random walk. EPL (Europhysics Letters) 89(5), 58007 (2010)
Lü, L., Jin, C.H., Zhou, T.: Similarity index based on local paths for link prediction of complex networks. Phys. Rev. E 80(4), 046122 (2009)
Lü, L., Medo, M., Yeung, C.H., Zhang, Y.C., Zhang, Z.K., Zhou, T.: Recommender systems. Phys. Rep. 519(1), 1–49 (2012)
Lü, L., Pan, L., Zhou, T., Zhang, Y.C., Stanley, H.E.: Toward link predictability of complex networks. Proc. Natl. Acad. Sci. 112(8), 2325–2330 (2015)
Lü, L., Zhou, T.: Link prediction in complex networks: a survey. Phys. A Stat. Mech. Appl. 390(6), 1150–1170 (2011)
Ma, X., Sun, P., Qin, G.: Nonnegative matrix factorization algorithms for link prediction in temporal networks using graph communicability. Pattern Recognit. 71, 361–374 (2017)
Ma, X., Sun, P., Wang, Y.: Graph regularized nonnegative matrix factorization for temporal link prediction in dynamic networks. Phys. A Stat. Mech. Appl. 496, 121–136 (2018)
Meng, B., Ke, H., Yi, T.: Link prediction based on a semi-local similarity index. Chin. Phys. B 20(12), 128902 (2011)
Menon, A.K., Elkan, C.: Link Prediction via Matrix Factorization. In: Gunopulos, D., Hofmann, T., Malerba, D., Vazirgiannis, M. (eds.) Machine Learning and Knowledge Discovery in Databases. ECML PKDD 2011. Lecture Notes in Computer Science, vol. 6912, pp. 437–452. Springer, Berlin, Heidelberg (2011)
Moradabadi, B., Meybodi, M.R.: Link prediction based on temporal similarity metrics using continuous action set learning automata. Phys. A Stat. Mech. Appl. 460, 361–373 (2016)
Muniz, C.P., Goldschmidt, R., Choren, R.: Combining contextual, temporal and topological information for unsupervised link prediction in social networks. Knowl. Based Syst. 156, 129–137 (2018)
Narasimhan, J., Holder, L.: Feature engineering for supervised link prediction on dynamic social networks. In: Proceedings of the International Conference on Data Mining (DMIN), p. 1. The Steering Committee of The World Congress in Computer Science, Computer Engineering and Applied Computing (WorldComp) (2014)
Newman, M.E.: Clustering and preferential attachment in growing networks. Phys. Rev. E 64(2), 025102 (2001)
Nguyen, G.H., Lee, J.B., Rossi, R.A., Ahmed, N.K., Koh, E., Kim, S.: Continuous-time dynamic network embeddings. In: Companion Proceedings of the Web Conference 2018, pp. 969–976. International World Wide Web Conferences Steering Committee (2018)
Ouzienko, V., Guo, Y., Obradovic, Z.: Prediction of attributes and links in temporal social networks. In: ECAI, pp. 1121–1122 (2010)
Oyama, S., Hayashi, K., Kashima, H.: Cross-temporal link prediction. In: 2011 IEEE 11th International Conference on Data Mining (ICDM), pp. 1188–1193. IEEE (2011)
Özcan, A., Öğüdücü, Ş.G.: Multivariate temporal link prediction in evolving social networks. In: IEEE/ACIS 14th International Conference on Computer and Information Science (ICIS), pp. 185–190. IEEE (2015)
Özcan, A., Öğüdücü, Ş.G.: Temporal link prediction using time series of quasi-local node similarity measures. In: 2016 15th IEEE International Conference on Machine Learning and Applications (ICMLA), pp. 381–386. IEEE (2016)
Özcan, A., Öğüdücü, Ş.G.: Supervised temporal link prediction using time series of similarity measures. In: 2017 Ninth International Conference on Ubiquitous and Future Networks (ICUFN), pp. 519–521. IEEE (2017)
Pavlov, M., Ichise, R.: Finding experts by link prediction in co-authorship networks. FEWS 290, 42–55 (2007)
Pech, R., Hao, D., Lee, Y.L., Yuan, Y., Zhou, T.: Link prediction via linear optimization. Phys. A Stat. Mech. Appl. 528, 121319 (2019)
Pech, R., Hao, D., Pan, L., Cheng, H., Zhou, T.: Link prediction via matrix completion. EPL (Europhysics Letters) 117(3), 38002 (2017)
Popescul, A., Ungar, L.H.: Statistical relational learning for link prediction. In: IJCAI Workshop on Learning Statistical Models from Relational Data, vol. 2003. Citeseer (2003)
Rahman, M., Hasan, M.A.: Link prediction in dynamic networks using graphlet. In: Frasconi, P., Landwehr, N., Manco, G., Vreeken, J. (eds.) Machine Learning and Knowledge Discovery in Databases. ECML PKDD 2016. Lecture Notes in Computer Science, vol. 9851, pp. 394–409. Springer, Cham (2016)
Rahman, M., Saha, T.K., Hasan, M.A., Xu, K.S., Reddy, C.K.: Dylink2vec: effective feature representation for link prediction in dynamic networks (2018). arXiv:1804.05755
Ralescu, A., Kohram, M., et al.: Spectral regression with low-rank approximation for dynamic graph link prediction. IEEE Intell. Syst. 26(4), 48–53 (2011)
Raymond, R., Kashima, H.: Fast and scalable algorithms for semi-supervised link prediction on static and dynamic graphs. In: Balcázar, J.L., Bonchi, F., Gionis, A., Sebag, M. (eds.) Machine Learning and Knowledge Discovery in Databases. ECML PKDD 2010. Lecture Notes in Computer Science, vol. 6323, pp. 131–147. Springer, Berlin, Heidelberg (2010)
Rossetti, G., Guidotti, R., Pennacchioli, D., Pedreschi, D., Giannotti, F.: Interaction prediction in dynamic networks exploiting community discovery. In: 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM), pp. 553–558. IEEE (2015)
Sajadmanesh, S., Zhang, J., Rabiee, H.R.: NPGLM: a non-parametric method for temporal link prediction (2017). arXiv:1706.06783
Salton, G., McGill, M.J.: Introduction to Modern Information Retrieval. McGraw-Hill (1986)
Sarkar, P., Chakrabarti, D., Jordan, M.: Nonparametric link prediction in dynamic networks (2012). arXiv:1206.6394
Sarkar, P., Chakrabarti, D., Jordan, M.: Nonparametric link prediction in large scale dynamic networks. Electron. J. Stat. 8(2), 2022–2065 (2014)
Soares, P.R., Prudêncio, R.B.: Proximity measures for link prediction based on temporal events. Expert Syst. Appl. 40(16), 6652–6660 (2013)
Symeonidis, P., Mantas, N.: Spectral clustering for link prediction in social networks with positive and negative links. Soc. Netw. Anal. Min. 3(4), 1433–1447 (2013)
Tang, J., Wu, S., Sun, J., Su, H.: Cross-domain collaboration recommendation. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1285–1293. ACM (2012)
Tarrés-Deulofeu, M., Godoy-Lorite, A., Guimerà, R., Sales-Pardo, M.: Tensorial and bipartite block models for link prediction in layered networks and temporal networks. Phys. Rev. E 99(3), 032307 (2019)
Valverde-Rebaza, J., de Andrade Lopes, A.: Exploiting behaviors of communities of twitter users for link prediction. Soc. Netw. Anal. Min. 3(4), 1063–1074 (2013)
Wang, C., Mahadevan, S.: Manifold alignment using procrustes analysis. In: Proceedings of the 25th International Conference on Machine Learning, pp. 1120–1127. ACM (2008)
Wang, C., Satuluri, V., Parthasarathy, S.: Local probabilistic models for link prediction. In: 7th IEEE International Conference on Data Mining (ICDM), pp. 322–331. IEEE (2007)
Wang, P., Xu, B., Wu, Y., Zhou, X.: Link prediction in social networks: the state-of-the-art. Sci. China Inf. Sci. 58(1), 1–38 (2015)
Wang, T., He, X.S., Zhou, M.Y., Fu, Z.Q.: Link prediction in evolving networks based on popularity of nodes. Sci. Rep. 7(1), 7147 (2017)
Wang, W.Q., Zhang, Q.M., Zhou, T.: Evaluating network models: a likelihood analysis. EPL (Europhysics Letters) 98(2), 28004 (2012)
Wohlfarth, T., Ichise, R.: Semantic and Event-Based Approach for Link Prediction. In: Yamaguchi, T. (ed.) Practical Aspects of Knowledge Management. PAKM 2008. Lecture Notes in Computer Science, vol. 5345, pp. 50–61. Springer, Berlin, Heidelberg (2008)
Wu, T., Chang, C.S., Liao, W.: Tracking network evolution and their applications in structural network analysis. IEEE Trans. Knowl. Data Eng (2018)
Xie, H., Tang, H., Liao, Y.H.: Time series prediction based on NARX neural networks: an advanced approach. In: 2009 International Conference on Machine Learning and Cybernetics, vol. 3, pp. 1275–1279. IEEE (2009)
Yang, C., Liu, Z., Zhao, D., Sun, M., Chang, E.: Network representation learning with rich text information. In: 24th International Joint Conference on Artificial Intelligence, pp. 2111–2117 (2015)
Yang, X., Tian, Z., Cui, H., Zhang, Z.: Link prediction on evolving network using tensor-based node similarity. In: 2012 IEEE 2nd International Conference on Cloud Computing and Intelligent Systems (CCIS), vol. 1, pp. 154–158. IEEE (2012)
Yao, L., Wang, L., Pan, L., Yao, K.: Link prediction based on common-neighbors for dynamic social network. Proc. Comput. Sci. 83, 82–89 (2016)
Yasami, Y., Safaei, F.: A novel multilayer model for missing link prediction and future link forecasting in dynamic complex networks. Phys. A Stat. Mech. Appl. 492, 2166–2197 (2018)
Young, F.W., Hamer, R.M.: Theory and Applications of Multidimensional Scaling. Eribaum Associates, Hillsdale (1994)
Yu, K., Chu, W., Yu, S., Tresp, V., Xu, Z.: Stochastic relational models for discriminative link prediction. In: Advances in Neural Information Processing Systems, pp. 1553–1560 (2007)
Yu, W., Cheng, W., Aggarwal, C.C., Chen, H., Wang, W.: Link prediction with spatial and temporal consistency in dynamic networks. In: Proceedings of the International Joint Conference on Artificial Intelligence, pp. 3343–3349 (2017)
Yu, X., Chu, T.: Dynamic link prediction using restricted Boltzmann machine. In: Chinese Automation Congress (CAC), pp. 4089–4092. IEEE (2017)
Zhang, Q.M., Xu, X.K., Zhu, Y.X., Zhou, T.: Measuring multiple evolution mechanisms of complex networks. Sci. Rep. 5, 10350 (2015)
Zhang, Z., Wen, J., Sun, L., Deng, Q., Su, S., Yao, P.: Efficient incremental dynamic link prediction algorithms in social network. Knowl. Based Syst. 132, 226–235 (2017)
Zhou, L., Yang, Y., Ren, X., Wu, F., Zhuang, Y.: Dynamic network embedding by modeling triadic closure process. In: Thirty-Second AAAI Conference on Artificial Intelligence (2018)
Zhou, T., Lü, L., Zhang, Y.C.: Predicting missing links via local information. Eur. Phys. J. B 71(4), 623–630 (2009)
Zhu, J., Hong, J., Hughes, J.G.: Using markov chains for link prediction in adaptive web sites. In: Bustard, D., Liu, W., Sterritt, R. (eds.) Soft-Ware 2002: Computing in an Imperfect World. Lecture Notes in Computer Science, vol. 2311, pp. 60–73. Springer, Berlin, Heidelberg (2002)
Zhu, L., Guo, D., Yin, J., Ver Steeg, G., Galstyan, A.: Scalable temporal latent space inference for link prediction in dynamic social networks. IEEE Trans. Knowl. Data Eng. 28(10), 2765–2777 (2016)
Zhu, Y.X., Lü, L., Zhang, Q.M., Zhou, T.: Uncovering missing links with cold ends. Phys. A Stat. Mech. Appl. 391(22), 5769–5778 (2012)
Acknowledgements
The infrastructure used for conducting this study is funded by FIST which is sanctioned by DST to NSS College of Engineering, Palakkad. We would like to express our gratitude to the Department of Computer Science and Engineering, NSS College of Engineering, Palakkad, for providing the required infrastructure.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
About this article
Cite this article
Divakaran, A., Mohan, A. Temporal Link Prediction: A Survey. New Gener. Comput. 38, 213–258 (2020). https://doi.org/10.1007/s00354-019-00065-z
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00354-019-00065-z