Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Advertisement

Segmentation and identification of brain tumour in MRI images using PG-OneShot learning CNN model

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Brain tumour segmentation plays a critical role in the diagnosis, treatment planning, and monitoring of brain tumour patients. However, accurate and efficient segmentation remains challenging due to the complex and heterogeneous structure of brain tumour regions. The current CNN models have shown good performance in brain tumour segmentation and identification, but several research challenges, like limited generalizability, Adaptive Model Complexity, etc., still need to be addressed. In this research, we propose a novel approach that combines the progressively growing and One-Shot learning approaches with a semantic segmentation network to enhance the accuracy and generalization of brain tumour segmentation in MRI images. Our method joins the strengths of progressively growing and One-Shot learning techniques with a semantic segmentation network, enabling improved generalization, effective feature selection, and continuous integration of contextual information at the pixel level. Experimental results on benchmark Br35H MRI image datasets demonstrate the dominance of our approach over existing methods in terms of segmentation accuracy and adaptability to diverse brain tumour instances. A total of 3000 images (1500 tumorous and 1500 non-tumorous images) were used during the training and testing of the model. The evaluation metrics reveal the high performance of our proposed model for brain tumour segmentation. Achieving high Dice Similarity Coefficients (0.9849), Intersection over Union (0.9319), accuracy (0.9520), precision (0.9235), and recall (0.9572) across average training, validation, and test sets. These results demonstrate the model's efficiency in accurately segmenting both tumorous and non-tumorous regions in MRI images.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data availability

The data used in this paper can be accessed from the KAGGLE online database.

https://www.kaggle.com/datasets/ahmedhamada0/brain-tumor-detection

References  

  1. Kang J, Ullah Z, Gwak J (2021) Mri-based brain tumor classification using ensemble of deep features and machine learning classifiers. Sensors 21(6):1–21. https://doi.org/10.3390/s21062222

    Article  Google Scholar 

  2. Gómez-Guzmán MA et al (2023) Classifying Brain Tumors on Magnetic Resonance Imaging by Using Convolutional Neural Networks. Electron 12(4):1–22. https://doi.org/10.3390/electronics12040955

    Article  Google Scholar 

  3. Gu X, Shen Z, Xue J, Fan Y, Ni T (2021) Brain Tumor MR Image Classification Using Convolutional Dictionary Learning With Local Constraint. Front Neurosci 15(May):1–12. https://doi.org/10.3389/fnins.2021.679847

    Article  ADS  Google Scholar 

  4. Nazir M, Shakil S, Khurshid K (2021) Role of deep learning in brain tumor detection and classification (2015 to 2020): A review. Comput Med Imaging Graph 91:101940. https://doi.org/10.1016/J.COMPMEDIMAG.2021.101940

    Article  PubMed  Google Scholar 

  5. Ranjbarzadeh R, Caputo A, Tirkolaee EB, Jafarzadeh Ghoushchi S, Bendechache M (2023) Brain tumor segmentation of MRI images: A comprehensive review on the application of artificial intelligence tools. Comput Biol Med 152:106405. https://doi.org/10.1016/j.compbiomed.2022.106405

    Article  PubMed  Google Scholar 

  6. American Society of Clinical Oncology 2020 Brain Tumor: Diagnosis | Cancer.Net. https://www.cancer.net/cancer-types/brain-tumor/diagnosis (accessed Jun. 06, 2023).

  7. Philip AK, Samuel BA, Bhatia S, Khalifa SAM, El-Seedi HR (2023) Artificial Intelligence and Precision Medicine: A New Frontier for the Treatment of Brain Tumors. Life 13(1):1–16. https://doi.org/10.3390/life13010024

    Article  CAS  Google Scholar 

  8. Saeedi S, Rezayi S, Keshavarz H, Niakan Kalhori SR (2023) MRI-based brain tumor detection using convolutional deep learning methods and chosen machine learning techniques. BMC Med Inform Decis Mak 23(1):1–17. https://doi.org/10.1186/s12911-023-02114-6

    Article  Google Scholar 

  9. Badža MM, Barjaktarović MC (2020) Classification of brain tumors from mri images using a convolutional neural network. Appl Sci 10(6):1999. https://doi.org/10.3390/app10061999

    Article  CAS  Google Scholar 

  10. Arora A, Jayal A, Gupta M, Mittal P, Satapathy SC (2021) Brain tumor segmentation of MRI images using processed image driven u-net architecture. Computers 10(11):139. https://doi.org/10.3390/computers10110139

    Article  Google Scholar 

  11. Liu Z et al (2023) Deep learning based brain tumor segmentation: a survey. Complex Intell Syst 9(1):1001–1026. https://doi.org/10.1007/s40747-022-00815-5

    Article  Google Scholar 

  12. Vankdothu R et al (2022) Enhanced performance of brain tumor classification via tumor region augmentation and partition. PLoS ONE 11(6):1–20. https://doi.org/10.1371/journal.pone.0157112

    Article  CAS  Google Scholar 

  13. Kazuhiro K et al (2018) Generative Adversarial Networks for the Creation of Realistic Artificial Brain Magnetic Resonance Images. Tomography 4(4):159–163. https://doi.org/10.18383/j.tom.2018.00042

    Article  PubMed  PubMed Central  Google Scholar 

  14. Krishnapriya S, Karuna Y (2023) Pre-trained deep learning models for brain MRI image classification. Front Hum Neurosci 17:1150120. https://doi.org/10.3389/fnhum.2023.1150120

    Article  PubMed  PubMed Central  Google Scholar 

  15. Irmak E (2021) Multi-Classification of Brain Tumor MRI Images Using Deep Convolutional Neural Network with Fully Optimized Framework. Iran J Sci Technol - Trans Electr Eng 45(3):1015–1036. https://doi.org/10.1007/s40998-021-00426-9

    Article  Google Scholar 

  16. Chattopadhyay A, Maitra M (2022) MRI-based brain tumour image detection using CNN based deep learning method. Neurosci Informatics 2(4):100060. https://doi.org/10.1016/j.neuri.2022.100060

    Article  Google Scholar 

  17. Howard AG et al (2017) MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications. Available: http://arxiv.org/abs/1704.04861. Accessed 11 Jun 2023

  18. Zhou Z, Siddiquee MMR, Tajbakhsh N, Liang J (2020) UNet++: Redesigning Skip Connections to Exploit Multiscale Features in Image Segmentation. IEEE Trans Med Imaging 39(6):1856–1867. https://doi.org/10.1109/TMI.2019.2959609

    Article  PubMed  Google Scholar 

  19. Yang Q, Li N, Zhao Z, Fan X, Chang EI-C, Xu Y (2018) MRI cross-modality neuroimage-to-neuroimage translation, no. Nannan Li, 2018, [Online]. Available: http://arxiv.org/abs/1801.06940. Accessed 9 Jun 2023

  20. Ren X et al (2019) Task decomposition and synchronization for semantic biomedical image segmentation. arXiv 29:7497–7510

    Google Scholar 

  21. Motiian S, Jones Q, Iranmanesh SM, Doretto G (2017) Few-shot adversarial domain adaptation. Adv Neural Inf Process Syst 2017:6671–6681

    Google Scholar 

  22. Achmamad A, Ghazouani F, Ruan S (2022) Few-shot learning for brain tumor segmentation from MRI images. Int Conf Signal Process Proceedings, ICSP 2022:489–494. https://doi.org/10.1109/ICSP56322.2022.9965315

    Article  Google Scholar 

  23. Khadka R et al (2022) Meta-learning with implicit gradients in a few-shot setting for medical image segmentation. Comput Biol Med 143:105227. https://doi.org/10.1016/j.compbiomed.2022.105227

    Article  PubMed  Google Scholar 

  24. Pambala AK, Dutta T, Biswas S (2021) SML: Semantic meta-learning for few-shot semantic segmentation☆. Pattern Recognit Lett 147:93–99. https://doi.org/10.1016/j.patrec.2021.03.036

    Article  ADS  Google Scholar 

  25. Balasundaram A, Kavitha MS, Pratheepan Y, Akshat D, Kaushik MV (2023) A Foreground Prototype-Based One-Shot Segmentation of Brain Tumors. Diagnostics 13(7):1282. https://doi.org/10.3390/diagnostics13071282

    Article  PubMed  PubMed Central  Google Scholar 

  26. Bakas S et al (2017) Advancing The Cancer Genome Atlas glioma MRI collections with expert segmentation labels and radiomic features. Sci Data 4(1):1–13. https://doi.org/10.1038/sdata.2017.117

    Article  Google Scholar 

  27. Tian P, Wu Z, Qi L, Wang L, Shi Y, Gao Y (2020) Differentiable Meta-Learning Model for Few-Shot Semantic Segmentation. Proc AAAI Conf Artif Intell 34(07):12087–12094. https://doi.org/10.1609/AAAI.V34I07.6887

    Article  Google Scholar 

  28. Alrashedy HHN, Almansour AF, Ibrahim DM, Hammoudeh MAA (2022) BrainGAN: Brain MRI Image Generation and Classification Framework Using GAN Architectures and CNN Models. Sensors 22(11):4297. https://doi.org/10.3390/s22114297

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  29. Ge C, Gu IYH, Jakola AS, Yang J (2020) Enlarged Training Dataset by Pairwise GANs for Molecular-Based Brain Tumor Classification. IEEE Access 8:22560–22570. https://doi.org/10.1109/ACCESS.2020.2969805

    Article  Google Scholar 

  30. Han C et al., (2019) Learning more with less: Conditional PGGAN-based data augmentation for brain metastases detection using highly-rough annotation on MR images. Int Conf Inf Knowl Manag Proc pp. 119–127, https://doi.org/10.1145/3357384.3357890

  31. Han C et al (2020) Infinite Brain MR Images: PGGAN-Based Data Augmentation for Tumor Detection. Smart Innov Syst Technol 151:291–303. https://doi.org/10.1007/978-981-13-8950-4_27/COVER

    Article  Google Scholar 

  32. Han C et al (2019) Combining noise-to-image and image-to-image GANs: Brain MR image augmentation for tumor detection. IEEE Access 7:156966–156977. https://doi.org/10.1109/ACCESS.2019.2947606

    Article  Google Scholar 

  33. Han C et al (2021) MADGAN: unsupervised medical anomaly detection GAN using multiple adjacent brain MRI slice reconstruction. BMC Bioinformatics 22(2):1–20. https://doi.org/10.1186/S12859-020-03936-1/TABLES/2

    Article  Google Scholar 

  34. Ghassemi N, Shoeibi A, Rouhani M (2020) Deep neural network with generative adversarial networks pre-training for brain tumor classification based on MR images. Biomed Signal Process Control 57:101678. https://doi.org/10.1016/J.BSPC.2019.101678

    Article  Google Scholar 

  35. Allah AMG, Sarhan AM, Elshennawy NM (2021) Classification of brain MRI tumor images based on deep learning PGGAN augmentation. Diagnostics 11(12):1–20. https://doi.org/10.3390/diagnostics11122343

    Article  Google Scholar 

  36. Vankdothu R, Hameed MA (2022) Brain tumor MRI images identification and classification based on the recurrent convolutional neural network. Meas Sensors 24:100412. https://doi.org/10.1016/j.measen.2022.100412

    Article  Google Scholar 

  37. Zulpe N, Pawar V (2012) GLCM textural features for Brain Tumor Classification. Int J Comput Sci 9(3):354–359 (http://www.doaj.org/doaj?func=abstract&id=1158398)

    Google Scholar 

  38. Samjith Raj CP, Shreeja R (2017) Automatic brain tumor tissue detection in T-1 weighted MRI. 2017 Int Conf Innov Inf Embed Commun Syst 2018:1–4. https://doi.org/10.1109/ICIIECS.2017.8276094

    Article  Google Scholar 

  39. Minz A, Mahobiya C (2017) MR image classification using adaboost for brain tumor type. Proc- 7th IEEE Int Adv Comput Conf IACC 2017:701–705

    Google Scholar 

  40. Sharif MI, Li JP, Khan MA, Saleem MA (2020) Active deep neural network features selection for segmentation and recognition of brain tumors using MRI images. Pattern Recognit Lett 129:181–189. https://doi.org/10.1016/j.patrec.2019.11.019

    Article  ADS  Google Scholar 

  41. Dong H, Yang G, Liu F, Mo Y, Guo Y (2017) Automatic brain tumor detection and segmentation using U-net based fully convolutional networks. Commun Comput Inf Sci 723:506–517. https://doi.org/10.1007/978-3-319-60964-5_44/COVER

    Article  Google Scholar 

  42. Chen W, Liu B, Peng S, Sun J, Qiao X (2019) S3D-UNET: Separable 3D U-Net for brain tumor segmentation. Lect Notes Comput Sci (including Subser Lect Notes Artif Intell Lect Notes Bioinformatics) 11384:358–368. https://doi.org/10.1007/978-3-030-11726-9_32. (LNCS)

    Article  Google Scholar 

  43. Tuan TA, Bao PT (2019) Brain tumor segmentation using bit-plane and UNET. Lect Notes Comput Sci (including Subser Lect Notes Artif Intell Lect Notes Bioinformatics) 11384:466–475. https://doi.org/10.1007/978-3-030-11726-9_41/COVER. (LNCS)

    Article  Google Scholar 

  44. Ibtehaz N, Rahman MS (2020) MultiResUNet : Rethinking the U-Net architecture for multimodal biomedical image segmentation. Neural Netw 121:74–87. https://doi.org/10.1016/J.NEUNET.2019.08.025

    Article  PubMed  Google Scholar 

  45. Karayegen G, Aksahin MF (2021) Brain tumor prediction on MR images with semantic segmentation by using deep learning network and 3D imaging of tumor region. Biomed Signal Process Control 66:102458. https://doi.org/10.1016/J.BSPC.2021.102458

    Article  Google Scholar 

  46. Wang Y et al (2021) Modality-Pairing Learning for Brain Tumor Segmentation. Lect Notes Comput Sci (including Subser Lect Notes Artif Intell Lect Notes Bioinformatics) 12658:230–240. https://doi.org/10.1007/978-3-030-72084-1_21/COVER. (LNCS)

    Article  Google Scholar 

  47. Hamada A (2020) Br35H :: Brain Tumor Detection 2020, Kaggle. https://www.kaggle.com/datasets/ahmedhamada0/brain-tumor-detection (accessed Jun. 07, 2023)

  48. Aggarwal M, Tiwari AK, Sarathi MP, Bijalwan A (2023) An early detection and segmentation of Brain Tumor using Deep Neural Network. BMC Med Inform Decis Mak 23(1):1–2. https://doi.org/10.1186/s12911-023-02174-8

    Article  Google Scholar 

  49. Rajendran S et al (2023) Automated Segmentation of Brain Tumor MRI Images Using Deep Learning. IEEE Access 11(June):64758–64768. https://doi.org/10.1109/ACCESS.2023.3288017

    Article  Google Scholar 

  50. Zhu Z, He X, Qi G, Li Y, Cong B, Liu Y (2023) Brain tumor segmentation based on the fusion of deep semantics and edge information in multimodal MRI. Inf Fusion 91:376–387. https://doi.org/10.1016/J.INFFUS.2022.10.022

    Article  Google Scholar 

  51. Santosh Kumar P, Sakthivel VP, Raju M, Satya PD (2023) Brain tumor segmentation of the FLAIR MRI images using novel ResUnet. Biomed Signal Process Control 82:104586. https://doi.org/10.1016/j.bspc.2023.104586

    Article  Google Scholar 

  52. Mahesh Kumar G, Parthasarathy E (2023) Development of an enhanced U-Net model for brain tumor segmentation with optimized architecture. Biomed Signal Process Control 81:104427. https://doi.org/10.1016/j.bspc.2022.104427

    Article  Google Scholar 

  53. Da Costa Nascimento JJ et al., (2023) New Health of Things Approach to Classification and Detection of Brain Tumors Using Transfer Learning for Segmentation in IMR Images, Proc Int Joint Conf Neural Netw 2023, https://doi.org/10.1109/IJCNN54540.2023.10191399

  54. Rehman MU, Ryu J, Nizami IF, Chong KT (2023) RAAGR2-Net: A brain tumor segmentation network using parallel processing of multiple spatial frames. Comput Biol Med 152:106426. https://doi.org/10.1016/j.compbiomed.2022.106426

    Article  PubMed  Google Scholar 

  55. Ejaz K, Suaib NBM, Kamal MS, Rahim MSM, Rana N (2023) Segmentation Method of Deterministic Feature Clustering for Identification of Brain Tumor Using MRI. IEEE Access 11(February):39695–39712. https://doi.org/10.1109/ACCESS.2023.3263798

    Article  Google Scholar 

Download references

Acknowledgements

We are very thankful to Wuhan University for her generous support in conducting this research.

Funding

This work was sponsored by the National Natural Science Foundation of China General Program with grant number (No. 6 2272352).

Author information

Authors and Affiliations

Authors

Contributions

Azmat Ali proposed the ideas, collected data, and wrote the manuscript. Yulin Wang and Xiaochuan Shi provided the idea and discussed the outline of the manuscript.

Corresponding author

Correspondence to Yulin Wang.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of research work carried out in this paper and the order of the authors in the manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ali, A., Wang, Y. & Shi, X. Segmentation and identification of brain tumour in MRI images using PG-OneShot learning CNN model. Multimed Tools Appl (2024). https://doi.org/10.1007/s11042-024-18596-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11042-024-18596-z

Keywords