Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Characterizing the seismic response and basin structure of Cusco (Peru): implications for the seismic hazard assessment of a World Heritage Site

  • Original Paper
  • Published:
Natural Hazards Aims and scope Submit manuscript

Abstract

Known worldwide for its rich and well-preserved pre-Columbian and Spanish architecture, the city of Cusco (Peru) is listed as a World Heritage Site since 1983. However, less well known is the seismic hazard, which represents a major threat to the city’s 400,000 inhabitants and its cultural outreach. Despite the moderate magnitudes recorded in the area, macroseismic data inferred from historical earthquakes (1650, 1950) argues for strong amplification effects of the unconsolidated sediments of the Cusco Basin during ground motion. In order to address this aggravating factor for the first time, we conducted a large-scale passive geophysical survey in the historical city center of Cusco, combining Microtremor Horizontal-to-Vertical Spectral Ratio (MHVSR) measurements and Microtremor Array Measurements (MAM). Through joint data inversion, we proposed a subsurface wave velocity model and estimated the depth of the engineering bedrock. The site response analysis not only provides an insight into the thickness of the soft sediment, but also suggests the existence of a strong geological discontinuity beneath the city center of Cusco, consistent with the trace of the Cusco fault. Moreover, the results highlight the complexity of earthquake site amplification assessment in dense urban areas. Our work paves the way for a comprehensive seismic microzonation of the entire Cusco Basin and opens up new perspectives on the potential of the MHVSR method for fault detection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. Meanwhile, the Vs30 calculated from the 50 linear arrays range from 250 to 480 m/s (Table S2) suggesting the presence at the subsurface of significant “deposits of dense or medium dense sand, gravel, or stiff clay” (soil type C, Eurocode 8 2005), consistent with the geological description of the SBF. Once again, there is a north-south trend, with a significant drop in velocity between the Plaza de Armas and the Santo Domingo sector (Fig. 6-inset).

References

  • Abbaszadeh Shahri A, Shan C, Zäll E, Larsson S (2021) Spatial distribution modeling of subsurface bedrock using a developed automated intelligence deep learning procedure: a case study in Sweden. J Rock Mech Geotech Eng 13:1300–1310. https://doi.org/10.1016/j.jrmge.2021.07.006

    Article  Google Scholar 

  • Albarello D, Lunedei E (2011) Structure of an ambient vibration wavefield in the frequency range of engineering interest ([0.5, 20] hz): insights from numerical modelling. Surf Geophys 9:543–559. https://doi.org/10.3997/1873-0604.2011017

    Article  Google Scholar 

  • Alcántara Torres SN, Rucoba Hernández LE, Tayro Guerrero ARM et al (2022) Determinación De periodos del suelo a partir de registros acelerográficos en la ciudad de Cusco. High School Graduate - Civil Engineering, PUCP

    Google Scholar 

  • Alfaro C, Matos R, Beltrán-Caballero JA, Mar R (2015) El Urbanismo Inka Del Cusco. Nuevas aportaciones. Arqueología Y Arquitectura en la capital Del Tawantinsuyu. Municipalidad Del Cusco-NMAI Smithsonian Institution-Universitat Rovira i Virgili. Ricardo Mar, José Alejandro Beltrán-Caballero & Crayla Alfaro, Cusco-Washington-Tarragona

    Google Scholar 

  • Anderson JG, Lee Y, Zeng Y, Day S (1996) Control of strong motion by the upper 30 meters. Bull Seismol Soc Am 86:1749–1759. https://doi.org/10.1785/BSSA0860061749

    Article  Google Scholar 

  • Antayhua Y, Garcia B, Rosell Guevara L et al (2021) Caracterización magnetotelúrica de las fallas y sistema de fallas en El valle del Cusco, sur del Perú. Incasciences 1:64–77

    Google Scholar 

  • Bard P-Y (1999) Microtremor measurements: A tool for site effect estimation? In: Irikura, Kudo, Okada, Sasatani (eds) Second International Symposium on the Effects of Surface Geology on seismic motion. Balkema Rotterdam, Yokohama, Japan, pp 1251–1279

  • Barrientos CW (2021) Peligro sísmico en la subcuenca del Cusco – 2019. PhD Dissertation, Universidad Andina del Cusco

  • Bauer BS (2018) Cuzco Antiguo: Tierra Natal De Los incas, 2nde édition actualisée. Centro De Estudios Regionales Andinos Bartolomé De Las Casas. The Institute for New World Archaeology, Cusco

    Google Scholar 

  • Beltrán-Caballero JA (2013) Agua y forma urbana en la América precolombina: el caso del Cusco como centro del poder inca. PhD Dissertation, Universidad Politécnica de Cataluña - Barcelona Tech (UPC)

  • Benavente C, Delgado Madera F, Taipe Maquerhua E et al (2013) Neotectónica Y Peligro Sísmico en la Región Cusco. INGEMMET, Lima

    Google Scholar 

  • Benavente Velásquez R, Fernández Baca Vidal C, Gómez Noblega A (2004) Estudio Del mapa de peligros de la ciudad de Cusco. PNUD-INDECI, Cusco

    Google Scholar 

  • Bonnefoy-Claudet S, Cornou C, Bard P-Y et al (2006) H/V ratio: a tool for site effects evaluation. Results from 1-D noise simulations. Geophys J Int 167:827–837. https://doi.org/10.1111/j.1365-246X.2006.03154.x

    Article  Google Scholar 

  • Bonnefoy-Claudet S, Kohler A, Cornou C et al (2008) Effects of Love waves on Microtremor H/V ratio. Bull Seismol Soc Am 98:288–300. https://doi.org/10.1785/0120070063

    Article  Google Scholar 

  • Brando G, Cocco G, Mazzanti C et al (2019) Structural survey and empirical seismic vulnerability Assessment of dwellings in the historical centre of Cusco, Peru. Int J Archit Herit 1–29. https://doi.org/10.1080/15583058.2019.1685022

  • Brûlé S, Ungureanu B, Achaoui Y et al (2017) Metamaterial-like transformed urbanism. Innov Infrastruct Solut 2:20. https://doi.org/10.1007/s41062-017-0063-x

    Article  Google Scholar 

  • Brûlé S, Enoch S, Guenneau S (2020) Emergence of seismic metamaterials: current state and future perspectives. Phys Lett A 384:126034. https://doi.org/10.1016/j.physleta.2019.126034

    Article  CAS  Google Scholar 

  • Cabrera J (1988) Néotectonique et sismotectonique dans la Cordillère andine au niveau du changement de géométrie de la subduction: la région de Cuzco (Pérou). PhD Dissertation, Université Paris-Sud

  • Cabrera J, Sébrier M (1998) Surface rupture Associated with a 5.3-mb earthquake: the 5 April 1986 Cuzco Earthquake and Kinematics of the chincheros-Qoricocha faults of the High Andes, Peru. Bull Seismol Soc Am 88:242–255. https://doi.org/10.1785/BSSA0880010242

    Article  Google Scholar 

  • Cabrera J, Sébrier M, Mercier JL (1991) Plio-Quaternary geodynamic evolution of a segment of the Peruvian Andean Cordillera located above the change in the subduction geometry: the Cuzco region. Tectonophysics 190:331–362. https://doi.org/10.1016/0040-1951(91)90437-W

    Article  Google Scholar 

  • Calderon D, Aguilar Z, Lazares F et al (2014) Development of a seismic Microzoning Map for Lima City and Callao, Peru. J Disaster Res 9:939–945. https://doi.org/10.20965/jdr.2014.p0939

    Article  Google Scholar 

  • Candia-Gallegos MA, Sprenke KF, Perez JC (1993) Geotechnical Aspects on Seismic Risk Assessment in Cusco, Peru. In: Third International Conference on Case Histories in Geotechnical Engineering. St Louis, Missouri, pp 1763–1767

  • Carlier G, Lorand JP, Liégeois JP et al (2005) Potassic-ultrapotassic mafic rocks delineate two lithospheric mantle blocks beneath the southern Peruvian Altiplano. Geology 33:601. https://doi.org/10.1130/G21643.1

    Article  CAS  Google Scholar 

  • Carlotto V, Cardénas J, Carlier G (2011) Geología Del Cuadrángulo De Cusco 28-s – 1:50 000. INGEMMET, Lima

    Google Scholar 

  • Castellaro S, Mulargia F (2009) The effect of velocity inversions on H/V. Pure Appl Geophys 166:567–592. https://doi.org/10.1007/s00024-009-0474-5

    Article  Google Scholar 

  • CISMID-UNI (2013) Estudio De microzonificación sísmica Y evaluación Del riesgo en zonas ubicadas en El distrito del Cusco - Tomo I: Resumen ejecutivo. Centro Peruano-Japonés de Investigaciones Sísmicas y Mitigación de Desastres, Lima

    Google Scholar 

  • Colombi A, Colquitt D, Roux P et al (2016) A seismic metamaterial: the resonant metawedge. Sci Rep 6:27717. https://doi.org/10.1038/srep27717

    Article  CAS  Google Scholar 

  • Combey A, Audin L, Gandreau D et al (2022) Reassessing the seismic hazard in the Cusco area, Peru: New contribution coming from an archaeoseismological survey on Inca remains. Quat Int 634:81–98. https://doi.org/10.1016/j.quaint.2022.07.003

    Article  Google Scholar 

  • D’Amico V, Picozzi M, Baliva F, Albarello D (2008) Ambient noise measurements for preliminary Site-effects characterization in the Urban Area of Florence, Italy. Bull Seismol Soc Am 98:1373–1388. https://doi.org/10.1785/0120070231

    Article  Google Scholar 

  • Ladrón de Guevara O (1967) La Restauración Del Ccoricancha Y Templo De Santo Domingo. Rev Mus E Inst Arqueol 21:29–94

    Google Scholar 

  • Polo de Ondegardo J (1916) Informaciones acerca de la religión y gobierno de los incas. Imprenta y Librería San Martín & Co., Lima

    Google Scholar 

  • Despotaki V, Silva V, Lagomarsino S et al (2018) Evaluation of seismic risk on UNESCO Cultural Heritage sites in Europe. Int J Archit Herit 12:1231–1244. https://doi.org/10.1080/15583058.2018.1503374

    Article  Google Scholar 

  • Ericksen GE, Concha JF, Silgado E (1954) The Cusco, Peru, Earthquake of May 21, 1950. Bull Seismol Soc Am 44:97–112. https://doi.org/10.1785/BSSA04402A0097

    Article  Google Scholar 

  • Eurocode 8 (2005) Design of structures for earthquake resistance. Part 1: General rules, seismic actions and rules for buildings. British Standards Institution, London

    Google Scholar 

  • Gallipoli MR, Mucciarelli M, Castro RR et al (2004) Structure, soil–structure response and effects of damage based on observations of horizontal-to-vertical spectral ratios of microtremors. Soil Dyn Earthq Eng 24:487–495. https://doi.org/10.1016/j.soildyn.2003.11.009

    Article  Google Scholar 

  • García-Jerez A, Piña-Flores J, Sánchez-Sesma FJ et al (2016) A computer code for forward calculation and inversion of the H/V spectral ratio under the diffuse field assumption. Comput Geosci 97:67–78. https://doi.org/10.1016/j.cageo.2016.06.016

    Article  Google Scholar 

  • Gregory HE (1916) A geologic reconnaissance of the Cuzco Valley, Peru. Am J Sci 4:1–100. https://doi.org/10.2475/ajs.s4-41.241.1

    Article  Google Scholar 

  • Guardia P, Tavera H (2015) Análisis De La Microsismicidad Asociada a las fallas de tambomachay y Qoricocha, Cusco. Bol Soc Geológica Perú 110:201–204

    Google Scholar 

  • Gueguen P, Colombi A (2016) Experimental and Numerical evidence of the clustering effect of structures on their response during an earthquake: a case study of three identical Towers in the City of Grenoble, France. Bull Seismol Soc Am 106:2855–2864. https://doi.org/10.1785/0120160057

    Article  Google Scholar 

  • Gueguen P, Bard P-Y, Chávez-García F (2002) Site-City Seismic Interaction in Mexico City-Like environments: an Analytical Study. Bull Seismol Soc Am 92:794–811. https://doi.org/10.1785/0120000306

    Article  Google Scholar 

  • Gupta RK, Agrawal M, Pal SK, Das MK (2021) Seismic site characterization and site response study of Nirsa (India). Nat Hazards 108:2033–2057. https://doi.org/10.1007/s11069-021-04767-w

    Article  Google Scholar 

  • INDECI-PNUD (2003) Estudio Geofísico de la ciudad del Cusco y zonas de expansión urbana para la elaboración de mapas del peligro. Universidad Nacional de San Agustín (UNSA), Arequipa

    Google Scholar 

  • Irikura K, Kawanaka T (1980) Characteristics of Microtremors on Ground with Discontinuous Underground structure. Bull Disaster Prev Res Inst 30:81–96

    Google Scholar 

  • Khalili M, Mirzakurdeh AV (2019) Fault detection using microtremor data (HVSR-based approach) and electrical resistivity survey. J Rock Mech Geotech Eng 11:400–408. https://doi.org/10.1016/j.jrmge.2018.12.003

    Article  Google Scholar 

  • Konno K, Ohmachi T (1998) Ground-motion characteristics estimated from spectral ratio between horizontal and vertical components of microtremor. Bull Seismol Soc Am 88:228–241. https://doi.org/10.1785/BSSA0880010228

    Article  Google Scholar 

  • Kramer SL (1996) Geotechnical earthquake engineering. Prentice Hall, Upper Saddle River, NJ

    Google Scholar 

  • Lachet C, Bard P-Y (1994) Numerical and Theoretical investigations on the possibilities and limitations of Nakamura’s technique. J Phys Earth 42:377–397. https://doi.org/10.4294/jpe1952.42.377

    Article  Google Scholar 

  • Lebrun B, Hatzfeld D, Bard PY (2001) Site Effect Study in Urban Area: experimental results in Grenoble (France). Pure Appl Geophys 158:2543–2557. https://doi.org/10.1007/PL00001185

    Article  Google Scholar 

  • Lombardo G, Rigano R (2006) Amplification of ground motion in fault and fracture zones: observations from the Tremestieri fault, Mt. Etna (Italy). J Volcanol Geotherm Res 153:167–176. https://doi.org/10.1016/j.jvolgeores.2005.10.014

    Article  CAS  Google Scholar 

  • Lunedei E, Malischewsky P (2015) A review and some New issues on the theory of the H/V technique for ambient vibrations. In: Ansal A (ed) Perspectives on European Earthquake Engineering and Seismology. Springer International Publishing, Cham, pp 371–394

    Chapter  Google Scholar 

  • Ma Y, Clayton RW (2014) The crust and uppermost mantle structure of Southern Peru from ambient noise and earthquake surface wave analysis. Earth Planet Sci Lett 395:61–70. https://doi.org/10.1016/j.epsl.2014.03.013

    Article  CAS  Google Scholar 

  • Mercier JL, Sebrier M, Lavenu A et al (1992) Changes in the tectonic regime above a subduction zone of Andean Type: the Andes of Peru and Bolivia during the Pliocene-Pleistocene. J Geophys Res 97:11945–11982. https://doi.org/10.1029/90JB02473

    Article  Google Scholar 

  • Molnar S, Cassidy JF, Castellaro S et al (2018) Application of Microtremor Horizontal-to-Vertical spectral ratio (MHVSR) analysis for site characterization: state of the art. Surv Geophys 39:613–631. https://doi.org/10.1007/s10712-018-9464-4

    Article  Google Scholar 

  • Molnar S, Sirohey A, Assaf J et al (2022) A review of the microtremor horizontal-to-vertical spectral ratio (MHVSR) method. J Seismol 26:653–685. https://doi.org/10.1007/s10950-021-10062-9

    Article  CAS  Google Scholar 

  • Mucciarelli M, Gallipoli MR (2001) A critical review of 10 years of microtremor HVSR technique. Bolletino Geofis Teor Ed Appl 42:255–266

    Google Scholar 

  • Mucciarelli M, Monachesi G, Gallipoli MR (1999) In Situ Measurements Of Site Effects And Building Dynamic Behaviour Related To Damage Observed During The 9/9/1998 Earthquake In Southern Italy. In: Proceedings of ERES99 Conference. Catania, Italy, pp 253–265

  • Nakamura Y (1989) A method for dynamic characteristics estimation of Subsurface using Microtremor on the Ground Surface. Q Rep Railw Tech Res 30:25–33

    Google Scholar 

  • Nakamura Y (2000) Clear Identification of Fundamental Idea of Nakamura’s Technique and Its Applications. In: The 12th World Conference on Earthquake Engineering. Auckland, New Zealand

  • Nuñez MA (2021) Simulación de huaycos para la estimación de los niveles de peligro en el área de influencia de la quebrada Saphy, Cusco. Bachelor’s Thesis, Universidad Nacional de San Agustín de Arequipa

  • Pacheco D, Mercerat ED, Courboulex F et al (2022) Profiling the Quito basin (Ecuador) using seismic ambient noise. Geophys J Int 228:1419–1437. https://doi.org/10.1093/gji/ggab408

    Article  Google Scholar 

  • Palomino A, Benavente C, Rosell L et al (2021) Caracterización Morfo-tectónica Y paleo-sismológica Del Sistema De Fallas Pachatusan - Cusco. INGEMMET, Lima

    Google Scholar 

  • Parolai S, Picozzi M, Richwalski SM, Milkereit C (2005) Joint inversion of phase velocity dispersion and H/V ratio curves from seismic noise recordings using a genetic algorithm, considering higher modes. Geophys Res Lett 32. https://doi.org/10.1029/2004GL021115

  • Pastén C, Sáez M, Ruiz S et al (2015) Deep characterization of the Santiago Basin using HVSR and cross-correlation of ambient seismic noise. Eng Geol 201:57–66. https://doi.org/10.1016/j.enggeo.2015.12.021

    Article  Google Scholar 

  • Picozzi M, Parolai S, Albarello D (2005a) Statistical analysis of noise horizontal-to-Vertical Spectral Ratios (HVSR). Bull Seismol Soc Am 95:1779–1786. https://doi.org/10.1785/0120040152

    Article  Google Scholar 

  • Picozzi M, Parolai S, Richwalski SM (2005b) Joint inversion of H/V ratios and dispersion curves from seismic noise: estimating the S-wave velocity of bedrock. Geophys Res Lett 32. https://doi.org/10.1029/2005GL022878

  • Pilz M, Parolai S, Leyton F et al (2009) A comparison of site response techniques using earthquake data and ambient seismic noise analysis in the large urban areas of Santiago De Chile. Geophys J Int 178:713–728. https://doi.org/10.1111/j.1365-246X.2009.04195.x

    Article  Google Scholar 

  • Pischiutta M, Rovelli A, Salvini F et al (2013) Directional resonance variations across the Pernicana Fault, Mt Etna, in relation to brittle deformation fields. Geophys J Int 193:986–996. https://doi.org/10.1093/gji/ggt031

    Article  Google Scholar 

  • Rong M, Fu L, Wang Z et al (2017) On the Amplitude discrepancy of HVSR and site amplification from strong-motion observations. Bull Seismol Soc Am 107:2873–2884. https://doi.org/10.1785/0120170118

    Article  Google Scholar 

  • Rosell L, Benavente C, Zerathe S et al (2023) Holocene earthquakes on the Tambomachay Fault near Cusco, Central Andes. Tektonika 1:140–157. https://doi.org/10.55575/tektonika2023.1.2.27

    Article  Google Scholar 

  • Sébrier M, Mercier JL, Mégard F et al (1985) Quaternary normal and reverse faulting and the state of stress in the central Andes of south Peru. Tectonics 4:739–780. https://doi.org/10.1029/TC004i007p00739

    Article  Google Scholar 

  • Seiner L (2016) Historia De Los sismos en El Perú. Catálogo: Siglos XVIII-XIX, Fondo Editorial. Universidad de Lima, Lima

    Google Scholar 

  • SESAME (2004) Guidelines for the Implementation of the H/V Spectral ratio technique of Ambient vibrations. Measurements, processing and interpretation

  • Silgado E (1978) Historia De Los Sismos más notables ocurridos en El Perú (1513–1974). Instituto de Geología y Minería, Lima

    Google Scholar 

  • Silgado E, Concha JF, Ericksen GE (1952) El Terremoto Del Cuzco Del 21 de Mayo De 1950. Bol Inst Nac Investig Fom Min 2:27–46

    Google Scholar 

  • Stanko D, Markušić S, Strelec S, Gazdek M (2017) HVSR analysis of seismic site effects and soil-structure resonance in Varaždin city (North Croatia). Soil Dyn Earthq Eng 92:666–677. https://doi.org/10.1016/j.soildyn.2016.10.022

    Article  Google Scholar 

  • Strollo A, Parolai S, Jackel K-H et al (2008) Suitability of short-period sensors for Retrieving Reliable H/V peaks for frequencies less than 1 hz. Bull Seismol Soc Am 98:671–681. https://doi.org/10.1785/0120070055

    Article  Google Scholar 

  • Suárez G, Molnar P, Burchfiel BC (1983) Seismicity, fault plane solutions, depth of faulting, and active tectonics of the Andes of Peru, Ecuador, and southern Colombia. J Geophys Res Solid Earth 88:10403–10428. https://doi.org/10.1029/JB088iB12p10403

    Article  Google Scholar 

  • Tarabusi G, Caputo R (2017) The use of HVSR measurements for investigating buried tectonic structures: the Mirandola anticline, Northern Italy, as a case study. Int J Earth Sci 106:341–353. https://doi.org/10.1007/s00531-016-1322-3

    Article  CAS  Google Scholar 

  • Tibaldi A, Bonali FL, Pasquaré Mariotto F et al (2024) Structural expression of the frontal thrust of an active fold-and-thrust belt: the Holocene 123-km-long kur fault, Greater Caucasus, Azerbaijan. J Struct Geol 180:105085. https://doi.org/10.1016/j.jsg.2024.105085

    Article  Google Scholar 

  • Villanueva H (1970) Documentos Sobre El terremoto de 1650. Rev Arch Histórico Cuzco 203–220

  • Vranich A, Berquist S, Hardy T (2014) Prehistoric Urban Archaeology in the Americas: a View from Cusco, Peru. Learn Past Prep Future Annual Review of the Cotsen Institute of Archaeology at UCLA, pp 57–67

  • Wathelet M, Chatelain J-L, Cornou C et al (2020) Geopsy: a user-friendly Open-Source Tool Set for Ambient Vibration Processing. Seismol Res Lett 91:1878–1889. https://doi.org/10.1785/0220190360

    Article  Google Scholar 

  • Wimpenny S, Benavente C, Copley A et al (2020) Observations and dynamical implications of active normal faulting in South Peru. Geophys J Int 222:27–53. https://doi.org/10.1093/gji/ggaa144

    Article  Google Scholar 

  • Wright KR (2006) Tipon. Water Engineering Masterpiece of the Inca Empire. American Society of Civil Engineers Press. Reston, Virginia

    Book  Google Scholar 

  • Xu R, Wang L (2021) The horizontal-to-vertical spectral ratio and its applications. EURASIP J Adv Signal Process 2021:75. https://doi.org/10.1186/s13634-021-00765-z

    Article  Google Scholar 

  • Zavala N, Clemente-Chávez A, Figueroa-Soto Á et al (2021) Application of horizontal to Vertical spectral ratio microtremor technique in the analysis of site effects and structural response of buildings in Querétaro City, Mexico. J South Am Earth Sci 108:103211. https://doi.org/10.1016/j.jsames.2021.103211

    Article  Google Scholar 

Download references

Acknowledgements

This work would not have been possible without the collaboration of Architect Eliluz Palomino of the Gerencia del Centro Histórico de Cusco and Archaeologist Yeny Baca of the Dirección Desconcentrada del Ministerio de Cultura de Cusco. We also thank Fabrizio Delgado, Cristhian Baca, Julio Rojas, Enoch Aguirre for their precious assistance and expertise during the field campaigns. Finally, the authors would like to show their gratitude to the two anonymous reviewers and the editor whose suggestions helped improve and clarify this article. This work has been supported by the French government, through the UCAJEDI Investments in the Future project managed by the National Research Agency (ANR) with the reference number ANR-15-IDEX-01. It was also supported by the Peruvian Ministry of Energy and Mines, through the Institute of Geology, Mining and Metallurgy (Geological Survey) and the Neotectonics project of the Department of Environmental Geology and Geological Risk. The project has received, as well, financial support from the UMR 7329 Geoazur Laboratory.

Funding

This work has been supported by the French government, through the UCAJEDI Investments in the Future project managed by the National Research Agency (ANR) with the reference number ANR-15-IDEX-01. It was also supported by the Peruvian Ministry of Energy and Mines, through the Institute of Geology, Mining and Metallurgy (Geological Survey) and the Neotectonics project of the Department of Environmental Geology and Geological Risk. The project has received, as well, financial support from the UMR 7329 Geoazur Laboratory.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: A. Combey, E.D. Mercerat, C.L. Benavente; Methodology: A. Combey, E.D. Mercerat, J.E. Díaz, F.P. Perez; Formal analysis and investigation: A. Combey, E.D. Mercerat, J.E. Díaz; Writing - original draft preparation: A. Combey; Funding acquisition: A. Combey, E.D. Mercerat, C.L. Benavente; Resources: B. García, A.R. Palomino, C.J. Guevara; Supervision: A. Combey, E.D. Mercerat, C.L. Benavente.

Corresponding author

Correspondence to A. Combey.

Ethics declarations

Competing interests

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Combey, A., Mercerat, E.D., Díaz, J.E. et al. Characterizing the seismic response and basin structure of Cusco (Peru): implications for the seismic hazard assessment of a World Heritage Site. Nat Hazards (2024). https://doi.org/10.1007/s11069-024-06912-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11069-024-06912-7

Keywords