Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Braiding, Majorana fermions, Fibonacci particles and topological quantum computing

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

A Correction to this article was published on 03 October 2018

This article has been updated

Abstract

This paper is an introduction to relationships between topology, quantum computing, and the properties of Fermions. In particular, we study the remarkable unitary braid group representations associated with Majorana fermions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37
Fig. 38
Fig. 39
Fig. 40
Fig. 41
Fig. 42
Fig. 43
Fig. 44
Fig. 45
Fig. 46
Fig. 47
Fig. 48
Fig. 49
Fig. 50
Fig. 51
Fig. 52
Fig. 53
Fig. 54
Fig. 55
Fig. 56
Fig. 57
Fig. 58
Fig. 59
Fig. 60
Fig. 61
Fig. 62
Fig. 63
Fig. 64
Fig. 65
Fig. 66

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Change history

  • 03 October 2018

    The original version of this article contained error in the acknowledgement section.

References

  1. Chen, G., Kauffman, L., Lomonaco, S. (eds.): Mathematics in Quantum Computation and Quantum Technology. Chapman & Hall/CRC, London (2007)

    Google Scholar 

  2. Abramsky, S., Coecke, B.: Categorical quantum mechanics. In: Handbook of Quantum Logic and Quantum Structures. Quantum Logic, pp. 261–323. Elsevier/North-Holland, Amsterdam (2009)

    Chapter  Google Scholar 

  3. Aharonov, D., Arad, I.: The BQP-hardness of approximating the Jones polynomial, arXiv:quant-ph/0605181v2

  4. Aharonov, D., Jones, V.F.R., Landau, Z.: A polynomial quantum algorithm for approximating the Jones polynomial. In: STOC’06: Proceedings of the 38th Annual ACM Symposium on Theory of Computing, 427–436, ACM, New York (2006). arXiv:quant-ph/0511096

  5. Alicea, J., Stern, A.: Designer non-Abelian anyon platforms: from Majorana to Fibonacci. Phys. Scr. T164, 014006 (10pp) (2015)

    Article  ADS  Google Scholar 

  6. Aravind, P.K.: Borromean of the GHZ state. In: Cohen, R.S. (ed.) et al. Potentiality, Entanglement and Passion-at-a-Distance, pp. 53–59. Kluwer, Dordrecht (1997)

  7. Atiyah, M.F.: The Geometry and Physics of Knots. Cambridge University Press, Cambridge (1990)

    Book  Google Scholar 

  8. Baxter, R.J.: Exactly Solved Models in Statistical Mechanics. Academic Press, London (1982)

    MATH  Google Scholar 

  9. Beenakker, C.W.J.: Search for Majorana fermions in superconductors, arXiv:1112.1950

  10. Benkart, G.: Commuting actions—a tale of two groups. In: Lie algebras and their representations (Seoul 1995), Contemp. Math. Series, Vol. 194, American Mathematical Society, pp. 1–46 (1996)

  11. Birman, J.: Braids, Links, and Mapping Class Groups, Annals of Mathematics Series Number 82. Princeton University Press, Princeton (1974)

  12. Bonesteel, N.E., Hormozi, L., Zikos, G., Simon, S.H.: Braid topologies for quantum computation. Phys. Rev. Lett. 95(14), 140503 (2005). arXiv:quant-ph/0505065

    Article  ADS  MathSciNet  Google Scholar 

  13. Brylinski, J.L., Brylinski, R.: Universal quantum gates In: Mathematics of Quantum Computation, Chapman & Hall/CRC Press, Boca Raton, Florida, 2002 (edited by R. Brylinski and G. Chen)

    MATH  Google Scholar 

  14. Coecke, B.: The logic of entanglement, arXiv:quant-ph/0402014v2

  15. Crane, L.: 2-d physics and 3-d topology. Commun. Math. Phys. 135(3), 615–640 (1991)

    Article  ADS  Google Scholar 

  16. Dirac, P.A.M.: Principles of Quantum Mechanics. Oxford University Press, Oxford (1958)

    MATH  Google Scholar 

  17. Fradkin, E., Fendley, P.: Realizing non-abelian statistics in time-reversal invariant systems, Theory Seminar, Physics Department, UIUC, 4/25/2005

  18. Franko, J., Rowell, E.C., Wang, Z.: Extraspecial 2-groups and images of braid group representations. J. Knot Theory Ramif. 15(4), 413–427 (2006)

    Article  MathSciNet  Google Scholar 

  19. Freedman, M.: A magnetic model with a possible Chern-Simons phase, With an appendix by F. Goodman and H. Wenzl. Comm. Math. Phys. 234 (2003), no. 1, 129–183. arXiv:quant-ph/0110060 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  20. Freedman, M.: Topological Views on Computational Complexity, Documenta Mathematica - Extra Volume ICM, 1998, pp. 453–464

  21. Freedman, M.: Quantum computation and the localization of modular functors. Found. Comput. Math. 1(2), 183–204 (2001). quant-ph/0003128

    Article  MathSciNet  Google Scholar 

  22. Freedman, M., Larsen, M., Wang, Z.: A modular functor which is universal for quantum computation. Commun. Math. Phys. 227(3), 605–622 (2002). arXiv:quant-ph/0001108v2

    Article  ADS  MathSciNet  Google Scholar 

  23. Freedman, M.H., Kitaev, A., Wang, Z.: Simulation of topological field theories by quantum computers. Commun. Math. Phys. 227, 587–603 (2002). arXiv:quant-ph/0001071

    Article  ADS  MathSciNet  Google Scholar 

  24. Garnerone, S., Marzuoli, A., Rasetti, M.: Quantum automata, braid group and link polynomials, arXiv:quant-ph/0601169

  25. Haq, Rukhsan Ul, Kauffman, L. H: Z/2Z topological order and Majorana doubling in Kitaev Chain, (to appear) arXiv:1704.00252v1 [cond-mat.str-el]

  26. Ivanov, D.A.: Non-abelian statistics of half-quantum vortices in \(p\)-wave superconductors. Phys. Rev. Lett. 86, 268 (2001)

    Article  ADS  Google Scholar 

  27. Jaeger, F., Vertigan, D.L., Welsh, D.J.A.: On the computational complexity of the Jones and Tutte polynomials. Math. Proc. Camb. Philos. Soc. 108(1), 35–53 (1990)

    Article  MathSciNet  Google Scholar 

  28. Jones, V.F.R.: Braid groups, Hecke algebras and type II1 factors. “Geometric methods in operator algebras” (Kyoto, 1983), 242–273, Pitman Res. Notes Math. Ser., 123, Longman Sci. Tech., Harlow (1986)

  29. Jones, V.F.R.: A polynomial invariant for links via von Neumann algebras. Bull. Am. Math. Soc. 129, 103–112 (1985)

    Article  Google Scholar 

  30. Jones, V.F.R.: Hecke algebra representations of braid groups and link polynomials. Ann. Math. 126, 335–338 (1987)

    Article  MathSciNet  Google Scholar 

  31. Jones, V.F.R.: On knot invariants related to some statistical mechanics models. Pac. J. Math. 137(2), 311–334 (1989)

    Article  Google Scholar 

  32. Kauffman, L.H., Liko, T.: hep-th/0505069, Knot theory and a physical state of quantum gravity, Classical and Quantum Gravity, Vol 23, ppR63 (2006)

  33. Kauffman, L.H., Lomonaco, S.J.: Entanglement Criteria - Quantum and Topological. In: Quantum Information and Computation - Spie Proceedings, 21–22 April, 2003, Orlando, FL, Donkor, Pinch and Brandt (eds.), Vol. 5105, pp. 51–58

  34. Kauffman, L.H., Lomonaco, S.J.: Quantizing knots groups and graphs. In: Brandt, Donkor, Pirich, editors, Quantum Information and Comnputation IX - Spie Proceedings, April 2011, Vol. 8057, of Proceedings of Spie, pp. 80570T-1 to 80570T-15, SPIE (2011)

  35. Kauffman, L.H., Lomonaco, S.J.: Quantum Algorithms for the Jones Polynomial. SPIE Proc on Quantum Information and Computation VIII 7702, 7702-03-1–7702-03-13 (2010). arXiv:1003.5426

  36. Kauffman, L.H., Lomonaco, S.J.: Quantum diagrams and quantum networks. In: SPIE Proceedings on Quantum Information and Computation XII, Vol. 9173 (2014). pp. 91230P-1 to 91230P-14. arXiv:1404.4433 [quant-ph]

  37. Kauffman, L.H., Lomonaco, S. J.: Quantum entanglement and topological entanglement. N. J. Phys. 4, 73.1–73.18 (2002). http://iopscience.iop.org/article/10.1088/1367-2630/4/1/373/meta

  38. Kauffman, L.H., Lomonaco, S.J.: Quantum knots. In: Quantum Information and Computation II, Proceedings of Spie, 12 -14 April 2004 (2004), ed. by Donkor Pirich and Brandt, pp. 268-284

  39. Kauffman, L.H.: (ed.), The Interface of Knots and Physics, AMS PSAPM, Vol. 51, Providence, RI (1996)

  40. Kauffman, L.H.: Knots and Physics, World Scientific Publishers (1991), Second Edition (1993), Third Edition (2002), Fourth Edition (2012)

  41. Kauffman, L. H.: math.GN/0410329, Knot diagrammatics. ”Handbook of Knot Theory“, edited by Menasco and Thistlethwaite, 233–318, Elsevier B. V., Amsterdam (2005)

  42. Kauffman, L.H.: Quantum computing and the Jones polynomial. In: Quantum Computation and Information, S. Lomonaco (ed.), AMS CONM/305, 2002, pp. 101–137. arXiv:math/0105255 [math.QA]

  43. Kauffman, L.H.: Teleportation Topology, quant-ph/0407224. In: The Proceedings of the 2004 Byelorus Conference on Quantum Optics), Opt. Spectrosc. 9, 2005, 227–232 (2005)

    Article  ADS  Google Scholar 

  44. Kauffman, L.H.: Temperley-Lieb Recoupling Theory and Invariants of Three-Manifolds, Princeton University Press, Annals Studies 114 (1994)

  45. Kauffman, L.H.: State models and the Jones polynomial. Topology 26, 395–407 (1987)

    Article  MathSciNet  Google Scholar 

  46. Kauffman, L.H.: New invariants in the theory of knots. Am. Math. Mon. 95(3), 195–242 (1988)

    Article  MathSciNet  Google Scholar 

  47. Kauffman, L.H.: Statistical mechanics and the Jones polynomial. AMS Contemp. Math. Ser. 78, 263–297 (1989)

    Article  MathSciNet  Google Scholar 

  48. Kauffman, L.H.: An invariant of regular isotopy. Trans. Am. Math. Soc. 318(2), 417–471 (1990)

    Article  MathSciNet  Google Scholar 

  49. Kauffman, L.H., Lomonaco, S.J.: Quantum entanglement and topological entanglement. New J. Phys. 4, 73.1–73.18 (2002)

    Article  MathSciNet  Google Scholar 

  50. Kauffman, L.H., Lomonaco, S.J.: Braiding operators are universal quantum gates. N. J. Phys. 6(134), 1–39 (2004)

    Google Scholar 

  51. Kauffman, L.H., Lomonaco, S.J.: \(q\)-deformed spin networks, knot polynomials and anyonic topological quantum computation. J. Knot Theory Ramif. 16(3), 267–332 (2007)

    Article  MathSciNet  Google Scholar 

  52. Kauffman, L.H., Lomonaco, S.J.: Spin networks and quantum computation. In: Doebner, H.D., Dobrev, V.K. (eds.) Lie Theory and Its Applications in Physics VII, pp. 225–239. Heron Press, Sofia (2008)

    MATH  Google Scholar 

  53. Kauffman, L.H., Lomonaco, S.J.: The Fibonacci model and the temperley-Lieb algebra. Int. J. Mod. Phys. B 22(29), 5065–5080 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  54. Kauffman, L.H., Lomonaco, S.J.: Quantizing knots and beyond. SPIE Proc. Quantum Inf. Comput. IX 8057, 805702-1–805702-14 (2011). arXiv:1105.0152v2 [quant-ph]

    Google Scholar 

  55. Kauffman, L.H., Noyes, P.: Discrete physics and the Dirac equation. Phys. Lett. A 218, 139–146 (1996)

    Article  ADS  Google Scholar 

  56. Kauffman, L.H., Radford, D.E.: Invariants of 3-manifolds derived from finite dimensional Hopf algebras. J. Knot Theory Ramif. 4(1), 131–162 (1995)

    Article  MathSciNet  Google Scholar 

  57. Kitaev, A.: Anyons in an exactly solved model and beyond, Ann. Physics 321 (2006), no. 1, 2-111. arXiv.cond-mat/0506438v1 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  58. Kitaev, A.: Fault-tolerant quantum computation by anyons. Ann. Phys. 303, 2–30 (2003). arXiv:quant-ph/9707021

    Article  ADS  MathSciNet  Google Scholar 

  59. Kohno, T.: Conformal Field Theory and Topology, AMS Translations of Mathematical Monographs, Vol 210 (1998)

  60. Li-Wei, Yu., Ge, Mo-Lin: More about the doubling degeneracy operators associated with Majorana fermions and Yang-Baxter equation. Sci. Rep. 5, 8102 (2015)

    Article  Google Scholar 

  61. Lomonaco, S.J. (ed.) Quantum computation: a grand mathematical challenge for the twenty-first century and the millennium. In: Proceedings of the Symposia of Appled Mathematics, vol. 58, American Mathematical Society, Providence, Rhode Island, (2002)

  62. Lomonaco, S.J. (ed.), Quantum Information Science and Its Contributons to Mathematics. AMS Proceedings of Applied Mathematics, Vol. 68, American Mathematics Society, Providence, RI, (2010)

  63. Lomonaco, S.J., Brandt, H.E. (eds.): Quantum Computation and Information. AMS CONM, vol. 305. American Mathematical Society, Providence, RI (2002)

    Google Scholar 

  64. Lomonaco, S.J., Kauffman, L.H.: Quantizing Braids and Other Mathematical Objects: The General Quantization Procedure. SPIE Proc. on Quantum Information and Computation IX 8057, 805702-1–805702-14 (2011). arXiv:1105.0371

  65. Lomonaco, S.J., Kauffman, L.H.: Quantizing braids and other mathematical structures: the general quantization procedure. In Brandt, Donkor, Pirich, editors, Quantum Information and Comnputation IX - Spie Proceedings, April 2011, Vol. 8057, of Proceedings of Spie, pp. 805702-1 to 805702-14, SPIE (2011)

  66. Lomonaco, S.J., Kauffman, L.H.: Quantum knots and lattices, or a blueprint for quantum systems that do rope tricks. Quantum information science and its contributions to mathematics, 209–276. In: Proceedings of Symposium Applied Mathematics, 68, American Mathematical Society, RI (2010)

  67. Lomonaco, S.J., Kauffman, L.H.: Quantum Knots and Mosaics. J. Quantum Inf. Process. 7(2–3), 85–115 (2008). arXiv:0805.0339

    Article  MathSciNet  Google Scholar 

  68. Majorana, E.: A symmetric theory of electrons and positrons. I Nuovo Cimento 14, 171–184 (1937)

    Article  ADS  Google Scholar 

  69. Marzuoli, A., Rasetti, M.: Spin network quantum simulator. Phys. Lett. A 306, 79–87 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  70. Moore, G., Read, N.: Nonabelions in the fractional quantum Hall effect. Nucl. Phys. B 360, 362–396 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  71. Mourik, V., Zuo, K., Frolov, S.M., Plissard, S.R., Bakkers, E.P.A.M., Kouwenhuven, L.P.: Signatures of Majorana fermions in hybrid superconductor-semiconductor nanowire devices, arXiv:1204.2792v1

  72. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambrige University Press, Cambridge (2000)

    MATH  Google Scholar 

  73. Penrose, R.: Angular momentum: an approach to combinatorial spacetime. In: Bastin, T. (ed.) Quantum Theory and Beyond. Cambridge University Press, Cambridge (1969)

    Google Scholar 

  74. Preskill, J.: Topological computing for beginners, (slide presentation), Lecture Notes for Chapter 9 - Physics 219 - Quantum Computation. http://www.theory.caltech.edu/~preskill/ph219/topological.pdf

  75. Reshetikhin, N.Y., Turaev, V.: Ribbon graphs and their invariants derived from quantum groups. Commun. Math. Phys. 127, 1–26 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  76. Reshetikhin, N.Y., Turaev, V.: Invariants of three manifolds via link polynomials and quantum groups. Invent. Math. 103, 547–597 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  77. Simon, S.H., Bonesteel, N.E., Freedman, M.H., Petrovic, N., Hormozi, L.: Topological quantum computing with only one mobile quasiparticle. Phys. Rev. Lett. 96(7), 070503, 4 (2006). arXiv:quant-ph/0509175

    Article  ADS  MathSciNet  Google Scholar 

  78. Spencer-Brown, G.: Laws of Form. George Allen and Unwin Ltd., London (1969)

    MATH  Google Scholar 

  79. Turaev, V.G.: The Yang-Baxter equations and invariants of links. LOMI preprint E-3-87, Steklov Institute, Leningrad, USSR. Inventiones Math. 92 Fasc. 3, 527–553

  80. Turaev, V.G., Viro, O.: State sum invariants of 3-manifolds and quantum 6j symbols. Topology 31(4), 865–902 (1992)

    Article  MathSciNet  Google Scholar 

  81. Wilczek, F.: Fractional Statistics and Anyon Superconductivity. World Scientific Publishing Company, Singapore (1990)

    Book  Google Scholar 

  82. Witten, E.: Quantum field theory and the Jones polynomial. Commun. Math. Phys. 121, 351–399 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  83. Wocjan, P., Yard J.: The Jones polynomial: quantum algorithms and applications in quantum complexity theory, arXiv:quant-ph/0603069

  84. Yang, C.N.: Phys. Rev. Lett. 19, 1312 (1967)

    Article  ADS  MathSciNet  Google Scholar 

  85. Zhang, Y., Kauffman, L.H., Ge, M.L.: Yang-Baxterizations, universal quantum gates and Hamiltonians. Quantum Inf. Process. 4(3), 159–197 (2005)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

Much of this paper is based upon our joint work in the papers and books [1, 33, 34, 36,37,38, 40, 42,43,44, 49,50,51, 53, 54, 61,62,67]. We have woven this work into the present paper in a form that is coupled with recent and previous work on relations with logic and with Majorana fermions. This work was partially supported by the Laboratory of Topology and Dynamics, Novosibirsk State University (contract no. 14.Y26.31.0025 with the Ministry of Education and Science of the Russian Federation) and by the Simons Foundation Collaboration Grant, Award Number 426075.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Louis H. Kauffman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kauffman, L.H., Lomonaco, S.J. Braiding, Majorana fermions, Fibonacci particles and topological quantum computing. Quantum Inf Process 17, 201 (2018). https://doi.org/10.1007/s11128-018-1959-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-018-1959-x

Keywords