Abstract
This paper is an introduction to relationships between topology, quantum computing, and the properties of Fermions. In particular, we study the remarkable unitary braid group representations associated with Majorana fermions.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Change history
03 October 2018
The original version of this article contained error in the acknowledgement section.
References
Chen, G., Kauffman, L., Lomonaco, S. (eds.): Mathematics in Quantum Computation and Quantum Technology. Chapman & Hall/CRC, London (2007)
Abramsky, S., Coecke, B.: Categorical quantum mechanics. In: Handbook of Quantum Logic and Quantum Structures. Quantum Logic, pp. 261–323. Elsevier/North-Holland, Amsterdam (2009)
Aharonov, D., Arad, I.: The BQP-hardness of approximating the Jones polynomial, arXiv:quant-ph/0605181v2
Aharonov, D., Jones, V.F.R., Landau, Z.: A polynomial quantum algorithm for approximating the Jones polynomial. In: STOC’06: Proceedings of the 38th Annual ACM Symposium on Theory of Computing, 427–436, ACM, New York (2006). arXiv:quant-ph/0511096
Alicea, J., Stern, A.: Designer non-Abelian anyon platforms: from Majorana to Fibonacci. Phys. Scr. T164, 014006 (10pp) (2015)
Aravind, P.K.: Borromean of the GHZ state. In: Cohen, R.S. (ed.) et al. Potentiality, Entanglement and Passion-at-a-Distance, pp. 53–59. Kluwer, Dordrecht (1997)
Atiyah, M.F.: The Geometry and Physics of Knots. Cambridge University Press, Cambridge (1990)
Baxter, R.J.: Exactly Solved Models in Statistical Mechanics. Academic Press, London (1982)
Beenakker, C.W.J.: Search for Majorana fermions in superconductors, arXiv:1112.1950
Benkart, G.: Commuting actions—a tale of two groups. In: Lie algebras and their representations (Seoul 1995), Contemp. Math. Series, Vol. 194, American Mathematical Society, pp. 1–46 (1996)
Birman, J.: Braids, Links, and Mapping Class Groups, Annals of Mathematics Series Number 82. Princeton University Press, Princeton (1974)
Bonesteel, N.E., Hormozi, L., Zikos, G., Simon, S.H.: Braid topologies for quantum computation. Phys. Rev. Lett. 95(14), 140503 (2005). arXiv:quant-ph/0505065
Brylinski, J.L., Brylinski, R.: Universal quantum gates In: Mathematics of Quantum Computation, Chapman & Hall/CRC Press, Boca Raton, Florida, 2002 (edited by R. Brylinski and G. Chen)
Coecke, B.: The logic of entanglement, arXiv:quant-ph/0402014v2
Crane, L.: 2-d physics and 3-d topology. Commun. Math. Phys. 135(3), 615–640 (1991)
Dirac, P.A.M.: Principles of Quantum Mechanics. Oxford University Press, Oxford (1958)
Fradkin, E., Fendley, P.: Realizing non-abelian statistics in time-reversal invariant systems, Theory Seminar, Physics Department, UIUC, 4/25/2005
Franko, J., Rowell, E.C., Wang, Z.: Extraspecial 2-groups and images of braid group representations. J. Knot Theory Ramif. 15(4), 413–427 (2006)
Freedman, M.: A magnetic model with a possible Chern-Simons phase, With an appendix by F. Goodman and H. Wenzl. Comm. Math. Phys. 234 (2003), no. 1, 129–183. arXiv:quant-ph/0110060 (2001)
Freedman, M.: Topological Views on Computational Complexity, Documenta Mathematica - Extra Volume ICM, 1998, pp. 453–464
Freedman, M.: Quantum computation and the localization of modular functors. Found. Comput. Math. 1(2), 183–204 (2001). quant-ph/0003128
Freedman, M., Larsen, M., Wang, Z.: A modular functor which is universal for quantum computation. Commun. Math. Phys. 227(3), 605–622 (2002). arXiv:quant-ph/0001108v2
Freedman, M.H., Kitaev, A., Wang, Z.: Simulation of topological field theories by quantum computers. Commun. Math. Phys. 227, 587–603 (2002). arXiv:quant-ph/0001071
Garnerone, S., Marzuoli, A., Rasetti, M.: Quantum automata, braid group and link polynomials, arXiv:quant-ph/0601169
Haq, Rukhsan Ul, Kauffman, L. H: Z/2Z topological order and Majorana doubling in Kitaev Chain, (to appear) arXiv:1704.00252v1 [cond-mat.str-el]
Ivanov, D.A.: Non-abelian statistics of half-quantum vortices in \(p\)-wave superconductors. Phys. Rev. Lett. 86, 268 (2001)
Jaeger, F., Vertigan, D.L., Welsh, D.J.A.: On the computational complexity of the Jones and Tutte polynomials. Math. Proc. Camb. Philos. Soc. 108(1), 35–53 (1990)
Jones, V.F.R.: Braid groups, Hecke algebras and type II1 factors. “Geometric methods in operator algebras” (Kyoto, 1983), 242–273, Pitman Res. Notes Math. Ser., 123, Longman Sci. Tech., Harlow (1986)
Jones, V.F.R.: A polynomial invariant for links via von Neumann algebras. Bull. Am. Math. Soc. 129, 103–112 (1985)
Jones, V.F.R.: Hecke algebra representations of braid groups and link polynomials. Ann. Math. 126, 335–338 (1987)
Jones, V.F.R.: On knot invariants related to some statistical mechanics models. Pac. J. Math. 137(2), 311–334 (1989)
Kauffman, L.H., Liko, T.: hep-th/0505069, Knot theory and a physical state of quantum gravity, Classical and Quantum Gravity, Vol 23, ppR63 (2006)
Kauffman, L.H., Lomonaco, S.J.: Entanglement Criteria - Quantum and Topological. In: Quantum Information and Computation - Spie Proceedings, 21–22 April, 2003, Orlando, FL, Donkor, Pinch and Brandt (eds.), Vol. 5105, pp. 51–58
Kauffman, L.H., Lomonaco, S.J.: Quantizing knots groups and graphs. In: Brandt, Donkor, Pirich, editors, Quantum Information and Comnputation IX - Spie Proceedings, April 2011, Vol. 8057, of Proceedings of Spie, pp. 80570T-1 to 80570T-15, SPIE (2011)
Kauffman, L.H., Lomonaco, S.J.: Quantum Algorithms for the Jones Polynomial. SPIE Proc on Quantum Information and Computation VIII 7702, 7702-03-1–7702-03-13 (2010). arXiv:1003.5426
Kauffman, L.H., Lomonaco, S.J.: Quantum diagrams and quantum networks. In: SPIE Proceedings on Quantum Information and Computation XII, Vol. 9173 (2014). pp. 91230P-1 to 91230P-14. arXiv:1404.4433 [quant-ph]
Kauffman, L.H., Lomonaco, S. J.: Quantum entanglement and topological entanglement. N. J. Phys. 4, 73.1–73.18 (2002). http://iopscience.iop.org/article/10.1088/1367-2630/4/1/373/meta
Kauffman, L.H., Lomonaco, S.J.: Quantum knots. In: Quantum Information and Computation II, Proceedings of Spie, 12 -14 April 2004 (2004), ed. by Donkor Pirich and Brandt, pp. 268-284
Kauffman, L.H.: (ed.), The Interface of Knots and Physics, AMS PSAPM, Vol. 51, Providence, RI (1996)
Kauffman, L.H.: Knots and Physics, World Scientific Publishers (1991), Second Edition (1993), Third Edition (2002), Fourth Edition (2012)
Kauffman, L. H.: math.GN/0410329, Knot diagrammatics. ”Handbook of Knot Theory“, edited by Menasco and Thistlethwaite, 233–318, Elsevier B. V., Amsterdam (2005)
Kauffman, L.H.: Quantum computing and the Jones polynomial. In: Quantum Computation and Information, S. Lomonaco (ed.), AMS CONM/305, 2002, pp. 101–137. arXiv:math/0105255 [math.QA]
Kauffman, L.H.: Teleportation Topology, quant-ph/0407224. In: The Proceedings of the 2004 Byelorus Conference on Quantum Optics), Opt. Spectrosc. 9, 2005, 227–232 (2005)
Kauffman, L.H.: Temperley-Lieb Recoupling Theory and Invariants of Three-Manifolds, Princeton University Press, Annals Studies 114 (1994)
Kauffman, L.H.: State models and the Jones polynomial. Topology 26, 395–407 (1987)
Kauffman, L.H.: New invariants in the theory of knots. Am. Math. Mon. 95(3), 195–242 (1988)
Kauffman, L.H.: Statistical mechanics and the Jones polynomial. AMS Contemp. Math. Ser. 78, 263–297 (1989)
Kauffman, L.H.: An invariant of regular isotopy. Trans. Am. Math. Soc. 318(2), 417–471 (1990)
Kauffman, L.H., Lomonaco, S.J.: Quantum entanglement and topological entanglement. New J. Phys. 4, 73.1–73.18 (2002)
Kauffman, L.H., Lomonaco, S.J.: Braiding operators are universal quantum gates. N. J. Phys. 6(134), 1–39 (2004)
Kauffman, L.H., Lomonaco, S.J.: \(q\)-deformed spin networks, knot polynomials and anyonic topological quantum computation. J. Knot Theory Ramif. 16(3), 267–332 (2007)
Kauffman, L.H., Lomonaco, S.J.: Spin networks and quantum computation. In: Doebner, H.D., Dobrev, V.K. (eds.) Lie Theory and Its Applications in Physics VII, pp. 225–239. Heron Press, Sofia (2008)
Kauffman, L.H., Lomonaco, S.J.: The Fibonacci model and the temperley-Lieb algebra. Int. J. Mod. Phys. B 22(29), 5065–5080 (2008)
Kauffman, L.H., Lomonaco, S.J.: Quantizing knots and beyond. SPIE Proc. Quantum Inf. Comput. IX 8057, 805702-1–805702-14 (2011). arXiv:1105.0152v2 [quant-ph]
Kauffman, L.H., Noyes, P.: Discrete physics and the Dirac equation. Phys. Lett. A 218, 139–146 (1996)
Kauffman, L.H., Radford, D.E.: Invariants of 3-manifolds derived from finite dimensional Hopf algebras. J. Knot Theory Ramif. 4(1), 131–162 (1995)
Kitaev, A.: Anyons in an exactly solved model and beyond, Ann. Physics 321 (2006), no. 1, 2-111. arXiv.cond-mat/0506438v1 (2006)
Kitaev, A.: Fault-tolerant quantum computation by anyons. Ann. Phys. 303, 2–30 (2003). arXiv:quant-ph/9707021
Kohno, T.: Conformal Field Theory and Topology, AMS Translations of Mathematical Monographs, Vol 210 (1998)
Li-Wei, Yu., Ge, Mo-Lin: More about the doubling degeneracy operators associated with Majorana fermions and Yang-Baxter equation. Sci. Rep. 5, 8102 (2015)
Lomonaco, S.J. (ed.) Quantum computation: a grand mathematical challenge for the twenty-first century and the millennium. In: Proceedings of the Symposia of Appled Mathematics, vol. 58, American Mathematical Society, Providence, Rhode Island, (2002)
Lomonaco, S.J. (ed.), Quantum Information Science and Its Contributons to Mathematics. AMS Proceedings of Applied Mathematics, Vol. 68, American Mathematics Society, Providence, RI, (2010)
Lomonaco, S.J., Brandt, H.E. (eds.): Quantum Computation and Information. AMS CONM, vol. 305. American Mathematical Society, Providence, RI (2002)
Lomonaco, S.J., Kauffman, L.H.: Quantizing Braids and Other Mathematical Objects: The General Quantization Procedure. SPIE Proc. on Quantum Information and Computation IX 8057, 805702-1–805702-14 (2011). arXiv:1105.0371
Lomonaco, S.J., Kauffman, L.H.: Quantizing braids and other mathematical structures: the general quantization procedure. In Brandt, Donkor, Pirich, editors, Quantum Information and Comnputation IX - Spie Proceedings, April 2011, Vol. 8057, of Proceedings of Spie, pp. 805702-1 to 805702-14, SPIE (2011)
Lomonaco, S.J., Kauffman, L.H.: Quantum knots and lattices, or a blueprint for quantum systems that do rope tricks. Quantum information science and its contributions to mathematics, 209–276. In: Proceedings of Symposium Applied Mathematics, 68, American Mathematical Society, RI (2010)
Lomonaco, S.J., Kauffman, L.H.: Quantum Knots and Mosaics. J. Quantum Inf. Process. 7(2–3), 85–115 (2008). arXiv:0805.0339
Majorana, E.: A symmetric theory of electrons and positrons. I Nuovo Cimento 14, 171–184 (1937)
Marzuoli, A., Rasetti, M.: Spin network quantum simulator. Phys. Lett. A 306, 79–87 (2002)
Moore, G., Read, N.: Nonabelions in the fractional quantum Hall effect. Nucl. Phys. B 360, 362–396 (1991)
Mourik, V., Zuo, K., Frolov, S.M., Plissard, S.R., Bakkers, E.P.A.M., Kouwenhuven, L.P.: Signatures of Majorana fermions in hybrid superconductor-semiconductor nanowire devices, arXiv:1204.2792v1
Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambrige University Press, Cambridge (2000)
Penrose, R.: Angular momentum: an approach to combinatorial spacetime. In: Bastin, T. (ed.) Quantum Theory and Beyond. Cambridge University Press, Cambridge (1969)
Preskill, J.: Topological computing for beginners, (slide presentation), Lecture Notes for Chapter 9 - Physics 219 - Quantum Computation. http://www.theory.caltech.edu/~preskill/ph219/topological.pdf
Reshetikhin, N.Y., Turaev, V.: Ribbon graphs and their invariants derived from quantum groups. Commun. Math. Phys. 127, 1–26 (1990)
Reshetikhin, N.Y., Turaev, V.: Invariants of three manifolds via link polynomials and quantum groups. Invent. Math. 103, 547–597 (1991)
Simon, S.H., Bonesteel, N.E., Freedman, M.H., Petrovic, N., Hormozi, L.: Topological quantum computing with only one mobile quasiparticle. Phys. Rev. Lett. 96(7), 070503, 4 (2006). arXiv:quant-ph/0509175
Spencer-Brown, G.: Laws of Form. George Allen and Unwin Ltd., London (1969)
Turaev, V.G.: The Yang-Baxter equations and invariants of links. LOMI preprint E-3-87, Steklov Institute, Leningrad, USSR. Inventiones Math. 92 Fasc. 3, 527–553
Turaev, V.G., Viro, O.: State sum invariants of 3-manifolds and quantum 6j symbols. Topology 31(4), 865–902 (1992)
Wilczek, F.: Fractional Statistics and Anyon Superconductivity. World Scientific Publishing Company, Singapore (1990)
Witten, E.: Quantum field theory and the Jones polynomial. Commun. Math. Phys. 121, 351–399 (1989)
Wocjan, P., Yard J.: The Jones polynomial: quantum algorithms and applications in quantum complexity theory, arXiv:quant-ph/0603069
Yang, C.N.: Phys. Rev. Lett. 19, 1312 (1967)
Zhang, Y., Kauffman, L.H., Ge, M.L.: Yang-Baxterizations, universal quantum gates and Hamiltonians. Quantum Inf. Process. 4(3), 159–197 (2005)
Acknowledgements
Much of this paper is based upon our joint work in the papers and books [1, 33, 34, 36,37,38, 40, 42,43,44, 49,50,51, 53, 54, 61,62,67]. We have woven this work into the present paper in a form that is coupled with recent and previous work on relations with logic and with Majorana fermions. This work was partially supported by the Laboratory of Topology and Dynamics, Novosibirsk State University (contract no. 14.Y26.31.0025 with the Ministry of Education and Science of the Russian Federation) and by the Simons Foundation Collaboration Grant, Award Number 426075.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Kauffman, L.H., Lomonaco, S.J. Braiding, Majorana fermions, Fibonacci particles and topological quantum computing. Quantum Inf Process 17, 201 (2018). https://doi.org/10.1007/s11128-018-1959-x
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11128-018-1959-x