Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Comprehensive Review on MRI-Based Brain Tumor Segmentation: A Comparative Study from 2017 Onwards

  • Review article
  • Published:
Archives of Computational Methods in Engineering Aims and scope Submit manuscript

Abstract

Brain tumor segmentation has been a challenging and popular research problem in the area of medical imaging and computer-aided diagnosis. In the last few years, especially since 2017, researchers have significantly contributed for solving and enhancing the performance of brain tumor abnormality detection and tumor segmentation from magnetic resonance (MR) images. This paper presents a detailed and intensive review of automated brain disease diagnosis and tumor segmentation methods obtained by investigating numerous recent articles. In the first phase, an extensive literature search is conducted with more than 600 articles from medical image analysis, brain disease diagnosis, and tumor segmentation. Around 50% of articles are removed after initial scanning based on certain criteria, i.e., publication year, number of citations, and bibliographic indexing. A total of 161 relevant articles are finally selected in the second phase based on their performance and novelty of the proposed methods. Furthermore, the selected articles are investigated from the perspectives of methodology and performance. Overall methods exploited for brain disease detection and tumor segmentation are categorised into three broad classes, i.e., conventional methods, machine learning-based methods, and deep learning-based methods. As deep learning-based methods are state-of-the-art for computer-aided diagnosis (CAD) nowadays, we investigated several deep learning models, such as the convolutional neural network (CNN), the generative adversarial network (GAN), the U-Net, etc., along with residual block and attention gate, with respect to their learning mechanisms and hyper-parameter tuning. Methods from each class are rigorously reviewed and summarised by identifying their advantages, disadvantages, dataset, MR modality used, and type of images (2D/3D) processed. The methods are also analysed and compared based on their performance in various measures such as dice similarity coefficient (DSC), sensitivity, positive predictive value (PPV), Specificity, Jaccard Index (JI), Accuracy, Hausdorff distance, and computation time. In this review, the high heterogeneity of articles based on different methodologies is considered in light of the recent progress and development of brain tumor detection and segmentation. During analysis, it has been observed that deep learning-based methods, especially various variants of the U-Net model, outperform other approaches for brain tumor segmentation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The dataset used in this article is provided by Brain Tumor Segmentation Challenge 2020. The dataset is publicly available at https://www.med.upenn.edu/cbica/brats2020/data.html. There is no additional data to be shared about the publication of this article. Everything is given within the article.

Notes

  1. http://www.jmir.org/2013/11/e245/ (Accessed on October 17, 2023.).

  2. https://www.smir.ch/BRATS/Start2015 (Accessed on October 17, 2023.).

Abbreviations

AC:

Accuracy

ACM:

Active contour model

ACRC:

Adaptive convex region contour

AGC:

Adaptive gamma correction

ANN:

Artificial neural network

ASAR:

Adaptive search and rescue algorithm

AWGN:

Additive white Gaussian noise

BN:

Batch normalization

BWT:

Berkeley wavelet transformation

CSF:

Cerebrospinal fluid

CRF:

Conditional random field

CAD:

Computer-aided diagnosis

CLAHE:

Contrast-limited adaptive histogram equalization

CNN:

Convolutional neural network

CNS:

Central nervous system

CT:

Computed tomography

CWT:

Complex wavelet transform

DCT:

Discrete cosine transformation

DICOM:

Digital imaging and communications in medicine

DNN:

Deep neural network

DSC:

Dice similarity coefficient

DWI:

Diffusion-weighted imaging

DWT:

Discrete wavelet transform

ELM:

Extreme learning machine

EM:

Expectation maximization

ERT:

Extremely randomized tree

FCM:

Fuzzy C-means

FN:

False negative

FP:

False positive

FFNN:

Feed forward neural network

FLAIR:

Fluid-attenuated inversion recovery

FPN:

Feature Pyramid Network

FRN:

Filter response normalization

GA:

Genetic algorithm

GAN:

Generative adversarial network

GBM:

Glioblastoma multiforme

GM:

Gray matter

GLCM:

Gray level co-occurrence matrix

GLRM:

Gray level run-length matrix

GOA:

Grasshopper optimization algorithm

GSP:

Ghost spatial pyramid

GWO:

Gray wolf optimization

HGG:

High-grade glioma

TP:

True positive

HOG:

Histogram of oriented gradients

JI:

Jaccard Index

J-TSA:

Jaya-tunicate swarm algorithm

kNN:

k-nearest neighbor

LBM:

Lattice–Boltzmann method

LBP:

Local binary patterns

LDA:

Linear discriminant analysis

LGG:

Low-grade glioma

mBm:

Multifractal Brownian motion

MICCAI:

Medical Image Computing and Computer Assisted Intervention Society

MIP:

Minimum intensity projection

MLP:

Multi-layer perceptron

MR:

Magnetic resonance

MRA:

Magnetic resonance angiography

MRI:

Magnetic resonance imaging

MRWA:

Modified regularized winnow algorithm

MS:

Multiple sclerosis

MSE:

Mean square error

PMRSi:

Proton magnetic resonance spectroscopic image

PSO:

Particle swarm optimization

PET:

Positron emission tomography

RELM:

Regularized extreme learning machine

ROI:

Region of interest

RWA:

Regularized winnow algorithm

PCA:

Principal component analysis

PD:

Proton density-weighted MRI

PPV:

Positive predictive value

PWI:

Perfusion-weighted imaging

RBF:

Radial basis function

RF:

Random forest

ROI:

Region of interest

SGSA:

Skippy greedy snake algorithm

SOM:

Self organizing map

SP:

Specificity

SVD:

Singular value decomposition

SVM:

Support vector machine

SW:

Susceptibility-weighted

SWT:

Stationary wavelet transform

T1C:

Post contrast T1-weighted image

TCIA:

The Cancer Imaging Archive

TN:

True negative

VAE:

Variational auto-encoders

WHO:

World Health Organization

WM:

White matter

References

  1. DeAngelis LM (2001) Brain tumors. N Engl J Med 344(2):114–123. https://doi.org/10.1056/NEJM200101113440207

    Article  Google Scholar 

  2. Bauer S, Wiest R, Nolte L-P, Reyes M (2013) A survey of MRI-based medical image analysis for brain tumor studies. Phys Med Biol 58(13):97

    Article  Google Scholar 

  3. Menze BH, Jakab A, Bauer S, Kalpathy-Cramer J, Farahani K, Kirby J, Burren Y, Porz N, Slotboom J, Wiest R, Lanczi L, Gerstner E, Weber M-A, Arbel T, Avants BB, Ayache N, Buendia P, Collins DL, Cordier N, Corso JJ, Criminisi A, Das T, Delingette H, Demiralp Ã, Durst CR, Dojat M, Doyle S, Festa J, Forbes F, Geremia E, Glocker B, Golland P, Guo X, Hamamci A, Iftekharuddin KM, Jena R, John NM, Konukoglu E, Lashkari D, Mariz JA, Meier R, Pereira S, Precup D, Price SJ, Raviv TR, Reza SMS, Ryan M, Sarikaya D, Schwartz L, Shin H-C, Shotton J, Silva CA, Sousa N, Subbanna NK, Szekely G, Taylor TJ, Thomas OM, Tustison NJ, Unal G, Vasseur F, Wintermark M, Ye DH, Zhao L, Zhao B, Zikic D, Prastawa M, Reyes M, Van Leemput K (2015) The multimodal brain tumor image segmentation benchmark (brats). IEEE Trans Med Imaging 34(10):1993–2024. https://doi.org/10.1109/TMI.2014.2377694

    Article  Google Scholar 

  4. Louis DN, Perry A, Reifenberger G, Von Deimling A, Figarella-Branger D, Cavenee WK, Ohgaki H, Wiestler OD, Kleihues P, Ellison DW (2016) The 2016 world health organization classification of tumors of the central nervous system: a summary. Acta Neuropathol 131(6):803–820

    Article  Google Scholar 

  5. Wen PY, Packer RJ (2021) The 2021 WHO classification of tumors of the central nervous system: clinical implications. Oxford University Press, Oxford

    Google Scholar 

  6. Louis DN, Perry A, Wesseling P, Brat DJ, Cree IA, Figarella-Branger D, Hawkins C, Ng H, Pfister SM, Reifenberger G et al (2021) The 2021 who classification of tumors of the central nervous system: a summary. Neuro Oncol 23(8):1231–1251

    Article  Google Scholar 

  7. Lupo J (2023) Towards predicting tumor pathology with multi-parametric anatomical physiological and metabolic MRI and AI in patients with glioma. In: 23rd International Conference on Brain Tumor Research and Therapy. The Preston Robert Tisch Brain Tumor Center at Duke University

  8. Bethesda MNCI (2021) PDQ adult central nervous system tumors treatment. https://www.cancer.gov/types/brain/patient/adult-brain-treatment-pdq. Accessed Feb 2021

  9. Yu J, Ghiaseddin A, Ahluwalia M (2022) Glioblastoma (GBM). Accessed 20 Feb 2024 . https://www.abta.org/tumor_types/glioblastoma-gbm/

  10. Goodenberger ML, Jenkins RB (2012) Genetics of adult glioma. Cancer Genet 205(12):613–621

    Article  Google Scholar 

  11. Kistler M, Bonaretti S, Pfahrer M, Niklaus R, Büchler P (2013) The virtual skeleton database: an open access repository for biomedical research and collaboration. J Med Internet Res 15(11):e245

    Article  Google Scholar 

  12. Scarpace L, Mikkelsen T, Cha S, Rao S, Tekchandani S, Gutman D, Saltz J, Erickson B, Pedano N, Flanders A, Barnholtz-Sloan J (2016) Radiology data from the cancer genome atlas glioblastoma multiforme [tcga-gbm] collection. Cancer Imaging Arch 11(4):1

    Google Scholar 

  13. Ilhan U, Ilhan A (2017) Brain tumor segmentation based on a new threshold approach. Procedia Comput Sci 120:580–587

    Article  Google Scholar 

  14. Hedyehzadeh M, Maghooli K, MomenGharibvand M (2021) Glioma grade detection using grasshopper optimization algorithm-optimized machine learning methods: The cancer imaging archive study. Int J Imaging Syst Technol 31(3):1670–1677

    Article  Google Scholar 

  15. Mallick PK, Ryu SH, Satapathy SK, Mishra S, Nguyen GN, Tiwari P (2019) Brain MRI image classification for cancer detection using deep wavelet autoencoder-based deep neural network. IEEE Access 7:46278–46287

    Article  Google Scholar 

  16. Huang Z, Liu Y, Song G, Zhao Y (2021) Gammanet: an intensity-invariance deep neural network for computer-aided brain tumor segmentation. Optik 243:167441

    Article  Google Scholar 

  17. Naser MA, Deen MJ (2020) Brain tumor segmentation and grading of lower-grade glioma using deep learning in MRI images. Comput Biol Med 121:103758

    Article  Google Scholar 

  18. Ghosh S, Chaki A, Santosh K (2021) Improved u-net architecture with vgg-16 for brain tumor segmentation. Phys Eng Sci Med 44(3):703–712

    Article  Google Scholar 

  19. Rai HM, Chatterjee K, Dashkevich S (2021) Automatic and accurate abnormality detection from brain MR images using a novel hybrid unetresnext-50 deep CNN model. Biomed Signal Process Control 66:102477

    Article  Google Scholar 

  20. Database, BWSB (2022) http://brainweb.bic.mni.mcgill.ca/cgi/brainweb1. Accessed 11 Mar 2022

  21. Cheng J (2017) Brain tumor dataset (version 5). https://figshare.com/articles/dataset/brain_tumor_dataset/1512427/5 Accessed 11 Mar 2022

  22. Chakrabarty N (2019) Brain MRI images for brain tumor detection. https://www.kaggle.com/navoneel/brain-mri-images-for-brain-tumor-detection. Accessed 11 Mar 2022

  23. Johnson KA, Becker JA (2022) The whole brain atlas. https://www.med.harvard.edu/aanlib/. Accessed 11 Mar 2022

  24. Gaillard F BY Ranchod A Reference article, Medulloblastoma Dataset. Radiopaedia.org Accessed 16 Oct 2023

  25. Bhuvaji S, Kadam A, Bhumkar P, Dedge S, Kanchan S (2020) Brain tumor classification (MRI). Kaggle. https://doi.org/10.34740/KAGGLE/DSV/1183165

  26. Cheng J, Huang W, Cao S, Yang R, Yang W, Yun Z, Wang Z, Feng Q (2015) Enhanced performance of brain tumor classification via tumor region augmentation and partition. PLoS ONE 10(10):0140381

    Article  Google Scholar 

  27. Kurc T, Bakas S, Ren X, Bagari A, Momeni A, Huang Y, Zhang L, Kumar A, Thibault M, Qi Q et al (2020) Segmentation and classification in digital pathology for glioma research: challenges and deep learning approaches. Front Neurosci 14:27

    Article  Google Scholar 

  28. Simpson AL, Antonelli M, Bakas S, Bilello M, Farahani K, Van Ginneken B, Kopp-Schneider A, Landman BA, Litjens G, Menze B et al (2019) A large annotated medical image dataset for the development and evaluation of segmentation algorithms. arXiv:1902.09063

  29. Huttenlocher DP, Klanderman GA, Rucklidge WJ (1993) Comparing images using the Hausdorff distance. IEEE Trans Pattern Anal Mach Intell 15(9):850–863

    Article  Google Scholar 

  30. Gordillo N, Montseny E, Sobrevilla P (2013) State of the art survey on MRI brain tumor segmentation. Magn Reson Imaging 31(8):1426–1438. https://doi.org/10.1016/j.mri.2013.05.002

    Article  Google Scholar 

  31. Dupont C, Betrouni N, Reyns N, Vermandel M (2016) On image segmentation methods applied to glioblastoma: state of art and new trends. IRBM 37(3):131–143

    Article  Google Scholar 

  32. Nabizadeh N, Kubat M (2017) Automatic tumor segmentation in single-spectral MRI using a texture-based and contour-based algorithm. Expert Syst Appl 77:1–10

    Article  Google Scholar 

  33. Shahvaran Z, Kazemi K, Fouladivanda M, Helfroush MS, Godefroy O, Aarabi A (2021) Morphological active contour model for automatic brain tumor extraction from multimodal magnetic resonance images. J Neurosci Methods 362:109296

    Article  Google Scholar 

  34. Kumar KA, Boda R (2022) A computer-aided brain tumor diagnosis by adaptive fuzzy active contour fusion model and deep fuzzy classifier. Multimedia Tools Appl 81(18):25405–41

    Article  Google Scholar 

  35. Khosravanian A, Rahmanimanesh M, Keshavarzi P, Mozaffari S, Kazemi K (2022) Level set method for automated 3d brain tumor segmentation using symmetry analysis and kernel induced fuzzy clustering. Multimedia Tools Appl 81(15):21719–40

    Article  Google Scholar 

  36. Pruthi J, Arora S, Khanna K (2022) Brain tumor segmentation using river formation dynamics and active contour model in magnetic resonance images. Neural Comput Appl 34(14):11807–16

    Article  Google Scholar 

  37. Bahadure NB, Ray AK, Thethi HP (2018) Comparative approach of MRI-based brain tumor segmentation and classification using genetic algorithm. J Digit Imaging 31:477–89

    Article  Google Scholar 

  38. Rajesh T, Malar R, Geetha M (2019) Brain tumor detection using optimisation classification based on rough set theory. Clust Comput 22(6):13853–13859

    Article  Google Scholar 

  39. Arumugam S, Paulraj S, Selvaraj NP (2021) Brain MR image tumor detection and classification using neuro fuzzy with binary cuckoo search technique. Int J Imaging Syst Technol 31(3):1185–1196

    Article  Google Scholar 

  40. Huang G-B, Wang DH, Lan Y (2011) Extreme learning machines: a survey. Int J Mach Learn Cybern 2(2):107–122

    Article  Google Scholar 

  41. Prasad KM, Bapat R (1992) The generalized Moore–Penrose inverse. Linear Algebra Appl 165:59–69

    Article  MathSciNet  Google Scholar 

  42. Gumaei A, Hassan MM, Hassan MR, Alelaiwi A, Fortino G (2019) A hybrid feature extraction method with regularized extreme learning machine for brain tumor classification. IEEE Access 7:36266–36273

    Article  Google Scholar 

  43. Sharif M, Amin J, Raza M, Anjum MA, Afzal H, Shad SA (2020) Brain tumor detection based on extreme learning. Neural Comput Appl 32(20):15975–15987

    Article  Google Scholar 

  44. Tong J, Zhao Y, Zhang P, Chen L, Jiang L (2019) MRI brain tumor segmentation based on texture features and kernel sparse coding. Biomed Signal Process Control 47:387–392

    Article  Google Scholar 

  45. Cabria I, Gondra I (2017) MRI segmentation fusion for brain tumor detection. Inf Fusion 36:1–9

    Article  Google Scholar 

  46. Alpar O, Dolezal R, Ryska P, Krejcar O (2022) Low-contrast lesion segmentation in advanced MRI experiments by time-domain ricker-type wavelets and fuzzy 2-means. Appl Intell 52(13):15237–58

    Article  Google Scholar 

  47. Pei L, Reza SM, Li W, Davatzikos C, Iftekharuddin KM (2017) Improved brain tumor segmentation by utilizing tumor growth model in longitudinal brain MRI. Med Imaging 10134:101342

    Google Scholar 

  48. Sauwen N, Acou M, Sima DM, Veraart J, Maes F, Himmelreich U, Achten E, Van Huffel S (2017) Semi-automated brain tumor segmentation on multi-parametric MRI using regularized non-negative matrix factorization. BMC Med Imaging 17(1):1–14

    Article  Google Scholar 

  49. Banerjee S, Mitra S, Shankar BU (2018) Automated 3D segmentation of brain tumor using visual saliency. Inf Sci 424:337–353

    Article  MathSciNet  Google Scholar 

  50. Barzegar Z, Jamzad M (2021) Wlfs: weighted label fusion learning framework for glioma tumor segmentation in brain MRI. Biomed Signal Process Control 68:102617

    Article  Google Scholar 

  51. Mamatha S, Krishnappa H, Shalini N (2022) Graph theory based segmentation of magnetic resonance images for brain tumor detection. Pattern Recogn Image Anal 32(1):153–161

    Article  Google Scholar 

  52. Wang J, Luan Z, Yu Z, Gao J, Ren J, Khan K, Yuan K, Xu H (2021) An adaptive sparse Bayesian model combined with joint information-based label fusion for brain tumor segmentation in MRI. Signal Image Video Process. 1–9

  53. Clark K, Vendt B, Smith K, Freymann J, Kirby J, Koppel P, Moore S, Phillips S, Maffitt D, Pringle M, Tarbox L, F P (2013) The cancer imaging archive (TCIA): maintaining and operating a public information repository. J Digit Imaging 26(6):1045–1057

    Article  Google Scholar 

  54. Sharif M, Amin J, Nisar MW, Anjum MA, Muhammad N, Shad SA (2020) A unified patch based method for brain tumor detection using features fusion. Cogn Syst Res 59:273–286

    Article  Google Scholar 

  55. Arunkumar N, Mohammed MA, Mostafa SA, Ibrahim DA, Rodrigues JJ, Albuquerque VHC (2020) Fully automatic model-based segmentation and classification approach for MRI brain tumor using artificial neural networks. Concurrency Comput 32(1):4962

    Article  Google Scholar 

  56. HS SK, Karibasappa K (2022) An effective hybrid deep learning with adaptive search and rescue for brain tumor detection. Multimedia Tools Appl 81(13):17669–17701

    Article  Google Scholar 

  57. Samanta AK, Khan AA (2018) Computer aided diagnostic system for automatic detection of brain tumor through MRI using clustering based segmentation technique and SVM classifier. In: International conference on advanced machine learning technologies and applications. Springer, pp 343–351

  58. Pandiselvi T, Maheswaran R (2019) Efficient framework for identifying, locating, detecting and classifying MRI brain tumor in MRI images. J Med Syst 43(7):1–14

    Article  Google Scholar 

  59. Rao CS, Karunakara K (2022) Efficient detection and classification of brain tumor using kernel based SVM for MRI. Multimedia Tools Appl 81:7393–7417

    Article  Google Scholar 

  60. Amin J, Sharif M, Raza M, Saba T, Anjum MA (2019) Brain tumor detection using statistical and machine learning method. Comput Methods Program Biomed 177:69–79

    Article  Google Scholar 

  61. Usman K, Rajpoot K (2017) Brain tumor classification from multi-modality MRI using wavelets and machine learning. Pattern Anal Appl 20(3):871–881

    Article  MathSciNet  Google Scholar 

  62. Bonte S, Van Holen R, Goethals I (2018) Brain tumour segmentation on contrast enhanced t1w MRI using local texture and random forests. In: European congress of radiology 2018 (ECR 2018), Electronics presentation online system. pp 1–8

  63. Ma C, Luo G, Wang K (2018) Concatenated and connected random forests with multiscale patch driven active contour model for automated brain tumor segmentation of mr images. IEEE Trans Med Imaging 37(8):1943–1954

    Article  Google Scholar 

  64. Soltaninejad M, Yang G, Lambrou T, Allinson N, Jones TL, Barrick TR, Howe FA, Ye X (2018) Supervised learning based multimodal MRI brain tumour segmentation using texture features from supervoxels. Comput Methods Programs Biomed 157:69–84

    Article  Google Scholar 

  65. Zhao J, Meng Z, Wei L, Sun C, Zou Q, Su R (2019) Supervised brain tumor segmentation based on gradient and context-sensitive features. Front Neurosci 13:1–11

    Article  Google Scholar 

  66. Vishnuvarthanan A, Rajasekaran MP, Govindaraj V, Zhang Y, Thiyagarajan A (2017) An automated hybrid approach using clustering and nature inspired optimization technique for improved tumor and tissue segmentation in magnetic resonance brain images. Appl Soft Comput 57:399–426

    Article  Google Scholar 

  67. Nanda SJ, Gulati I, Chauhan R, Modi R, Dhaked U (2019) A k-means galactic swarm optimization-based clustering algorithm with Otsu’s entropy for brain tumor detection. Appl Artif Intell 33(2):152–170

    Article  Google Scholar 

  68. Hamad YA, Simonov KV, Naeem MB (2019) Detection of brain tumor in MRI images, using a combination of fuzzy c-means and thresholding. Int J Adv Pervasive Ubiquitous Comput (IJAPUC) 11(1):45–60

    Article  Google Scholar 

  69. Sandhya G, Kande GB, Satya ST (2019) An efficient MRI brain tumor segmentation by the fusion of active contour model and self-organizing-map. J Biomimet Biomater Biomed Eng 40:79–91

    Google Scholar 

  70. Sriramakrishnan P, Kalaiselvi T, Rajeswaran R (2019) Modified local ternary patterns technique for brain tumour segmentation and volume estimation from MRI multi-sequence scans with gpu cuda machine. Biocybern Biomed Eng 39(2):470–487

    Article  Google Scholar 

  71. Alagarsamy S, Zhang Y-D, Govindaraj V, Rajasekaran MP, Sankaran S (2020) Smart identification of topographically variant anomalies in brain magnetic resonance imaging using a fish school-based fuzzy clustering approach. IEEE Trans Fuzzy Syst 29(10):3165–3177

    Article  Google Scholar 

  72. Jemimma T, Vetharaj YJ (2022) Fractional probabilistic fuzzy clustering and optimization based brain tumor segmentation and classification. Multimedia Tools Appl 81:1–30

    Article  Google Scholar 

  73. Khosravanian A, Rahmanimanesh M, Keshavarzi P, Mozaffari S (2021) Fast level set method for glioma brain tumor segmentation based on superpixel fuzzy clustering and lattice boltzmann method. Comput Methods Programs Biomed 198:105809

    Article  Google Scholar 

  74. Prastawa M, Bullitt E, Ho S, Gerig G (2004) A brain tumor segmentation framework based on outlier detection. Med Image Anal 8(3):275–283

    Article  Google Scholar 

  75. Alqazzaz S, Sun X, Nokes LD, Yang H, Yang Y, Xu R, Zhang Y, Yang X (2022) Combined features in region of interest for brain tumor segmentation. J Digit Imaging 35:1–9

    Article  Google Scholar 

  76. Chen X, Konukoglu E (2018) Unsupervised detection of lesions in brain MRI using constrained adversarial auto-encoders. arXiv:1806.04972

  77. Kumar R, Gupta A, Arora HS, Raman B (2021) Ibrdm: an intelligent framework for brain tumor classification using radiomics-and dwt-based fusion of MRI sequences. ACM Trans Internet Technol (TOIT) 22(1):1–30

    Article  Google Scholar 

  78. Kumar TS, Arun C, Ezhumalai P (2022) An approach for brain tumor detection using optimal feature selection and optimized deep belief network. Biomed Signal Process Control 73:103440

    Article  Google Scholar 

  79. Imtiaz T, Rifat S, Fattah SA, Wahid KA (2019) Automated brain tumor segmentation based on multi-planar superpixel level features extracted from 3d MR images. IEEE Access 8:25335–25349

    Article  Google Scholar 

  80. Kurian SM, Juliet S (2023) An automatic and intelligent brain tumor detection using lEEE sigma filtered histogram segmentation model. Soft Comput 27(18):13305–13319

    Article  Google Scholar 

  81. Thiruvenkadam K, Nagarajan K (2021) Fully automatic brain tumor extraction and tissue segmentation from multimodal MRI brain images. Int J Imaging Syst Technol 31(1):336–350

    Article  Google Scholar 

  82. Gupta N, Bhatele P, Khanna P (2019) Glioma detection on brain MRIs using texture and morphological features with ensemble learning. Biomed Signal Process Control 47:115–125

    Article  Google Scholar 

  83. Padlia M, Sharma J (2019) Fractional sobel filter based brain tumor detection and segmentation using statistical features and svm. In: Nanoelectronics, Circuits and Communication Systems: Proceeding of NCCS 2017, Springer. pp 161–175

  84. Pei L, Bakas S, Vossough A, Reza SM, Davatzikos C, Iftekharuddin KM (2020) Longitudinal brain tumor segmentation prediction in MRI using feature and label fusion. Biomed Signal Process Control 55:101648

    Article  Google Scholar 

  85. Bansal T, Jindal N (2022) An improved hybrid classification of brain tumor MRI images based on conglomeration feature extraction techniques. Neural Comput Appl 34:1–18

    Article  Google Scholar 

  86. Faragallah OS, El-Hoseny HM, El-sayed HS (2023) Efficient brain tumor segmentation using Otsu and k-means clustering in homomorphic transform. Biomed Signal Process Control 84:104712

    Article  Google Scholar 

  87. Tseng C-J, Tang C (2023) An optimized xgboost technique for accurate brain tumor detection using feature selection and image segmentation. Healthcare Anal 4:100217

    Article  Google Scholar 

  88. Qin C, Li W, Zheng B, Zeng J, Liang S, Zhang X, Zhang W (2023) Dual adversarial models with cross-coordination consistency constraint for domain adaption in brain tumor segmentation. Front Neurosci 17:1043533

    Article  Google Scholar 

  89. Zeng X, Chen S, Xie Y, Liao T (2023) 3v3d: three-view contextual cross-slice difference three-dimensional medical image segmentation adversarial network. ACM Trans Multimedia Comput Commun Appl 19(6):1–28

    Article  Google Scholar 

  90. Alex V, Chennamsetty SS, Krishnamurthi G (2017) Generative adversarial networks for brain lesion detection. Med Imaging 10133:101330

    Google Scholar 

  91. Han C, Rundo L, Araki R, Nagano Y, Furukawa Y, Mauri G, Nakayama H, Hayashi H (2019) Combining noise-to-image and image-to-image GANS: brain MR image augmentation for tumor detection. IEEE Access 7:156966–156977

    Article  Google Scholar 

  92. Nema S, Dudhane A, Murala S, Naidu S (2020) Rescuenet: an unpaired GAN for brain tumor segmentation. Biomed Signal Process Control 55:101641

    Article  Google Scholar 

  93. Ding Y, Zhang C, Cao M, Wang Y, Chen D, Zhang N, Qin Z (2021) Tostagan: an end-to-end two-stage generative adversarial network for brain tumor segmentation. Neurocomputing 462:141–153

    Article  Google Scholar 

  94. Wu X, Bi L, Fulham M, Feng DD, Zhou L, Kim J (2021) Unsupervised brain tumor segmentation using a symmetric-driven adversarial network. Neurocomputing 455:242–254

    Article  Google Scholar 

  95. Chen G, Ru J, Zhou Y, Rekik I, Pan Z, Liu X, Lin Y, Lu B, Shi J (2021) Mtans: multi-scale mean teacher combined adversarial network with shape-aware embedding for semi-supervised brain lesion segmentation. Neuroimage 244:118568

    Article  Google Scholar 

  96. Neelima G, Chigurukota DR, Maram B, Girirajan B (2022) Optimal deepmrseg based tumor segmentation with GAN for brain tumor classification. Biomed Signal Process Control 74:103537

    Article  Google Scholar 

  97. Sultan HH, Salem NM (2019) Multi-classification of brain tumor images using deep neural network. IEEE Access 7:69215–69225

    Article  Google Scholar 

  98. Ranjbarzadeh R, Bagherian Kasgari A, Jafarzadeh Ghoushchi S, Anari S, Naseri M, Bendechache M (2021) Brain tumor segmentation based on deep learning and an attention mechanism using MRI multi-modalities brain images. Sci Rep 11(1):1–17

    Article  Google Scholar 

  99. Wang F, Huang S, Shi L, Fan W (2017) The application of series multi-pooling convolutional neural networks for medical image segmentation. Int J Distrib Sens Netw 13(12):1550147717748899

    Article  Google Scholar 

  100. Zhao X, Wu Y, Song G, Li Z, Zhang Y, Fan Y (2018) A deep learning model integrating FCNNS and CRFS for brain tumor segmentation. Med Image Anal 43:98–111

    Article  Google Scholar 

  101. Alex V, Safwan M, Krishnamurthi G (2017) Automatic segmentation and overall survival prediction in gliomas using fully convolutional neural network and texture analysis. In: International MICCAI Brainlesion Workshop, pp. 216–225. Springer

  102. Charron O, Lallement A, Jarnet D, Noblet V, Clavier J-B, Meyer P (2018) Automatic detection and segmentation of brain metastases on multimodal MR images with a deep convolutional neural network. Comput Biol Med 95:43–54

    Article  Google Scholar 

  103. Goceri E, Goceri N (2017) Deep learning in medical image analysis: recent advances and future trends. In: International conferences computer graphics, visualization, computer vision and image processing, vol 2017, pp 305–310

  104. Cui S, Mao L, Jiang J, Liu C, Xiong S (2018) Automatic semantic segmentation of brain gliomas from MRI images using a deep cascaded neural network. J Healthc Eng 2018:14

    Article  Google Scholar 

  105. Hussain S, Anwar SM, Majid M (2018) Segmentation of glioma tumors in brain using deep convolutional neural network. Neurocomputing 282:248–261

    Article  Google Scholar 

  106. Iqbal S, Ghani MU, Saba T, Rehman A (2018) Brain tumor segmentation in multi-spectral MRI using convolutional neural networks (CNN). Microsc Res Tech 81(4):419–427

    Article  Google Scholar 

  107. Badrinarayanan V, Kendall A, Cipolla R (2017) Segnet: a deep convolutional encoder-decoder architecture for image segmentation. IEEE Trans Pattern Anal Mach Intell 39(12):2481–2495

    Article  Google Scholar 

  108. Simonyan K, Zisserman A (2014) Very deep convolutional networks for large-scale image recognition. arXiv:1409.1556

  109. Hu J, Shen L, Sun G (2018) Squeeze-and-excitation networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 7132–7141

  110. Saouli R, Akil M, Kachouri R et al (2018) Fully automatic brain tumor segmentation using end-to-end incremental deep neural networks in MRI images. Comput Methods Programs Biomed 166:39–49

    Article  Google Scholar 

  111. Hossain T, Shishir FS, Ashraf M, Al Nasim MA, Shah FM (2019) Brain tumor detection using convolutional neural network. In: 2019 1st International Conference on Advances in Science, Engineering and Robotics Technology (ICASERT), IEEE. pp 1–6

  112. He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 770–778

  113. Kamnitsas K, Ferrante E, Parisot S, Ledig C, Nori AV, Criminisi A, Rueckert D, Glocker B (2016) Deepmedic for brain tumor segmentation. In: International workshop on Brainlesion: glioma, multiple sclerosis, stroke and traumatic brain injuries, Springer. pp 138–149

  114. Pereira S, Oliveira A, Alves V, Silva CA (2017) On hierarchical brain tumor segmentation in MRI using fully convolutional neural networks: a preliminary study. In: 2017 IEEE 5th Portuguese meeting on bioengineering (ENBENG), IEEE. pp 1–4

  115. Mittal M, Goyal LM, Kaur S, Kaur I, Verma A, Hemanth DJ (2019) Deep learning based enhanced tumor segmentation approach for MR brain images. Appl Soft Comput 78:346–354

    Article  Google Scholar 

  116. Nason GP, Silverman BW (1995) The stationary wavelet transform and some statistical applications. In: Wavelets and Statistics, pp. 281–299. Springer

  117. Bouvrie J (2020) Notes on convolutional neural networks. http://cogprints.org/5869/1/cnn_tutorial.pdf

  118. Togacar M, Ergen B, Comert Z (2020) Brainmrnet: brain tumor detection using magnetic resonance images with a novel convolutional neural network model. Med Hypotheses 134:109531

    Article  Google Scholar 

  119. Rafi A, Madni TM, Janjua UI, Ali MJ, Abid MN (2021) Multi-level dilated convolutional neural network for brain tumour segmentation and multi-view-based radiomics for overall survival prediction. Int J Imaging Syst Technol 31(3):1519–1535

    Article  Google Scholar 

  120. Sasank V, Venkateswarlu S (2022) An automatic tumour growth prediction based segmentation using full resolution convolutional network for brain tumour. Biomed Signal Process Control 71:103090

    Article  Google Scholar 

  121. Gomes GF, Cunha SS, Ancelotti AC (2019) A sunflower optimization (SFO) algorithm applied to damage identification on laminated composite plates. Eng Comput 35(2):619–626

    Article  Google Scholar 

  122. Yu H, He F, Pan Y (2020) A scalable region-based level set method using adaptive bilateral filter for noisy image segmentation. Multimedia Tools Appl 79(9):5743–5765

    Article  Google Scholar 

  123. Hu K, Gan Q, Zhang Y, Deng S, Xiao F, Huang W, Cao C, Gao X (2019) Brain tumor segmentation using multi-cascaded convolutional neural networks and conditional random field. IEEE Access 7:92615–92629

    Article  Google Scholar 

  124. El Halima H, Anass B, Said B, El Nour HC, Badreddine A, Mustapha M, Hassan Q (2021) High precision brain tumor classification model based on deep transfer learning and stacking concepts. Indonesian J Electr Eng Comput Sci 24(1):167–177

    Article  Google Scholar 

  125. Deng W, Shi Q, Wang M, Zheng B, Ning N (2020) Deep learning-based HCNN and CRF-RRNN model for brain tumor segmentation. IEEE Access 8:26665–26675

    Article  Google Scholar 

  126. Khan H, Shah PM, Shah MA, Islam S, Rodrigues JJ (2020) Cascading handcrafted features and convolutional neural network for IoT-enabled brain tumor segmentation. Comput Commun 153:196–207

    Article  Google Scholar 

  127. Ahonen T, Hadid A, Pietikainen M (2006) Face description with local binary patterns: application to face recognition. IEEE Trans Pattern Anal Mach Intell 28(12):2037–2041

    Article  Google Scholar 

  128. Dalal N, Triggs B (2005) Histograms of oriented gradients for human detection. In: 2005 IEEE computer society conference on computer vision and pattern recognition (CVPR’05), vol 1, pp 886–893. https://doi.org/10.1109/CVPR.2005.177

  129. Bauer S, Nolte L-P, Reyes M (2011) Fully automatic segmentation of brain tumor images using support vector machine classification in combination with hierarchical conditional random field regularization. In: International conference on medical image computing and computer-assisted intervention, pp 354–361. Springer

  130. Myronenko A, Hatamizadeh A (2019) Robust semantic segmentation of brain tumor regions from 3d MRIs. In: International MICCAI Brainlesion workshop, Springer. pp 82–89

  131. Hu X, Luo W, Hu J, Guo S, Huang W, Scott MR, Wiest R, Dahlweid M, Reyes M (2020) Brain SEGNET: 3d local refinement network for brain lesion segmentation. BMC Med Imaging 20(1):1–10

    Article  Google Scholar 

  132. Nair V, Hinton GE (2010) Rectified linear units improve restricted Boltzmann machines. In: 27th International conference on machine learning, pp 1–8

  133. Ioffe S, Szegedy C (2015) Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning, PMLR. pp 448–456

  134. Aswani K, Menaka D (2021) A dual autoencoder and singular value decomposition based feature optimization for the segmentation of brain tumor from mri images. BMC Med Imaging 21(1):1–11

    Article  Google Scholar 

  135. Huang D, Wang M, Zhang L, Li H, Ye M, Li A (2021) Learning rich features with hybrid loss for brain tumor segmentation. BMC Med Inform Decis Mak 21(2):1–13

    Google Scholar 

  136. Abd El Kader I, Xu G, Shuai Z, Saminu S, Javaid I, Ahmad IS, Kamhi S (2021) Brain tumor detection and classification on MR images by a deep wavelet auto-encoder model. Diagnostics 11(9):1589

    Article  Google Scholar 

  137. Kleesiek J, Biller A, Urban G, Kothe U, Bendszus M, Hamprecht F (2014) Ilastik for multi-modal brain tumor segmentation. Proceedings MICCAI BraTS (brain tumor segmentation challenge), pp 12–17

  138. Sahu YK, Pandey C, Biswas P, Khan M, Rathore S (2020) Minimum time delay and more efficient image filtering brain tumour detection with the help of matlab. In: 2020 international conference on communication and signal processing (ICCSP), IEEE. pp 1195–1199

  139. Ramesh S, Sasikala S, Paramanandham N (2021) Segmentation and classification of brain tumors using modified median noise filter and deep learning approaches. Multimedia Tools Appl 80(8):11789–11813

    Article  Google Scholar 

  140. Aggarwal M, Tiwari AK, Sarathi MP, Bijalwan A (2023) An early detection and segmentation of brain tumor using deep neural network. BMC Med Inform Decis Mak 23(1):1–12

    Article  Google Scholar 

  141. Lin J, Lin J, Lu C, Chen H, Lin H, Zhao B, Shi Z, Qiu B, Pan X, Xu Z et al (2023) Ckd-transbts: clinical knowledge-driven hybrid transformer with modality-correlated cross-attention for brain tumor segmentation. IEEE Trans Med Imaging

  142. Lu Y, Chang Y, Zheng Z, Sun Y, Zhao M, Yu B, Tian C, Zhang Y (2023) Gmetanet: multi-scale ghost convolutional neural network with auxiliary metaformer decoding path for brain tumor segmentation. Biomed Signal Process Control 83:104694

    Article  Google Scholar 

  143. Prakash B, Kannan AR, Santhiyakumari N, Kumarganesh S, Raja DSS, Hephzipah JJ, MartinSagayam K, Pomplun M, Dang H (2023) Meningioma brain tumor detection and classification using hybrid CNN method and ridgelet transform. Sci Rep 13(1):14522

    Article  Google Scholar 

  144. Huang S-J, Chen C-C, Kao Y, Lu HH-S (2023) Feature-aware unsupervised lesion segmentation for brain tumor images using fast data density functional transform. Sci Rep 13(1):13582

    Article  Google Scholar 

  145. Sayin B, Krivosheev E, Yang J, Passerini A, Casati F (2021) A review and experimental analysis of active learning over crowdsourced data. Artif Intell Rev 54:5283–5305

    Article  Google Scholar 

  146. Boehringer AS, Sanaat A, Arabi H, Zaidi H (2023) An active learning approach to train a deep learning algorithm for tumor segmentation from brain MR images. Insights Imaging 14(1):141

    Article  Google Scholar 

  147. Zhuge Y, Krauze AV, Ning H, Cheng JY, Arora BC, Camphausen K, Miller RW (2017) Brain tumor segmentation using holistically nested neural networks in MRI images. Med Phys 44(10):5234–5243

    Article  Google Scholar 

  148. Chakrabarty N (2019) Brain MRI images for brain tumor detection. Kaggle

  149. Zhou C, Ding C, Wang X, Lu Z, Tao D (2020) One-pass multi-task networks with cross-task guided attention for brain tumor segmentation. IEEE Trans Image Process 29:4516–4529

    Article  Google Scholar 

  150. Aminian M, Khotanlou H (2022) Capsnet-based brain tumor segmentation in multimodal MRI images using inhomogeneous voxels in del vector domain. Multimedia Tools Appl 81:1–23

    Article  Google Scholar 

  151. Dehghani F, Karimian A, Arabi H (2022) Joint brain tumor segmentation from multi mr sequences through a deep convolutional neural network. arXiv:2203.03338

  152. Guo S, Wang L, Chen Q, Zhang J, Zhu Y (2022) Multimodal MRI image decision fusion-based network for glioma classification. Front Oncol 12:819673–819673

    Article  Google Scholar 

  153. Huang Z, Lin L, Cheng P, Peng L, Tang X (2022) Multi-modal brain tumor segmentation via missing modality synthesis and modality-level attention fusion. arXiv:2203.04586

  154. Liu J, Zheng J, Jiao G (2022) Transition net: 2d backbone to segment 3d brain tumor. Biomed Signal Process Control 75:103622

    Article  Google Scholar 

  155. Sun Y, Wang C (2022) A computation-efficient CNN system for high-quality brain tumor segmentation. Biomed Signal Process Control 74:103475

    Article  Google Scholar 

  156. Zhao M, Xin J, Wang Z, Wang X, Wang Z (2022) Interpretable model based on pyramid scene parsing features for brain tumor MRI image segmentation. Comput Math Methods Med

  157. Ma S, Tang J, Guo F (2021) Multi-task deep supervision on attention r2u-net for brain tumor segmentation. Front Oncol 11:3651

    Article  Google Scholar 

  158. Shehab LH, Fahmy OM, Gasser SM, El-Mahallawy MS (2021) An efficient brain tumor image segmentation based on deep residual networks (resnets). J King Saud Univ-Eng Sci 33(6):404–412

    Google Scholar 

  159. Ronneberger O, Fischer P, Brox T (2015) U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp 234–241. Springer

  160. Liew A, Lee CC, Lan BL, Tan M (2021) Caspianet++: a multidimensional channel-spatial asymmetric attention network with noisy student curriculum learning paradigm for brain tumor segmentation. Comput Biol Med 136:104690

    Article  Google Scholar 

  161. Bagyaraj S, Tamilselvi R, Mohamed Gani PB, Sabarinathan D (2021) Brain tumour cell segmentation and detection using deep learning networks. IET Image Proc 15(10):2363–2371

    Article  Google Scholar 

  162. Huang Z, Zhao Y, Liu Y, Song G (2021) Gcaunet: a group cross-channel attention residual UNET for slice based brain tumor segmentation. Biomed Signal Process Control 70:102958

    Article  Google Scholar 

  163. Jiang M, Zhai F, Kong J (2021) A novel deep learning model DDU-NET using edge features to enhance brain tumor segmentation on mr images. Artif Intell Med 121:102180

    Article  Google Scholar 

  164. Aghalari M, Aghagolzadeh A, Ezoji M (2021) Brain tumor image segmentation via asymmetric/symmetric unet based on two-pathway-residual blocks. Biomed Signal Process Control 69:102841

    Article  Google Scholar 

  165. Zhu W, Zhao C, Li W, Roth H, Xu Z, Xu D (2020) Lamp: Large deep nets with automated model parallelism for image segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp 374–384. Springer

  166. Liu P, Dou Q, Wang Q, Heng P-A (2020) An encoder-decoder neural network with 3d squeeze-and-excitation and deep supervision for brain tumor segmentation. IEEE Access 8:34029–34037

    Article  Google Scholar 

  167. Milletari F, Navab N, Ahmadi S-A (2016) V-net: Fully convolutional neural networks for volumetric medical image segmentation. In: 2016 Fourth International Conference on 3D Vision (3DV), pp 565–571. IEEE

  168. Gulli A, Pal S (2017) Deep Learning with Keras. Packt Publishing Ltd, Birmingham

    Google Scholar 

  169. Zhang J, Jiang Z, Dong J, Hou Y, Liu B (2020) Attention gate RESU-NET for automatic MRI brain tumor segmentation. IEEE Access 8:58533–58545

    Article  Google Scholar 

  170. Schlemper J, Oktay O, Schaap M, Heinrich M, Kainz B, Glocker B, Rueckert D (2019) Attention gated networks: learning to leverage salient regions in medical images. Med Image Anal 53:197–207

    Article  Google Scholar 

  171. Lin C-W, Hong Y, Liu J (2021) Aggregation-and-attention network for brain tumor segmentation. BMC Med Imaging 21(1):1–12

    Article  Google Scholar 

  172. Oktay O, Schlemper J, Folgoc LL, Lee M, Heinrich M, Misawa K, Mori K, McDonagh S, Hammerla NY, Kainz B et al (2018) Attention u-net: learning where to look for the pancreas. arXiv:1804.03999

  173. Maji D, Sigedar P, Singh M (2022) Attention RES-UNET with guided decoder for semantic segmentation of brain tumors. Biomed Signal Process Control 71:103077

    Article  Google Scholar 

  174. Al-Masni MA, Kim D-H (2021) CMM-NET: contextual multi-scale multi-level network for efficient biomedical image segmentation. Sci Rep 11(1):1–18

    Article  Google Scholar 

  175. Saeed MU, Ali G, Bin W, Almotiri SH, AlGhamdi MA, Nagra AA, Masood K, Amin Ru (2021) RMU-NET: a novel residual mobile u-net model for brain tumor segmentation from MR images. Electronics 10(16):1962

    Article  Google Scholar 

  176. Sandler M, Howard A, Zhu M, Zhmoginov A, Chen L-C (2018) Mobilenetv2: Inverted residuals and linear bottlenecks. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 4510–4520

  177. Wang Y, Zhao Z, Hu S, Chang F (2021) CLCU-NET: cross-level connected u-shaped network with selective feature aggregation attention module for brain tumor segmentation. Comput Methods Programs Biomed 207:106154

    Article  Google Scholar 

  178. Wang J, Gao J, Ren J, Luan Z, Yu Z, Zhao Y, Zhao Y (2021) Dfp-resunet: convolutional neural network with a dilated convolutional feature pyramid for multimodal brain tumor segmentation. Comput Methods Programs Biomed 208:106208

    Article  Google Scholar 

  179. Xiao Z, He K, Liu J, Zhang W (2021) Multi-view hierarchical split network for brain tumor segmentation. Biomed Signal Process Control 69:102897

    Article  Google Scholar 

  180. Zhang Y, Lu Y, Chen W, Chang Y, Gu H, Yu B (2021) Msmanet: a multi-scale mesh aggregation network for brain tumor segmentation. Appl Soft Comput 110:107733

    Article  Google Scholar 

  181. Zhou T, Canu S, Vera P, Ruan S (2021) Feature-enhanced generation and multi-modality fusion based deep neural network for brain tumor segmentation with missing mr modalities. Neurocomputing 466:102–112

    Article  Google Scholar 

  182. AboElenein NM, Songhao P, Afifi A (2022) Irdnu-net: Inception residual dense nested u-net for brain tumor segmentation. Multimedia Tools Appl pp 1–17

  183. AboElenein NM, Piao S, Noor A, Ahmed PN (2022) Mirau-net: An improved neural network based on u-net for gliomas segmentation. Signal Process 101:116553

    Google Scholar 

  184. Cao T, Wang G, Ren L, Li Y, Wang H (2022) Brain tumor magnetic resonance image segmentation by a multiscale contextual attention module combined with a deep residual UNET (MCA-RESUNET). Phys Med Biol

  185. Cinar N, Ozcan A, Kaya M (2022) A hybrid densenet121-unet model for brain tumor segmentation from MR images. Biomed Signal Process Control 76:103647

    Article  Google Scholar 

  186. Liu Y, Du J, Vong C-M, Yue G, Yu J, Wang Y, Lei B, Wang T (2022) Scale-adaptive super-feature based metricunet for brain tumor segmentation. Biomed Signal Process Control 73:103442

    Article  Google Scholar 

  187. Pitchai R, Supraja P, Sulthana AR, Veeramakali T, Babu C et al (2022) Mri image analysis for cerebrum tumor detection and feature extraction using 2d u-convnet and svm classification. Personal and Ubiquitous Comput pp 1–10

  188. Qin C, Wu Y, Liao W, Zeng J, Liang S, Zhang X (2022) Improved u-net3+ with stage residual for brain tumor segmentation. BMC Med Imaging 22(1):1–15

    Article  Google Scholar 

  189. Huang H, Lin L, Tong R, Hu H, Zhang Q, Iwamoto Y, Han X, Chen Y-W, Wu J (2020) Unet 3+: A full-scale connected unet for medical image segmentation. In: ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp 1055–1059. IEEE

  190. Ruba T, Tamilselvi R, Beham MP (2022) Brain tumor segmentation in multimodal mri images using novel lsis operator and deep learning. J Ambient Intell Hum Comput 1–15

  191. Wang J, Yu Z, Luan Z, Ren J, Zhao Y, Yu G (2022) Rdau-net: Based on a residual convolutional neural network with dfp and cbam for brain tumor segmentation. Front Oncol 210

  192. Wang G, Lu H, Wang Y, Zhao C (2022) A novel brain tumor segmentation method based on im-proved spatial attention mechanism and multi-path deep neural network. J Phys 2203:1–7

    Google Scholar 

  193. Yan B, Cao M, Gong W, Wei B (2021) Multi-scale brain tumor segmentation combined with deep supervision. Int J Comput Assist Radiol Surg pp 1–8

  194. Xu W, Yang H, Zhang M, Cao Z, Pan X, Liu W (2022) Brain tumor segmentation with corner attention and high-dimensional perceptual loss. Biomed Signal Process Control 73:103438

    Article  Google Scholar 

  195. Fang L, Wang X (2022) Brain tumor segmentation based on the dual-path network of multi-modal MRI images. Pattern Recogn 124:108434

    Article  Google Scholar 

  196. Guan X, Yang G, Ye J, Yang W, Xu X, Jiang W, Lai X (2022) 3D AGSE-VNET: an automatic brain tumor MRI data segmentation framework. BMC Med Imaging 22(1):1–18

    Article  Google Scholar 

  197. Cetiner H, Metlek S (2023) Denseunet+: a novel hybrid segmentation approach based on multi-modality images for brain tumor segmentation. J King Saud Univ Comput Inf Sci 35(8):101663

    Google Scholar 

  198. Tampu IE, Haj-Hosseini N, Blystad I, Eklund A (2023) Deep learning-based detection and identification of brain tumor biomarkers in quantitative mr-images. Mach Learn 4(3):035038

    Google Scholar 

  199. Liu Z, Ma C, She W, Wang X (2023) Transmvu: Multi-view 2d u-nets with transformer for brain tumour segmentation. IET Image Proc 17(6):1874–1882

    Article  Google Scholar 

  200. Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, Kaiser L, Polosukhin I (2017) Attention is all you need. Advances in neural information processing systems 30

  201. Ruba T, Tamilselvi R, Beham MP (2023) Brain tumor segmentation using jgate-attresunet-a novel deep learning approach. Biomed Signal Process Control 84:104926

    Article  Google Scholar 

  202. Wu B, Zhang F, Xu L, Shen S, Shao P, Sun M, Liu P, Yao P, Xu RX (2023) Modality preserving u-net for segmentation of multimodal medical images. Quant Imaging Med Surg 13(8):5242

    Article  Google Scholar 

  203. Xu Q, Ma Z, Na H, Duan W (2023) Dcsau-net: A deeper and more compact split-attention u-net for medical image segmentation. Comput Biol Med 154:106626

    Article  Google Scholar 

  204. Yin Z, Gao H, Gong J, Wang Y (2023) Wd-unext: Weight loss function and dropout u-net with convnext for automatic segmentation of few shot brain gliomas. IET Image Proc 17(11):3271–3280

    Article  Google Scholar 

  205. Liu Z, Mao H, Wu C-Y, Feichtenhofer C, Darrell T, Xie S (2022) A convnet for the 2020s. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11976–11986

  206. Yousef R, Khan S, Gupta G, Albahlal BM, Alajlan SA, Ali A (2023) Bridged-u-net-aspp-evo and deep learning optimization for brain tumor segmentation. Diagnostics 13(16):2633

    Article  Google Scholar 

  207. Huang L, Ruan S, Deneux T (2023) Semi-supervised multiple evidence fusion for brain tumor segmentation. Neurocomputing 535:40–52

    Article  Google Scholar 

  208. Dempster AP (1967) Upper and lower probability inferences based on a sample from a finite univariate population. Biometrika 54(3–4):515–528

    Article  MathSciNet  Google Scholar 

  209. Liu Z, Cheng Y, Tan T, Shinichi T (2023) Mimicnet: Mimicking manual delineation of human expert for brain tumor segmentation from multimodal mris. Appl Soft Comput 143:110394

    Article  Google Scholar 

  210. Isensee F, Kickingereder P, Wick W, Bendszus M, Maier-Hein K (2018) No new-net. lncs. arXiv preprint arXiv:1809.10483

  211. Yu X, Yang Q, Zhou Y, Cai LY, Gao R, Lee HH, Li T, Bao S, Xu Z, Lasko TA et al (2023) Unest: local spatial representation learning with hierarchical transformer for efficient medical segmentation. Med Image Anal 90:102939

    Article  Google Scholar 

  212. Zhou T, Zhu S (2023) Uncertainty quantification and attention-aware fusion guided multi-modal mr brain tumor segmentation. Computers in Biology and Medicine, 107142

  213. Isensee F, Kickingereder P, Wick W, Bendszus M, Maier-Hein KH (2017) Brain tumor segmentation and radiomics survival prediction: Contribution to the brats 2017 challenge. In: International MICCAI Brainlesion Workshop, pp. 287–297. Springer

  214. Lin W-W, Juang C, Yueh M-H, Huang T-M, Li T, Wang S, Yau S-T (2021) 3d brain tumor segmentation using a two-stage optimal mass transport algorithm. Sci Rep 11(1):1–19

    Google Scholar 

  215. Choi Y, Al-Masni MA, Jung K-J, Yoo R-E, Lee S-Y, Kim D-H (2023) A single stage knowledge distillation network for brain tumor segmentation on limited mr image modalities. Computer Methods and Programs in Biomedicine, 107644

  216. Abd-Ellah MK, Awad AI, Khalaf AA, Hamed HF (2019) A review on brain tumor diagnosis from mri images: Practical implications, key achievements, and lessons learned. Magn Reson Imaging 61:300–318

    Article  Google Scholar 

  217. Kamnitsas K, Ledig C, Newcombe VF, Simpson JP, Kane AD, Menon DK, Rueckert D, Glocker B (2017) Efficient multi-scale 3d cnn with fully connected crf for accurate brain lesion segmentation. Med Image Anal 36:61–78

    Article  Google Scholar 

  218. Wang G, Li W, Ourselin S, Vercauteren T (2017) Automatic brain tumor segmentation using cascaded anisotropic convolutional neural networks. In: International MICCAI Brainlesion Workshop, pp. 178–190. Springer

  219. Bhatele KR, Bhadauria SS (2020) Brain structural disorders detection and classification approaches: a review. Artif Intell Rev 53(5):3349–3401

    Article  Google Scholar 

Download references

Acknowledgements

This research is not sponsored by any government or private sponsoring agency or institution.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Naween Kumar or Anand Nayyar.

Ethics declarations

Conflict of interest

The authors declare that there is no Conflict of interest regarding the publication of this paper. The authors have no financial or proprietary interests in any material discussed in this article.

Research involving animals/Humans

This research is not connected with any animal or human.

Informed consent

All the authors have given their consent for the publication of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Verma, A., Shivhare, S.N., Singh, S.P. et al. Comprehensive Review on MRI-Based Brain Tumor Segmentation: A Comparative Study from 2017 Onwards. Arch Computat Methods Eng (2024). https://doi.org/10.1007/s11831-024-10128-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11831-024-10128-0