Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Combining Ultrasound-Mediated Intracellular Delivery with Microfluidics in Various Applications

  • Review Article
  • Published:
BioChip Journal Aims and scope Submit manuscript

Abstract

Ultrasound-mediated intracellular delivery is one of the popular technologies based on membrane rupture at present. To date, ultrasound directly acts on a large number of cells to achieve cargo delivery and has been widely used in drug delivery, disease therapy and other fields. However, the existing macroscopic methods can no longer meet the requirements of accurate tracking and analysis and are prone to extensive cell damage and even death. With the rapid advancements in microfluidic technologies, the combination of ultrasound and microfluidics (CUM) technology can effectively improve the delivery efficiency and cell survival rates. This new technology has rapidly become a new direction and focus of research. Thus, we analysed the mechanism of sonoporation and the effect of acoustic waves in a microfluidic channel. In addition, we reviewed the application of these new technologies in terms of structure and fabrication of ultrasound transducers and microfluidic devices. As regards our main objective, we hope to help researchers better understand the future developments and the challenges of new technologies. With this review, researchers can promote the development of new technologies to solve the current challenges of intracellular delivery and advance clinical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

Data availability is not applicable to this article as no new data were created or analyzed in this study.

References

  1. Cai, X., Jiang, Y., Lin, M., Zhang, J., Guo, H., Yang, F., Leung, W., Xu, C.: Ultrasound-responsive materials for drug/gene delivery. Front. Pharmacol. 10, 1650 (2020)

    PubMed  PubMed Central  Google Scholar 

  2. Roovers, S., Segers, T., Lajoinie, G., Deprez, J., Versluis, M., De Smedt, S.C., Lentacker, I.: The role of ultrasound-driven microbubble dynamics in drug delivery: from microbubble fundamentals to clinical translation. Langmuir 35, 10173–10191 (2019)

    CAS  PubMed  Google Scholar 

  3. Tharkar, P., Varanasi, R., Wong, W.S.F., Jin, C.T., Chrzanowski, W.: Nano-enhanced drug delivery and therapeutic ultrasound for cancer treatment and beyond. Front. Bioeng. Biotechnol. 7, 324 (2019)

    PubMed  PubMed Central  Google Scholar 

  4. Dimcevski, G., Kotopoulis, S., Bjånes, T., Hoem, D., Schjøtt, J., Gjertsen, B.T., Biermann, M., Molven, A., Sorbye, H., McCormack, E., Postema, M., Gilja, O.H.: A human clinical trial using ultrasound and microbubbles to enhance gemcitabine treatment of inoperable pancreatic cancer. J. Control. Release 243, 172–181 (2016)

    CAS  PubMed  Google Scholar 

  5. Lipsman, N., Meng, Y., Bethune, A.J., Huang, Y., Lam, B., Masellis, M., Herrmann, N., Heyn, C., Aubert, I., Boutet, A., Smith, G.S., Hynynen, K., Black, S.E.: Blood–brain barrier opening in Alzheimer’s disease using MR-guided focused ultrasound. Nat. Commun. 9, 1–8 (2018)

    CAS  Google Scholar 

  6. Chakrabarty, P., Gupta, P., Illath, K., Kar, S., Nagai, M., Tseng, F., Santra, T.S.: Microfluidic mechanoporation for cellular delivery and analysis. Mater. Today Bio. 13, 100193 (2022)

    CAS  PubMed  Google Scholar 

  7. Rich, J., Tian, Z., Huang, T.J.: Sonoporation: past, present, and future. Adv. Mater. Technol. 7, 2100885 (2021)

    PubMed  PubMed Central  Google Scholar 

  8. Yoon, S., Kim, M.G., Chiu, C.T., Hwang, J.Y., Kim, H.H., Wang, Y., Shung, K.K.: Direct and sustained intracellular delivery of exogenous molecules using acoustic-transfection with high frequency ultrasound. Sci. Rep. 6, 1–11 (2016)

    Google Scholar 

  9. Yoon, S., Wang, P., Peng, Q., Wang, Y., Shung, K.K.: Acoustic-transfection for genomic manipulation of single-cells using high frequency ultrasound. Sci. Rep. 7, 1–11 (2017)

    Google Scholar 

  10. De Cock, I., Zagato, E., Braeckmans, K., Luan, Y., de Jong, N., De Smedt, S.C., Lentacker, I.: Ultrasound and microbubble mediated drug delivery: acoustic pressure as determinant for uptake via membrane pores or endocytosis. J. Control. Release 197, 20–28 (2015)

    PubMed  Google Scholar 

  11. Tran, D.M., Harrang, J., Song, S., Chen, J., Smith, B.M., Miao, C.H.: Prolonging pulse duration in ultrasound-mediated gene delivery lowers acoustic pressure threshold for efficient gene transfer to cells and small animals. J. Control. Release 279, 345–354 (2018)

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Kudo, N.: High-speed in situ observation system for sonoporation of cells with size- and position-controlled microbubbles. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 64, 273–280 (2017)

    PubMed  Google Scholar 

  13. Qin, P., Xu, L., Han, T., Du, L., Yu, A.C.H.: Effect of non-acoustic parameters on heterogeneous sonoporation mediated by single-pulse ultrasound and microbubbles. Ultrason. Sonochem. 31, 107–115 (2016)

    CAS  PubMed  Google Scholar 

  14. Zhou, Y., Yang, K., Cui, J., Ye, J.Y., Deng, C.X.: Controlled permeation of cell membrane by single bubble acoustic cavitation. J. Control. Release 157, 103–111 (2012)

    CAS  PubMed  Google Scholar 

  15. Schaerli, Y., Wootton, R.C., Robinson, T., Stein, V., Dunsby, C., Neil, M.A.A., French, P.M.W., DeMello, A.J., Abell, C., Hollfelder, F.: Continuous-flow polymerase chain reaction of single-copy DNA in microfluidic microdroplets. Anal. Chem. 81, 302–306 (2009)

    CAS  PubMed  Google Scholar 

  16. Whitesides, G.M.: The origins and the future of microfluidics. Nature 442, 368–373 (2006)

    CAS  PubMed  Google Scholar 

  17. Han, J., Kang, U., Moon, E., Yoo, H., Gweon, B.: Imaging technologies for microfluidic biochips. BioChip J. 16, 255–269 (2022)

    CAS  Google Scholar 

  18. Kim, J., Kim, S., Uddin, S., Lee, S.S., Park, S.: Microfabricated stretching devices for studying the effects of tensile stress on cells and tissues. BioChip J. 16, 366–375 (2022)

    CAS  Google Scholar 

  19. Kim, T., Jo, K.: Microfluidic device to maximize capillary force driven flows for quantitative single-molecule DNA analysis. BioChip J. 17, 384–392 (2023)

    CAS  Google Scholar 

  20. Hur, J., Park, I., Lim, K.M., Doh, J., Cho, S., Chung, A.J.: Microfluidic cell stretching for highly effective gene delivery into hard-to-transfect primary cells. ACS Nano 14, 15094–15106 (2020)

    CAS  PubMed  Google Scholar 

  21. Meng, L., Cai, F., Jiang, P., Deng, Z., Li, F., Niu, L., Chen, Y., Wu, J., Zheng, H.: On-chip targeted single cell sonoporation with microbubble destruction excited by surface acoustic waves. Appl. Phys. Lett. 104, 73701 (2014)

    Google Scholar 

  22. Muller, P.B., Barnkob, R., Jensen, M.J.H., Bruus, H.: A numerical study of microparticle acoustophoresis driven by acoustic radiation forces and streaming-induced drag forces. Lab Chip 12, 4617–4627 (2012)

    CAS  PubMed  Google Scholar 

  23. Meng, L., Liu, X., Wang, Y., Zhang, W., Zhou, W., Cai, F., Li, F., Wu, J., Xu, L., Niu, L., Zheng, H.: Sonoporation of cells by a parallel stable cavitation microbubble array. Adv. Sci. 6, 1900557 (2019)

    Google Scholar 

  24. Zhao, S., Hu, X., Zhu, J., Luo, Z., Liang, L., Yang, D., Chen, Y., Chen, L., Zheng, Y., Qinghao, H., Zheng, J., Guo, S., Cheng, Y., Zhou, F., Yang, Y.: On-chip rapid drug screening of leukemia cells by acoustic streaming. Lab Chip 21, 4005–4015 (2021)

    CAS  PubMed  Google Scholar 

  25. Salari, A., Appak-Baskoy, S., Coe, I.R., Abousawan, J., Antonescu, C.N., Tsai, S.S.H., Kolios, M.C.: Dosage-controlled intracellular delivery mediated by acoustofluidics for lab on a chip applications. Lab Chip 21, 1788–1797 (2021)

    CAS  PubMed  Google Scholar 

  26. Hu, X., Zhao, S., Luo, Z., Zuo, Y., Wang, F., Zhu, J., Chen, L., Yang, D., Zheng, Y., Zheng, Y., Cheng, Y., Zhou, F., Yang, Y.: On-chip hydrogel arrays individually encapsulating acoustic formed multicellular aggregates for high throughput drug testing. Lab Chip 20, 2228–2236 (2020)

    CAS  PubMed  Google Scholar 

  27. Aghaamoo, M., Chen, Y.H., Li, X., Garg, N., Jiang, R., Yun, J.T.H., Lee, A.P.: High-throughput and dosage-controlled intracellular delivery of large cargos by an acoustic-electric micro-vortices platform. Adv. Sci. 9, 2102021 (2022)

    CAS  Google Scholar 

  28. Markin, C.J., Mokhtari, D.A., Sunden, F., Appel, M.J., Akiva, E., Longwell, S.A., Sabatti, C., Herschlag, D., Fordyce, P.M.: Revealing enzyme functional architecture via high-throughput microfluidic enzyme kinetics. Science 373, eabf8761 (2021)

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Meng, L., Deng, Z., Niu, L., Li, F., Yan, F., Wu, J., Cai, F., Zheng, H.: A disposable microfluidic device for controlled drug release from thermal-sensitive liposomes by high intensity focused ultrasound. Theranostics. 5, 1203–1213 (2015)

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Su, E.J., Herr, A.E.: Electrophoretic cytometry of adherent cells. Lab Chip 17, 4312–4323 (2017)

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Namli, I., Karavelioglu, Z., Sarraf, S.S., Aghdam, A.S., Varol, R., Yilmaz, A., Sahin, S.B., Ozogul, B., Bozkaya, D.N., Acar, H.F., Uvet, H., Çetinel, S., Kutlu, Ö., Ghorbani, M., Koşar, A.: On the application of hydrodynamic cavitation on a chip in cellular injury and drug delivery. Lab Chip 23, 2640–2653 (2023)

    CAS  PubMed  Google Scholar 

  32. Morshedi, R.D., Alsadat, R.M., Razavi, B.S., Kashaninejad, N., Jin, D., Ebrahimi, W.M.: A comprehensive review on intracellular delivery. Adv. Mater. 33, e2005363 (2021)

    Google Scholar 

  33. Zhao, Q., Cui, H., Wang, Y., Du, X.: Microfluidic platforms toward rational material fabrication for biomedical applications. Small 16, 1903798 (2019)

    Google Scholar 

  34. Ramesan, S., Rezk, A.R., Dekiwadia, C., Cortez-Jugo, C., Yeo, L.Y.: Acoustically-mediated intracellular delivery. Nanoscale 10, 13165–13178 (2018)

    CAS  PubMed  Google Scholar 

  35. Stewart, M.P., Langer, R., Jensen, K.F.: Intracellular delivery by membrane disruption: mechanisms, strategies, and concepts. Chem. Rev. 118, 7409–7531 (2018)

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Fechheimer, M., Boylan, J.F., Parker, S., Sisken, J.E., Patel, G.L., Zimmer, S.G.: Transfection of mammalian cells with plasmid DNA by scrape loading and sonication loading. Proc. Natl. Acad. Sci. PNAS. 84, 8463–8467 (1987)

    CAS  PubMed  Google Scholar 

  37. Bader, K.B., Gruber, M.J., Holland, C.K.: Shaken and stirred: mechanisms of ultrasound-enhanced thrombolysis. Ultrasound Med. Biol. 41, 187–196 (2015)

    PubMed  Google Scholar 

  38. Chen, H., Brayman, A.A., Kreider, W., Bailey, M.R., Matula, T.J.: Observations of translation and jetting of ultrasound-activated microbubbles in mesenteric microvessels. Ultrasound Med. Biol. 37, 2139–2148 (2011)

    PubMed  PubMed Central  Google Scholar 

  39. Kooiman, K., Roovers, S., Langeveld, S.A.G., Kleven, R.T., Dewitte, H., O’Reilly, M.A., Escoffre, J., Bouakaz, A., Verweij, M.D., Hynynen, K., Lentacker, I., Stride, E., Holland, C.K.: Ultrasound-responsive cavitation nuclei for therapy and drug delivery. Ultrasound Med. Biol. 46, 1296–1325 (2020)

    PubMed  PubMed Central  Google Scholar 

  40. Kudo, N., Kinoshita, Y.: Effects of cell culture scaffold stiffness on cell membrane damage induced by sonoporation. J. Med. Ultrason. 41, 411–420 (2014)

    Google Scholar 

  41. Pereno, V.: Characterisation of Microbubble-Membrane Interactions in Ultrasound Mediated Drug Delivery. University of Oxford, Oxford (2018)

    Google Scholar 

  42. Suzuki, R., Oda, Y., Utoguchi, N., Maruyama, K.: Progress in the development of ultrasound-mediated gene delivery systems utilizing nano- and microbubbles. J. Control. Release 149, 36–41 (2011)

    CAS  PubMed  Google Scholar 

  43. van Wamel, A., Kooiman, K., Harteveld, M., Emmer, M., Ten Cate, F.J., Versluis, M., de Jong, N.: Vibrating microbubbles poking individual cells: drug transfer into cells via sonoporation. J. Control. Release 112, 149–155 (2006)

    PubMed  Google Scholar 

  44. Cancelos, S., Moraga, F.J., Lahey, R.T., Shain, W., Parsons, R.H.: The effect of acoustically-induced cavitation on the permeance of a bullfrog urinary bladder. J. Acoust. Soc. Am. 128, 2726–2738 (2010)

    PubMed  Google Scholar 

  45. Escoffre, J., Novell, A., Piron, J., Zeghimi, A., Doinikov, A., Bouakaz, A.: Microbubble attenuation and destruction: are they involved in sonoporation efficiency? IEEE Trans. Ultrason. Ferroelectr. Freq. Control 60, 46–52 (2012)

    Google Scholar 

  46. Forbes, M.M., Steinberg, R.L., O’Brien, W.J.: Frequency-dependent evaluation of the role of definity in producing sonoporation of Chinese hamster ovary cells. J. Ultrasound. Med. 30, 61–69 (2011)

    PubMed  PubMed Central  Google Scholar 

  47. Huang, T.Y.Y.C.K.: Dual-frequency excitation enhances targeted delivery of ultrasound microbubbles. In: Ultrasonics Symposium, vol. 1956–1959. IEEE (2010)

  48. Karshafian, R., Bevan, P.D., Williams, R., Samac, S., Burns, P.N.: Sonoporation by ultrasound-activated microbubble contrast agents: effect of acoustic exposure parameters on cell membrane permeability and cell viability. Ultrasound Med. Biol. 35, 847–860 (2009)

    PubMed  Google Scholar 

  49. Qiu, Y., Zhang, C., Tu, J., Zhang, D.: Microbubble-induced sonoporation involved in ultrasound-mediated DNA transfection in vitro at low acoustic pressures. J. Biomech. 45, 1339–1345 (2012)

    PubMed  Google Scholar 

  50. Shapiro, G., Wong, A.W., Bez, M., Yang, F., Tam, S., Even, L., Sheyn, D., Ben-David, S., Tawackoli, W., Pelled, G., Ferrara, K.W., Gazit, D.: Multiparameter evaluation of in vivo gene delivery using ultrasound-guided, microbubble-enhanced sonoporation. J. Control. Release 223, 157–164 (2016)

    CAS  PubMed  Google Scholar 

  51. Escoffre, J., Campomanes, P., Tarek, M., Bouakaz, A.: New insights on the role of ROS in the mechanisms of sonoporation-mediated gene delivery. Ultrason. Sonochem. 64, 104998 (2020)

    CAS  PubMed  Google Scholar 

  52. Lentacker, I., De Cock, I., Deckers, R., De Smedt, S.C., Moonen, C.T.W.: Understanding ultrasound induced sonoporation: definitions and underlying mechanisms. Adv. Drug Deliv. Rev. 72, 49–64 (2014)

    CAS  PubMed  Google Scholar 

  53. Yuana, Y., Jiang, L., Lammertink, B., Vader, P., Deckers, R., Bos, C., Schiffelers, R., Moonen, C.: Microbubbles-assisted ultrasound triggers the release of extracellular vesicles. Int. J. Mol. Sci. 18, 1610 (2017)

    PubMed  PubMed Central  Google Scholar 

  54. Zarnitsyn, V.G., Meacham, J.M., Varady, M.J., Hao, C., Degertekin, F.L., Fedorov, A.G.: Electrosonic ejector microarray for drug and gene delivery. Biomed. Microdevice 10, 299–308 (2008)

    CAS  Google Scholar 

  55. Belling, J.N., Heidenreich, L.K., Tian, Z., Mendoza, A.M., Chiou, T.-T., Gong, Y., Chen, N.Y., Young, T.D., Wattanatorn, N., Park, J.H., Scarabelli, L., Chiang, N., Takahashi, J., Young, S.G., Stieg, A.Z., De Oliveira, S., Huang, T.J., Weiss, P.S., Jonas, S.J.: Acoustofluidic sonoporation for gene delivery to human hematopoietic stem and progenitor cells. Proc. Natl. Acad. Sci. U. S. A. 117, 10976–10982 (2020)

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Bruus, H.: Acoustofluidics 7: the acoustic radiation force on small particles. Lab Chip 12, 114–121 (2012)

    Google Scholar 

  57. Chen, Y., Fang, Z., Merritt, B., Strack, D., Xu, J., Lee, S.: Onset of particle trapping and release via acoustic bubbles. Lab Chip 16, 324–332 (2016)

    Google Scholar 

  58. Wiklund, M., Green, R., Ohlin, M.: Acoustofluidics 14: applications of acoustic streaming in microfluidic devices. Lab Chip 12, 2438–2451 (2012)

    CAS  PubMed  Google Scholar 

  59. Doinikov, A.A., Thibault, P., Marmottant, P.: Acoustic streaming induced by two orthogonal ultrasound standing waves in a microfluidic channel. Ultrasonics 87, 7–19 (2018)

    CAS  PubMed  Google Scholar 

  60. Kamenac, A., Schilberth, F.L., Wagner, E., Wixforth, A., Lächelt, U., Westerhausen, C.: Transient permeabilization of living cells: combining shear flow and acoustofluidic trapping for the facilitated uptake of molecules. Processes. 9, 913 (2021)

    CAS  Google Scholar 

  61. Lin, L., Dang, H., Zhu, R., Liu, Y., You, H.: Effects of side profile on acoustic streaming by oscillating microstructures in channel. Micromachines. 13, 1439 (2022)

    PubMed  PubMed Central  Google Scholar 

  62. Lu, Y., Palanikumar, L., Choi, E.S., Huskens, J., Ryu, J., Wang, Y., Pang, W., Duan, X.: Hypersound-enhanced intracellular delivery of drug-loaded mesoporous silica nanoparticles in a non-endosomal pathway. ACS Appl. Mater. Interfaces 11, 19734–19742 (2019)

    CAS  PubMed  Google Scholar 

  63. Pan, S., Jeon, T., Luther, D.C., Duan, X., Rotello, V.M.: Cytosolic delivery of functional proteinsin vitro through tunable gigahertz acoustics. ACS Appl. Mater. Interfaces 12, 15823–15829 (2020)

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Zhang, Z., Wang, Y., Zhang, H., Tang, Z., Liu, W., Lu, Y., Wang, Z., Yang, H., Pang, W., Zhang, H., Zhang, D., Duan, X.: Hypersonic poration: a new versatile cell poration method to enhance cellular uptake using a piezoelectric nano-electromechanical device. Small 13, 1602962 (2017)

    Google Scholar 

  65. Hashmi, A., Yu, G., Reilly-Collette, M., Heiman, G., Xu, J.: Oscillating bubbles: a versatile tool for lab on a chip applications. Lab Chip 12, 4216 (2012)

    CAS  PubMed  Google Scholar 

  66. Tang, Q., Liang, F., Huang, L., Zhao, P., Wang, W.: On-chip simultaneous rotation of large-scale cells by acoustically oscillating bubble array. Biomed. Microdevices 22, 1–11 (2020)

    Google Scholar 

  67. Chowdhury, S.M., Abou-Elkacem, L., Lee, T., Dahl, J., Lutz, A.M.: Ultrasound and microbubble mediated therapeutic delivery: underlying mechanisms and future outlook. J. Control. Release 326, 75–90 (2020)

    CAS  PubMed  Google Scholar 

  68. Gao, Y., Wu, M., Lin, Y., Xu, J.: Trapping and control of bubbles in various microfluidic applications. Lab Chip 20, 4512–4527 (2020)

    CAS  PubMed  Google Scholar 

  69. Feng, J., Yuan, J., Cho, S.K.: Micropropulsion by an acoustic bubble for navigating microfluidic spaces. Lab Chip 15, 1554–1562 (2015)

    CAS  PubMed  Google Scholar 

  70. Li, Y., Liu, X., Huang, Q., Ohta, A.T., Arai, T.: Bubbles in microfluidics: an all-purpose tool for micromanipulation. Lab Chip 21, 1016–1035 (2021)

    CAS  PubMed  Google Scholar 

  71. Liu, J., Li, B., Zhu, T., Zhou, Y., Li, S., Guo, S., Li, T.: Tunable microfluidic standing air bubbles and its application in acoustic microstreaming. Biomicrofluidics 13, 34114 (2019)

    Google Scholar 

  72. Gao, Y., Wu, M., Lin, Y., Zhao, W., Xu, J.: Acoustic bubble-based bidirectional micropump. Microfluid. Nanofluid. 24, 1–10 (2020)

    Google Scholar 

  73. Zhang, W., Song, B., Bai, X., Jia, L., Song, L., Guo, J., Feng, L.: Versatile acoustic manipulation of micro-objects using mode-switchable oscillating bubbles: transportation, trapping, rotation, and revolution. Lab Chip 21, 4760–4771 (2021)

    CAS  PubMed  Google Scholar 

  74. Wang, A., Lin, I., Hsieh, Y., Shih, W., Wu, G.: Effective pressure and bubble generation in a microfluidic T-junction. Lab Chip 11, 3499 (2011)

    CAS  PubMed  Google Scholar 

  75. Ahmed, D., Ozcelik, A., Bojanala, N., Nama, N., Upadhyay, A., Chen, Y., Hanna-Rose, W., Huang, T.J.: Rotational manipulation of single cells and organisms using acoustic waves. Nat. Commun. 7, 1–11 (2016)

    Google Scholar 

  76. Läubli, N.F., Gerlt, M.S., Wüthrich, A., Lewis, R.T.M., Shamsudhin, N., Kutay, U., Ahmed, D., Dual, J., Nelson, B.J.: Embedded microbubbles for acoustic manipulation of single cells and microfluidic applications. Anal. Chem. 93, 9760–9770 (2021)

    PubMed  PubMed Central  Google Scholar 

  77. Tovar, A.R., Lee, A.P.: Lateral cavity acoustic transducer. Lab Chip 9, 41–43 (2009)

    CAS  PubMed  Google Scholar 

  78. Lieu, V.H., House, T.A., Schwartz, D.T.: Hydrodynamic tweezers: impact of design geometry on flow and microparticle trapping. Anal. Chem. 84, 1963–1968 (2012)

    CAS  PubMed  Google Scholar 

  79. Lu, X., Zhao, K., Peng, H., Li, H., Liu, W.: Local enhanced microstreaming for controllable high-speed acoustic rotary microsystems. Phys. Rev. Appl. 11, 044064 (2019)

    CAS  Google Scholar 

  80. An, L.N., Deng, H., Devendran, C., Akhtar, N., Ma, X., Pouton, C., Chan, H.K., Neild, A., Alan, T.: Ultrafast star-shaped acoustic micromixer for high throughput nanoparticle synthesis. Lab Chip 20, 582–591 (2020)

    Google Scholar 

  81. Rasouli, M.R., Tabrizian, M.: An ultra-rapid acoustic micromixer for synthesis of organic nanoparticles. Lab Chip 19, 3316–3325 (2019)

    CAS  PubMed  Google Scholar 

  82. Salari, A., Appak Baskoy, S., Ezzo, M., Hinz, B., Kolios, M.C., Tsai, S.S.H.: Dancing with the cells: acoustic microflows generated by oscillating cells. Small 16, 1903788 (2019)

    Google Scholar 

  83. Mazalan, M., Noor, A., Wahab, Y., Yahud, S., Zaman, W.: Current development in interdigital transducer (IDT) surface acoustic wave devices for live cell in vitro studies: a review. Micromachines 13, 30 (2022)

    Google Scholar 

  84. Frommelt, T., Kostur, M., Wenzel-Schäfer, M., Talkner, P., Hänggi, P., Wixforth, A.: Microfluidic mixing via acoustically driven chaotic advection. Phys. Rev. Lett. 100, 34502 (2008)

    Google Scholar 

  85. Sun, C., Zhang, M., Huang, G., Zhang, P., Lin, R., Wang, X., You, H.: A microfluidic system of gene transfer by ultrasound. Micromachines 13, 1126 (2022)

    PubMed  PubMed Central  Google Scholar 

  86. Thein, M., Cheng, A., Khanna, P., Zhang, C., Park, E., Ahmed, D., Goodrich, C.J., Asphahani, F., Wu, F., Smith, N.B., Dong, C., Jiang, X., Zhang, M., Xu, J.: Site-specific sonoporation of human melanoma cells at the cellular level using high lateral-resolution ultrasonic micro-transducer arrays. Biosens. Bioelectron. 27, 25–33 (2011)

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Ramesan, S., Rezk, A.R., Cevaal, P.M., Cortez-Jugo, C., Symons, J., Yeo, L.Y.: Acoustofection: high-frequency vibrational membrane permeabilization for intracellular siRNA delivery into nonadherent cells. ACS Appl. Bio Mater. 4, 2781–2789 (2021)

    CAS  PubMed  Google Scholar 

  88. Rezk, A.R., Ahmed, H., Ramesan, S., Yeo, L.Y.: High frequency sonoprocessing: a new field of cavitation-free acoustic materials synthesis, processing, and manipulation. Adv. Sci. 8, 2001983 (2021)

    CAS  Google Scholar 

  89. Ozcelik, A., Rufo, J., Guo, F., Gu, Y., Li, P., Lata, J., Huang, T.J.: Acoustic tweezers for the life sciences. Nat. Methods 15, 1021–1028 (2018)

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Carugo, D., Ankrett, D.N., Glynne-Jones, P., Capretto, L., Boltryk, R.J., Zhang, X., Townsend, P.A., Hill, M.: Contrast agent-free sonoporation: the use of an ultrasonic standing wave microfluidic system for the delivery of pharmaceutical agents. Biomicrofluidics 5, 44108 (2011)

    PubMed  Google Scholar 

  91. Guo, X., Sun, M., Yang, Y., Xu, H., Liu, J., He, S., Wang, Y., Xu, L., Pang, W., Duan, X.: Controllable cell deformation using acoustic streaming for membrane permeability modulation. Adv. Sci. 8, 2002489 (2021)

    CAS  Google Scholar 

  92. Lu, Y., de Vries, W.C., Overeem, N.J., Duan, X., Zhang, H., Zhang, H., Pang, W., Ravoo, B.J., Huskens, J.: Controlled and tunable loading and release of vesicles by using gigahertz acoustics. Angew. Chem. Int. Ed. Engl. 58, 159–163 (2019)

    CAS  PubMed  Google Scholar 

  93. Lu, Y., Huskens, J., Pang, W., Duan, X.: Hypersonic poration of supported lipid bilayers. Mater. Chem. Front. 3, 782–790 (2019)

    CAS  Google Scholar 

  94. Wang, Z., Huang, P.H., Chen, C., Bachman, H., Zhao, S., Yang, S., Huang, T.J.: Cell lysis via acoustically oscillating sharp edges. Lab Chip 19, 4021–4032 (2019)

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Lu, X., Soto, F., Li, J., Li, T., Liang, Y., Wang, J.: Topographical manipulation of microparticles and cells with acoustic microstreaming. ACS Appl. Mater. Interfaces 9, 38870–38876 (2017)

    CAS  PubMed  Google Scholar 

  96. Zhou, Y., Ma, Z., Ai, Y.: Submicron particle concentration and patterning with ultralow frequency acoustic vibration. Anal. Chem. 92, 12795–12800 (2020)

    CAS  PubMed  Google Scholar 

  97. Song, B., Zhang, W., Bai, X., Feng, L., Zhang, D., Arai, F.: A novel portable cell sonoporation device based on open-source acoustofluidics. In: IEEE, pp. 2786–2791 (2020)

  98. Grisanti, G., Caprini, D., Sinibaldi, G., Scognamiglio, C., Silvani, G., Peruzzi, G., Casciola, C.M.: A microfluidic platform for cavitation-enhanced drug delivery. Micromachines 12, 658 (2021)

    PubMed  PubMed Central  Google Scholar 

  99. Goodwin, S.C., Bittner, C.A., Peterson, C.L., Wong, G.: Single-dose toxicity study of hepatic intra-arterial infusion of doxorubicin coupled to a novel magnetically targeted drug carrier. Toxicol. Sci. 60, 177–183 (2001)

    CAS  PubMed  Google Scholar 

  100. Li, Z.G., Liu, A.Q., Klaseboer, E., Zhang, J.B., Ohl, C.D.: Single cell membrane poration by bubble-induced microjets in a microfluidic chip. Lab Chip 13, 1144–1150 (2013)

    PubMed  Google Scholar 

  101. Marin, A., Massimiliano, R., Bhargav, R., Cheng, W., Sascha, H., Christian, J.K.: Three-dimensional phenomena in microbubble acoustic streaming. Phys. Rev. Appl. 3, 041001 (2015)

    Google Scholar 

  102. Bourn, M.D., Batchelor, D.V.B., Ingram, N., McLaughlan, J.R., Coletta, P.L., Evans, S.D., Peyman, S.A.: High-throughput microfluidics for evaluating microbubble enhanced delivery of cancer therapeutics in spheroid cultures. J. Control. Release 326, 13–24 (2020)

    CAS  PubMed  Google Scholar 

  103. Carlo, D.D., Wu, L.Y., Lee, L.P.: Dynamic single cell culture array. Lab Chip 6, 1445 (2006)

    PubMed  Google Scholar 

  104. Centner, C.S., Murphy, E.M., Priddy, M.C., Moore, J.T., Janis, B.R., Menze, M.A., DeFilippis, A.P., Kopechek, J.A.: Ultrasound-induced molecular delivery to erythrocytes using a microfluidic system. Biomicrofluidics 14, 24114 (2020)

    CAS  Google Scholar 

  105. Ankrett, D.N., Carugo, D., Lei, J., Glynne-Jones, P., Townsend, P.A., Zhang, X., Hill, M.: The effect of ultrasound-related stimuli on cell viability in microfluidic channels. J. Nanobiotechnol. 11, 20 (2013)

    CAS  Google Scholar 

  106. Kim, R.: Advanced organotypic in vitro model systems for host–microbial coculture. BioChip J. 17, 147–173 (2023)

    Google Scholar 

  107. Ahn, J., Sei, Y., Jeon, N., Kim, Y.: Tumor microenvironment on a chip: the progress and future perspective. Bioengineering 4, 64 (2017)

    PubMed  PubMed Central  Google Scholar 

  108. Gupta, N., Liu, J.R., Patel, B., Solomon, D.E., Vaidya, B., Gupta, V.: Microfluidics-based 3D cell culture models: utility in novel drug discovery and delivery research. Bioeng. Transl. Med. 1, 63–81 (2016)

    PubMed  PubMed Central  Google Scholar 

  109. Cai, Y., Fan, K., Lin, J., Ma, L., Li, F.: Advances in BBB on chip and application for studying reversible opening of blood–brain barrier by sonoporation. Micromachines 14, 112 (2023)

    Google Scholar 

  110. Mobini, S., Song, Y.H., McCrary, M.W., Schmidt, C.E.: Advances in ex vivo models and lab-on-a-chip devices for neural tissue engineering. Biomaterials 198, 146–166 (2019)

    CAS  PubMed  Google Scholar 

  111. Chen, L., Raut, B., Nagai, N., Abe, T., Kaji, H.: Prototyping a versatile two-layer multi-channel microfluidic device for direct-contact cell-vessel co-culture. Micromachines 11, 79 (2020)

    PubMed  PubMed Central  Google Scholar 

  112. Bagchi, S., Chhibber, T., Lahooti, B., Verma, A., Borse, V., Jayant, R.D.: In-vitro blood-brain barrier models for drug screening and permeation studies: an overview. Drug Des. Dev. Ther. 13, 3591–3605 (2019)

    CAS  Google Scholar 

  113. Wang, J., Li, Z., Pan, M., Fiaz, M., Hao, Y., Yan, Y., Sun, L., Yan, F.: Ultrasound-mediated blood–brain barrier opening: an effective drug delivery system for theranostics of brain diseases. Adv. Drug Deliv. Rev. 190, 114539 (2022)

    CAS  PubMed  Google Scholar 

  114. Peruzzi, G., Sinibaldi, G., Silvani, G., Ruocco, G., Casciola, C.M.: Perspectives on cavitation enhanced endothelial layer permeability. Colloids Surf. B 168, 83–93 (2018)

    CAS  Google Scholar 

  115. Deosarkar, S.P., Prabhakarpandian, B., Wang, B., Sheffield, J.B., Krynska, B., Kiani, M.F.: A novel dynamic neonatal blood-brain barrier on a chip. PLoS ONE 10, e142725 (2015)

    Google Scholar 

  116. Bi, W., Cai, S., Lei, T., Wang, L.: Implementation of blood-brain barrier on microfluidic chip: recent advance and future prospects. Ageing Res. Rev. 87, 101921 (2023)

    CAS  PubMed  Google Scholar 

  117. Fan, Y., Xu, C., Deng, N., Gao, Z., Jiang, Z., Li, X., Zhou, Y., Pei, H., Li, L., Tang, B.: Understanding drug nanocarrier and blood–brain barrier interaction based on a microfluidic microphysiological model. Lab Chip 23, 1935–1944 (2023)

    CAS  PubMed  Google Scholar 

  118. Oh, H., Kang, M., Bae, E., Jung, Y., Cho, J., Poirier, J., Kim, J.S., Frampton, J.P., Choi, N., Chung, S.: Fabrication of hydrogel microchannels using aqueous two-phase printing for 3D blood brain barrier. BioChip J. 17, 369–383 (2023)

    CAS  Google Scholar 

  119. Andreone, B.J., Chow, B.W., Tata, A., Lacoste, B., Ben-Zvi, A., Bullock, K., Deik, A.A., Ginty, D.D., Clish, C.B., Gu, C.: Blood-brain barrier permeability is regulated by lipid transport-dependent suppression of caveolae-mediated transcytosis. Neuron 94, 581–594 (2017)

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Juang, E.K., De Cock, I., Keravnou, C., Gallagher, M.K., Keller, S.B., Zheng, Y., Averkiou, M.: Engineered 3D microvascular networks for the study of ultrasound-microbubble-mediated drug delivery. Langmuir 35, 10128–10138 (2019)

    CAS  PubMed  Google Scholar 

  121. Park, Y.C., Zhang, C., Kim, S., Mohamedi, G., Beigie, C., Nagy, J.O., Holt, R.G., Cleveland, R.O., Jeon, N.L., Wong, J.Y.: Microvessels-on-a-chip to assess targeted ultrasound-assisted drug delivery. ACS Appl. Mater. Interfaces 8, 31541–31549 (2016)

    CAS  PubMed  Google Scholar 

  122. DeOre, B.J., Galie, P.A., Sehgal, C.M.: Fluid flow rate dictates the efficacy of low-intensity anti-vascular ultrasound therapy in a microfluidic model. Microcirculation 26, e12576 (2019)

    PubMed  PubMed Central  Google Scholar 

  123. Driver, R., Mishra, S.: Organ-on-a-chip technology: an in-depth review of recent advancements and future of whole body-on-chip. BioChip J. 17, 1–23 (2023)

    CAS  Google Scholar 

  124. Jang, M., Kim, H.N.: From single- to multi-organ-on-a-chip system for studying metabolic diseases. BioChip J. 17, 133–146 (2023)

    CAS  Google Scholar 

  125. Zhang, B., Radisic, M.: Organ-on-a-chip devices advance to market. Lab Chip 17, 2242–2395 (2017)

    Google Scholar 

  126. Cecen, B., Karavasili, C., Nazir, M., Bhusal, A., Dogan, E., Shahriyari, F., Tamburaci, S., Buyukoz, M., Kozaci, L.D., Miri, A.K.: Multi-organs-on-chips for testing small-molecule drugs: challenges and perspectives. Pharmaceutics 13, 1657 (2021)

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Tran, T.T.T., Delgado, A., Jeong, S.: Organ-on-a-chip: the future of therapeutic aptamer research? BioChip J. 15, 109–122 (2021)

    CAS  Google Scholar 

  128. Ahn, J., Ko, J., Lee, S., Yu, J., Kim, Y., Jeon, N.L.: Microfluidics in nanoparticle drug delivery; from synthesis to pre-clinical screening. Adv. Drug Deliv. Rev. 128, 29–53 (2018)

    CAS  PubMed  Google Scholar 

  129. Beekers, I., van Rooij, T., Verweij, M.D., Versluis, M., de Jong, N., Trietsch, S.J., Kooiman, K.: Acoustic characterization of a vessel-on-a-chip microfluidic system for ultrasound-mediated drug delivery. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 65, 570–581 (2018)

    PubMed  Google Scholar 

  130. Shi, J., Ma, Y., Zhu, J., Chen, Y., Sun, Y., Yao, Y., Yang, Z., Xie, J.: A review on electroporation-based intracellular delivery. Molecules 23, 3044 (2018)

    PubMed  PubMed Central  Google Scholar 

  131. Wang, F., Lin, S., Yu, Z., Wang, Y., Zhang, D., Cao, C., Wang, Z., Cui, D., Chen, D.: Recent advances in microfluidic-based electroporation techniques for cell membranes. Lab Chip 22, 2624–2646 (2022)

    CAS  PubMed  Google Scholar 

  132. Tamosiunas, M., Mir, L.M., Chen, W.S., Lihachev, A., Venslauskas, M., Satkauskas, S.: Intracellular delivery of bleomycin by combined application of electroporation and sonoporation in vitro. J. Membr. Biol. 249, 677–689 (2016)

    CAS  PubMed  Google Scholar 

  133. Maciulevičius, M., Tamošiūnas, M., Jurkonis, R., Šatkauskas, S.: Dosimetric assessment of antitumor treatment by enhanced bleomycin delivery via electroporation and sonoporation. Bioelectrochemistry 146, 108153 (2022)

    PubMed  Google Scholar 

  134. Santra, T.S., Kar, S., Chang, H.Y., Tseng, F.G.: Nano-localized single-cell nano-electroporation. Lab Chip 20, 4194–4204 (2020)

    CAS  PubMed  Google Scholar 

  135. Zhang, Z., Zheng, T., Zhu, R.: Single-cell individualized electroporation with real-time impedance monitoring using a microelectrode array chip. Microsyst. Nanoeng. 6, 81 (2020)

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Zu, Y., Liu, X., Chang, A., Wang, S.: Flow micropillar array electroporation to enhance size specific transfection to a large population of cells. Bioelectrochemistry 132, 107417 (2020)

    CAS  PubMed  Google Scholar 

  137. Bhattacharjee, N., Horowitz, L.F., Folch, A.: Continuous-flow multi-pulse electroporation at low DC voltages by microfluidic flipping of the voltage space topology. Appl. Phys. Lett. 109, 163702 (2016)

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Luo, Y., Yobas, L.: Flow-through electroporation of mammalian cells in decoupled flow streams using microcapillaries. Biomicrofluidics 8, 52101 (2014)

    Google Scholar 

  139. Wang, H., Lu, C.: Electroporation of mammalian cells in a microfluidic channel with geometric variation. Anal. Chem. 78, 5158–5164 (2006)

    CAS  PubMed  Google Scholar 

  140. Longsine-Parker, W., Wang, H., Koo, C., Kim, J., Kim, B., Jayaraman, A., Han, A.: Microfluidic electro-sonoporation: a multi-modal cell poration methodology through simultaneous application of electric field and ultrasonic wave. Lab Chip 13, 2144–2152 (2013)

    CAS  PubMed  Google Scholar 

  141. Adamo, A., Jensen, K.F.: Microfluidic based single cell microinjection. Lab Chip 8, 1258 (2008)

    CAS  PubMed  Google Scholar 

  142. Ghaemi, R., Arefi, P., Stosic, A., Acker, M., Raza, Q., Roger, J.J., Selvaganapathy, P.R.: A microfluidic microinjector for toxicological and developmental studies in Drosophila embryos. Lab Chip 17, 3898–3908 (2017)

    CAS  PubMed  Google Scholar 

  143. Gao, N., You, H.: Recent applications of point-of-care devices for glucose detection on the basis of stimuli-responsive volume phase transition of hydrogel. BioChip J. 15, 23–41 (2021)

    CAS  Google Scholar 

  144. Fan, Q., Hu, W., Ohta, A.T.: Efficient single-cell poration by microsecond laser pulses. Lab Chip 15, 581–588 (2015)

    CAS  PubMed  Google Scholar 

  145. Yuan, F., Yang, C., Zhong, P.: Cell membrane deformation and bioeffects produced by tandem bubble-induced jetting flow. Proc. Natl. Acad. Sci. 112, E7039–E7047 (2015)

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Sharei, A., Zoldan, J., Adamo, A., Sim, W.Y., Cho, N., Jackson, E., Mao, S., Schneider, S., Han, M.J., Lytton-Jean, A., Basto, P.A., Jhunjhunwala, S., Lee, J., Heller, D.A., Kang, J.W., Hartoularos, G.C., Kim, K.S., Anderson, D.G., Langer, R., Jensen, K.F.: A vector-free microfluidic platform for intracellular delivery. Proc. Natl. Acad. Sci. 110, 2082–2087 (2013)

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Uvizl, A., Goswami, R., Gandhi, S.D., Augsburg, M., Buchholz, F., Guck, J., Mansfeld, J., Girardo, S.: Efficient and gentle delivery of molecules into cells with different elasticity via progressive mechanoporation. Lab Chip 21, 2437–2452 (2021)

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Alhmoud, H., Alkhaled, M., Kaynak, B.E., Hanay, M.S.: Leveraging the elastic deformability of polydimethylsiloxane microfluidic channels for efficient intracellular delivery. Lab Chip 23, 714–726 (2023)

    CAS  PubMed  Google Scholar 

  149. Dixon, A.J., Dhanaliwala, A.H., Chen, J.L., Hossack, J.A.: Enhanced intracellular delivery of a model drug using microbubbles produced by a microfluidic device. Ultrasound Med. Biol. 39, 1267–1276 (2013)

    PubMed  PubMed Central  Google Scholar 

  150. Lee, S., Jeon, H., Shim, S., Im, M., Kim, J., Kim, J.H., Lee, B.C.: Preclinical study to improve microbubble-mediated drug delivery in cancer using an ultrasonic probe with an interchangeable acoustic lens. Sci. Rep. 11, 1–10 (2021)

    Google Scholar 

  151. Rasouli, R., Paun, R.A., Tabrizian, M.: Sonoprinting nanoparticles on cellular spheroids via surface acoustic waves for enhanced nanotherapeutics delivery. Lab Chip 23, 2091–2105 (2023)

    CAS  PubMed  Google Scholar 

  152. Moore, R.P., O’Shaughnessy, E.C., Shi, Y., Nogueira, A.T., Heath, K.M., Hahn, K.M., Legant, W.R.: a multi-functional microfluidic device compatible with widefield and light sheet microscopy. Lab Chip 22, 136–147 (2021)

    PubMed  PubMed Central  Google Scholar 

  153. Prajapati, E., Kumar, S., Kumar, S.: Muscope: a miniature on-chip lensless microscope. Lab Chip 21, 4357–4363 (2021)

    CAS  PubMed  Google Scholar 

  154. Rong, N., Zhou, H., Liu, R., Wang, Y., Fan, Z.: Ultrasound and microbubble mediated plasmid DNA uptake: a fast, global and multi-mechanisms involved process. J. Control. Release 273, 40–50 (2018)

    CAS  PubMed  Google Scholar 

  155. Bansal, K., Jha, C.K., Bhatia, D., Shekhar, H.: Ultrasound-enabled therapeutic delivery and regenerative medicine: physical and biological perspectives. ACS Biomater. Sci. Eng. 7, 4371–4387 (2021)

    CAS  PubMed  Google Scholar 

  156. Au, A.K., Huynh, W., Horowitz, L.F., Folch, A.: Mikrofluidik aus dem 3D-Drucker. Angew. Chem. 128, 3926–3946 (2016)

    Google Scholar 

  157. Liu, C., Wan, T., Wang, H., Zhang, S., Ping, Y., Cheng, Y.: A boronic acid-rich dendrimer with robust and unprecedented efficiency for cytosolic protein delivery and CRISPR-Cas9 gene editing. Sci. Adv. 5, eaaw8922 (2019)

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Sharei, A., Poceviciute, R., Jackson, E.L., Cho, N., Mao, S., Hartoularos, G.C., Jang, D.Y., Jhunjhunwala, S., Eyerman, A., Schoettle, T., Langer, R., Jensen, K.F.: Plasma membrane recovery kinetics of a microfluidic intracellular delivery platform. Integr. Biol. (Camb.) 6, 470–475 (2014)

    CAS  PubMed  Google Scholar 

  159. Bhatia, S.N., Ingber, D.E.: Microfluidic organs-on-chips. Nat. Biotechnol. 32, 760–772 (2014)

    CAS  PubMed  Google Scholar 

  160. Amoyav, B., Goldstein, Y., Steinberg, E., Benny, O.: 3D printed microfluidic devices for drug release assays. Pharmaceutics 13, 13 (2021)

    CAS  Google Scholar 

Download references

Acknowledgements

This research was funded by the Guangxi Bagui Scholars Project (Grant No. 2019A02), and the Interdisciplinary Scientific Research Foundation of GuangXi University (Grant No. 202200245), and the Guangxi Key Laboratory of Manufacturing System Advanced Manufacturing Technology (Grant No. 15-140-305005), and the Interdisciplinary Scientific Research Foundation of GuangXi University (Grant No. 2022JCB006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui You.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, G., Lin, L., Wu, S. et al. Combining Ultrasound-Mediated Intracellular Delivery with Microfluidics in Various Applications. BioChip J 18, 22–44 (2024). https://doi.org/10.1007/s13206-023-00128-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13206-023-00128-w

Keywords