Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Advertisement

Methods and applications of machine learning in computational design of optoelectronic semiconductors

机器学习方法及应用: 光电半导体材料计算设计

  • Reviews
  • Published:
Science China Materials Aims and scope Submit manuscript

Abstract

The development of high-throughput computation and materials databases has laid the foundation for the emergence of data-driven machine learning methods in recent years. Machine learning has become a crucial methodology propelling researches in computational materials. It has demonstrated tremendous potential in analyzing materials data, expediting materials calculations, predicting material properties, advancing the discovery, screening, and design of new materials. Consequently, an increasing number of methodologies, models, and frameworks of machine learning have emerged. This review provides a comprehensive overview of the latest advancements and applications of machine learning in computational design of optoelectronic semiconductors. We introduce the workflow and strategies of machine learning shallow models, ensemble models, and deep neural networks based on various material representation methods. The associated material databases and toolkits are also discussed. Furthermore, we delve into the applications of these models in predicting material stability, optoelectronic properties, materials inverse design, and establishing relationships between material structures and properties. Finally, we summarize and discuss the key challenges existing in current machine learning, with a specific focus on issues related to the size of available data, data quality, material representation, and materials inverse design.

摘要

摘要高通量计算与材料数据库推动了数据驱动的机器学习方法的发 展. 机器学习已经成为材料计算研究的重要方法, 在分析材料数据、加 速材料计算、预测材料性质、推进新材料发现、筛选和设计等方面展 现出极大的潜力. 众多与材料计算相交叉的机器学习方法、模型以及 框架不断涌现. 本文综述了近年来光电半导体材料计算设计领域内机 器学习方法的最新进展与应用. 介绍了机器学习的流程与类型, 基于不 同材料表示方法的浅层模型、集成模型和深度神经网络, 以及相关材 料数据库和相关工具. 我们还讨论了这些模型在预测材料稳定性与光 电性质、材料逆向设计、构建材料构效关系等方面的应用. 最后, 本文 对目前机器学习方法存在的机遇与挑战, 即数据数量与质量、材料的 表示、材料逆向设计做了进一步总结与讨论.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. OpenAI: Optimizing language models for dialogue. 2023. https://openai.com/blog/chatgpt/

  2. Hey T, Trefethen A. The fourth paradigm 10 years on. Informatik Spektrum, 2020, 42: 441–447

    Article  Google Scholar 

  3. LeCun Y, Bengio Y, Hinton G. Deep learning. Nature, 2015, 521: 436–444

    Article  CAS  PubMed  Google Scholar 

  4. Jordan MI, Mitchell TM. Machine learning: Trends, perspectives, and prospects. Science, 2015, 349: 255–260

    Article  CAS  PubMed  Google Scholar 

  5. de Pablo JJ, Jackson NE, Webb MA, et al. New frontiers for the materials genome initiative. npj Comput Mater, 2019, 5: 41

    Article  Google Scholar 

  6. de Pablo JJ, Jones B, Kovacs CL, et al. The materials genome initiative, the interplay of experiment, theory and computation. Curr Opin Solid State Mater Sci, 2014, 18: 99–117

    Article  Google Scholar 

  7. Silver D, Huang A, Maddison CJ, et al. Mastering the game of Go with deep neural networks and tree search. Nature, 2016, 529: 484–489

    Article  CAS  PubMed  Google Scholar 

  8. Jumper J, Evans R, Pritzel A, et al. Highly accurate protein structure prediction with AlphaFold. Nature, 2021, 596: 583–589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Merchant A, Batzner S, Schoenholz SS, et al. Scaling deep learning for materials discovery. Nature, 2023, 624: 80–85

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zeni C, Pinsler R, Zügner D et al. MatterGen: A generative model for inorganic materials design. 2023. http://arxiv.org/abs/2312.03687

  11. Schmidt J, Marques MRG, Botti S, et al. Recent advances and applications of machine learning in solid-state materials science. npj Comput Mater, 2019, 5: 83

    Article  Google Scholar 

  12. Butler KT, Davies DW, Cartwright H, et al. Machine learning for molecular and materials science. Nature, 2018, 559: 547–555

    Article  CAS  PubMed  Google Scholar 

  13. Lejaeghere K, Van Speybroeck V, Van Oost G, et al. Error estimates for solid-state density-functional theory predictions: An overview by means of the ground-state elemental crystals. Crit Rev Solid State Mater Sci, 2014, 39: 1–24

    Article  CAS  Google Scholar 

  14. Kresse G, Furthmuller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B, 1996, 54: 11169–11186

    Article  CAS  Google Scholar 

  15. Giannozzi P, Baroni S, Bonini N, et al. QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials. J Phys-Condens Matter, 2009, 21: 395502

    Article  PubMed  Google Scholar 

  16. Curtarolo S, Hart GLW, Nardelli MB, et al. The high-throughput highway to computational materials design. Nat Mater, 2013, 12: 191–201

    Article  CAS  PubMed  Google Scholar 

  17. Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett, 1996, 77: 3865–3868

    Article  CAS  PubMed  Google Scholar 

  18. Phillips JC, Braun R, Wang W, et al. Scalable molecular dynamics with NAMD. J Comput Chem, 2005, 26: 1781–1802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Luo S, Li T, Wang X, et al. High-throughput computational materials screening and discovery of optoelectronic semiconductors. WIREs Comput Mol Sci, 2021, 11: e1489

    Article  CAS  Google Scholar 

  20. Bordonhos M, Galvão TLP, Gomes JRB, et al. Multiscale computational approaches toward the understanding of materials. Advcd Theor Sims, 2023, 6: 2200628

    Article  CAS  Google Scholar 

  21. Shen L, Zhou J, Yang T, et al. High-throughput computational discovery and intelligent design of two-dimensional functional materials for various applications. Acc Mater Res, 2022, 3: 572–583

    Article  CAS  Google Scholar 

  22. Jain A, Ong SP, Hautier G, et al. Commentary: The materials project: A materials genome approach to accelerating materials innovation. APL Mater, 2013, 1: 011002

    Article  Google Scholar 

  23. Kirklin S, Saal JE, Meredig B, et al. The open quantum materials database (OQMD): Assessing the accuracy of DFT formation energies. npj Comput Mater, 2015, 1: 15010

    Article  CAS  Google Scholar 

  24. Curtarolo S, Setyawan W, Hart GLW, et al. AFLOW: An automatic framework for high-throughput materials discovery. Comput Mater Sci, 2012, 58: 218–226

    Article  CAS  Google Scholar 

  25. Himanen L, Geurts A, Foster AS, et al. Data-driven materials science: Status, challenges, and perspectives. Adv Sci, 2019, 6: 1900808

    Article  Google Scholar 

  26. Ramprasad R, Batra R, Pilania G, et al. Machine learning in materials informatics: Recent applications and prospects. npj Comput Mater, 2017, 3: 54

    Article  Google Scholar 

  27. Shen SC, Khare E, Lee NA, et al. Computational design and manufacturing of sustainable materials through first-principles and materiomics. Chem Rev, 2023, 123: 2242–2275

    Article  CAS  PubMed  Google Scholar 

  28. Bishara D, Xie Y, Liu WK, et al. A state-of-the-art review on machine learning-based multiscale modeling, simulation, homogenization and design of materials. Arch Computat Methods Eng, 2023, 30: 191–222

    Article  Google Scholar 

  29. Bhat V, Callaway CP, Risko C. Computational approaches for organic semiconductors: From chemical and physical understanding to predicting new materials. Chem Rev, 2023, 123: 7498–7547

    Article  CAS  PubMed  Google Scholar 

  30. Singh V, Patra S, Murugan NA, et al. Recent trends in computational tools and data-driven modeling for advanced materials. Mater Adv, 2022, 3: 4069–4087

    Article  Google Scholar 

  31. Pyzer-Knapp EO, Pitera JW, Staar PWJ, et al. Accelerating materials discovery using artificial intelligence, high performance computing and robotics. npj Comput Mater, 2022, 8: 84

    Article  Google Scholar 

  32. Ward L, Liu R, Krishna A, et al. Including crystal structure attributes in machine learning models of formation energies via Voronoi tessellations. Phys Rev B, 2017, 96: 024104

    Article  Google Scholar 

  33. Obada DO, Okafor E, Abolade SA, et al. Explainable machine learning for predicting the band gaps of ABX3 perovskites. Mater Sci Semiconductor Processing, 2023, 161: 107427

    Article  CAS  Google Scholar 

  34. Schütt KT, Sauceda HE, Kindermans PJ, et al. SchNet—A deep learning architecture for molecules and materials. J Chem Phys, 2018, 148: 241722

    Article  PubMed  Google Scholar 

  35. Deringer VL, Csányi G. Machine learning based interatomic potential for amorphous carbon. Phys Rev B, 2017, 95: 094203

    Article  Google Scholar 

  36. Zuo Y, Chen C, Li X, et al. Performance and cost assessment of machine learning interatomic potentials. J Phys Chem A, 2020, 124: 731–745

    Article  CAS  PubMed  Google Scholar 

  37. Manti S, Svendsen MK, Knøsgaard NR, et al. Exploring and machine learning structural instabilities in 2D materials. npj Comput Mater, 2023, 9: 33

    Article  Google Scholar 

  38. Willhelm D, Wilson N, Arroyave R, et al. Predicting van der Waals heterostructures by a combined machine learning and density functional theory approach. ACS Appl Mater Interfaces, 2022, 14: 25907–25919

    Article  CAS  PubMed  Google Scholar 

  39. Wang T, Tan X, Wei Y, et al. Unveiling the layer-dependent electronic properties in transition-metal dichalcogenide heterostructures assisted by machine learning. Nanoscale, 2022, 14: 2511–2520

    Article  CAS  PubMed  Google Scholar 

  40. Loftis C, Yuan K, Zhao Y, et al. Lattice thermal conductivity prediction using symbolic regression and machine learning. J Phys Chem A, 2021, 125: 435–450

    Article  CAS  PubMed  Google Scholar 

  41. Cai W, Abudurusuli A, Xie C, et al. Toward the rational design of mid-infrared nonlinear optical materials with targeted properties via a multi-level data-driven approach. Adv Funct Mater, 2022, 32: 2200231

    Article  CAS  Google Scholar 

  42. Dong SS, Govoni M, Galli G. Machine learning dielectric screening for the simulation of excited state properties of molecules and materials. Chem Sci, 2021, 12: 4970–4980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Banik S, Loeffler TD, Batra R, et al. Learning with delayed rewards—A case study on inverse defect design in 2D materials. ACS Appl Mater Interfaces, 2021, 13: 36455–36464

    Article  CAS  PubMed  Google Scholar 

  44. Frey NC, Akinwande D, Jariwala D, et al. Machine learning-enabled design of point defects in 2D materials for quantum and neuromorphic information processing. ACS Nano, 2020, 14: 13406–13417

    Article  CAS  PubMed  Google Scholar 

  45. Huang P, Lukin R, Faleev M, et al. Unveiling the complex structure-property correlation of defects in 2D materials based on high throughput datasets. npj 2D Mater Appl, 2023, 7: 6

    Article  Google Scholar 

  46. Bhattacharya A, Timokhin I, Chatterjee R, et al. Deep learning approach to genome of two-dimensional materials with flat electronic bands. npj Comput Mater, 2023, 9: 101

    Article  Google Scholar 

  47. Zhao Y, Siriwardane EMD, Wu Z, et al. Physics guided deep learning for generative design of crystal materials with symmetry constraints. npj Comput Mater, 2023, 9: 38

    Article  CAS  Google Scholar 

  48. Yan D, Smith AD, Chen CC. Structure prediction and materials design with generative neural networks. Nat Comput Sci, 2023, 3: 572–574

    Article  PubMed  Google Scholar 

  49. Anstine DM, Isayev O. Generative models as an emerging paradigm in the chemical sciences. J Am Chem Soc, 2023, 145: 8736–8750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Ren Z, Tian SIP, Noh J, et al. An invertible crystallographic representation for general inverse design of inorganic crystals with targeted properties. Matter, 2022, 5: 314–335

    Article  CAS  Google Scholar 

  51. Zheng Z, Zhang O, Borgs C, et al. ChatGPT chemistry assistant for text mining and the prediction of MOF synthesis. J Am Chem Soc, 2023, 145: 18048–18062

    Article  CAS  PubMed  Google Scholar 

  52. Shon YJ, Min K. Extracting chemical information from scientific literature using text mining: Building an ionic conductivity database for solid-state electrolytes. ACS Omega, 2023, 8: 18122–18127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Smith A, Bhat V, Ai Q, et al. Challenges in information-mining the materials literature: A case study and perspective. Chem Mater, 2022, 34: 4821–4827

    Article  CAS  Google Scholar 

  54. Xu P, Ji X, Li M, et al. Small data machine learning in materials science. npj Comput Mater, 2023, 9: 42

    Article  Google Scholar 

  55. Jacobsson TJ, Hultqvist A, García-Fernández A, et al. An open-access database and analysis tool for perovskite solar cells based on the FAIR data principles. Nat Energy, 2022, 7: 107–115

    Article  CAS  Google Scholar 

  56. Mannodi-Kanakkithodi A, Chan MKY. Data-driven design of novel halide perovskite alloys. Energy Environ Sci, 2022, 15: 1930–1949

    Article  CAS  Google Scholar 

  57. Cheng G, Gong XG, Yin WJ. Crystal structure prediction by combining graph network and optimization algorithm. Nat Commun, 2022, 13: 1492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Kim J, Min K. Data-driven investigation of the synthesizability and bandgap of double perovskite halides. Advcd Theor Sims, 2022, 5: 2200068

    Article  CAS  Google Scholar 

  59. Li XG, Blaiszik B, Schwarting ME, et al. Graph network based deep learning of bandgaps. J Chem Phys, 2021, 155: 154702

    Article  CAS  PubMed  Google Scholar 

  60. Damewood J, Karaguesian J, Lunger JR, et al. Representations of materials for machine learning. Annu Rev Mater Res, 2023, 53: 399–426

    Article  CAS  Google Scholar 

  61. Gong W, Yan Q. Graph-based deep learning frameworks for molecules and solid-state materials. Comput Mater Sci, 2021, 195: 110332

    Article  CAS  Google Scholar 

  62. Li S, Liu Y, Chen D, et al. Encoding the atomic structure for machine learning in materials science. WIREs Comput Mol Sci, 2022, 12: e1558

    Article  CAS  Google Scholar 

  63. Cai X, Zhang Y, Shi Z, et al. Discovery of lead-free perovskites for high-performance solar cells via machine learning: Ultrabroadband absorption, low radiative combination, and enhanced thermal conductivities. Adv Sci, 2022, 9: 2103648

    Article  CAS  Google Scholar 

  64. Chen L, Wang X, Xia W, et al. PSO-SVR predicting for the Ehull of ABO3-type compounds to screen the thermodynamic stable perovskite candidates based on multi-scale descriptors. Comput Mater Sci, 2022, 211: 111435

    Article  CAS  Google Scholar 

  65. Ma XY, Lewis JP, Yan QB, et al. Accelerated discovery of two-dimensional optoelectronic octahedral oxyhalides via high-throughput ab initio calculations and machine learning. J Phys Chem Lett, 2019, 10: 6734–6740

    Article  CAS  PubMed  Google Scholar 

  66. Zhu JJ, Yang M, Ren ZJ. Machine learning in environmental research: Common pitfalls and best practices. Environ Sci Technol, 2023, 57: 17671–17689

    Article  CAS  PubMed  Google Scholar 

  67. Gibson J, Hire A, Hennig RG. Data-augmentation for graph neural network learning of the relaxed energies of unrelaxed structures. npj Comput Mater, 2022, 8: 211

    Article  Google Scholar 

  68. Fung V, Zhang J, Juarez E, et al. Benchmarking graph neural networks for materials chemistry. npj Comput Mater, 2021, 7: 84

    Article  CAS  Google Scholar 

  69. Bischl B, Binder M, Lang M, et al. Hyperparameter optimization: Foundations, algorithms, best practices, and open challenges. WIREs Data Min Knowl, 2023, 13: e1484

    Article  Google Scholar 

  70. Li Z, Yoon J, Zhang R, et al. Machine learning in concrete science: Applications, challenges, and best practices. npj Comput Mater, 2022, 8: 127

    Article  Google Scholar 

  71. Artrith N, Butler KT, Coudert FX, et al. Best practices in machine learning for chemistry. Nat Chem, 2021, 13: 505–508

    Article  CAS  PubMed  Google Scholar 

  72. Ho SY, Phua K, Wong L, et al. Extensions of the external validation for checking learned model interpretability and generalizability. Patterns, 2020, 1: 100129

    Article  PubMed  PubMed Central  Google Scholar 

  73. Baştanlar Y, Özuysal M. Introduction to Machine Learning. miR-Nomics: MicroRNA Biology and Computational Analysis. Totowa: Humana, 2013. 1107

    Google Scholar 

  74. Hoffmann F, Bertram T, Mikut R, et al. Benchmarking in classification and regression. WIREs Data Min Knowl, 2019, 9: e1318

    Article  Google Scholar 

  75. Palanivinayagam A, El-Bayeh CZ, Damaševičius R. Twenty years of machine-learning-based text classification: A systematic review. Algorithms, 2023, 16: 236

    Article  Google Scholar 

  76. Sebastiani F. Machine learning in automated text categorization. ACM Comput Surv, 2002, 34: 1–47

    Article  Google Scholar 

  77. Wang Z, Han Y, Lin X, et al. An ensemble learning platform for the large-scale exploration of new double perovskites. ACS Appl Mater Interfaces, 2022, 14: 717–725

    Article  CAS  PubMed  Google Scholar 

  78. Loh W. Classification and regression trees. WIREs Data Min Knowl, 2011, 1: 14–23

    Article  Google Scholar 

  79. Smola AJ, Schölkopf B. A tutorial on support vector regression. Stat Computing, 2004, 14: 199–222

    Article  Google Scholar 

  80. Xu R, WunschII D. Survey of clustering algorithms. IEEE Trans Neural Netw, 2005, 16: 645–678

    Article  PubMed  Google Scholar 

  81. Yan S, Xu D, Zhang B, et al. Graph embedding and extensions: A general framework for dimensionality reduction. IEEE Trans Pattern Anal Mach Intell, 2007, 29: 40–51

    Article  PubMed  Google Scholar 

  82. Anowar F, Sadaoui S, Selim B. Conceptual and empirical comparison of dimensionality reduction algorithms (PCA, KPCA, LDA, MDS, SVD, LLE, ISOMAP, LE, ICA, t-SNE). Comput Sci Rev, 2021, 40: 100378

    Article  Google Scholar 

  83. Martinez AM, Kak AC. PCA versus LDA. IEEE Trans Pattern Anal Machine Intell, 2001, 23: 228–233

    Article  Google Scholar 

  84. Chen J, Xu W, Zhang R. Δ-Machine learning-driven discovery of double hybrid organic-inorganic perovskites. J Mater Chem A, 2022, 10: 1402–1413

    Article  CAS  Google Scholar 

  85. Venkatraman V. The utility of composition-based machine learning models for band gap prediction. Comput Mater Sci, 2021, 197: 110637

    Article  CAS  Google Scholar 

  86. Yang X, Li L, Tao Q, et al. Rapid discovery of narrow bandgap oxide double perovskites using machine learning. Comput Mater Sci, 2021, 196: 110528

    Article  CAS  Google Scholar 

  87. Saidi WA, Shadid W, Castelli IE. Machine-learning structural and electronic properties of metal halide perovskites using a hierarchical convolutional neural network. npj Comput Mater, 2020, 6: 36

    Article  CAS  Google Scholar 

  88. Shen Y, Wang J, Ji X, et al. Machine learning-assisted discovery of 2D perovskites with tailored bandgap for solar cells. Advcd Theor Sims, 2023, 6: 2200922

    Article  CAS  Google Scholar 

  89. Liu Y, Yan W, Han S, et al. How machine learning predicts and explains the performance of perovskite solar cells. Sol RRL, 2022, 6: 2101100

    Article  CAS  Google Scholar 

  90. Rath S, Sudha Priyanga G, Nagappan N, et al. Discovery ofdirect band gap perovskites for light harvesting by using machine learning. Comput Mater Sci, 2022, 210: 111476

    Article  CAS  Google Scholar 

  91. Kumar U, Mishra KA, Kushwaha AK, et al. Bandgap analysis of transition-metal dichalcogenide and oxide via machine learning approach. J Phys Chem Solids, 2022, 171: 110973

    Article  CAS  Google Scholar 

  92. Lu S, Zhou Q, Ouyang Y, et al. Accelerated discovery of stable lead-free hybrid organic-inorganic perovskites via machine learning. Nat Commun, 2018, 9: 3405

    Article  PubMed  PubMed Central  Google Scholar 

  93. Längkvist M, Karlsson L, Loutfi A. A review of unsupervised feature learning and deep learning for time-series modeling. Pattern Recognition Lett, 2014, 42: 11–24

    Article  Google Scholar 

  94. Xie T, Grossman JC. Hierarchical visualization of materials space with graph convolutional neural networks. J Chem Phys, 2018, 149: 174111

    Article  PubMed  Google Scholar 

  95. Young T, Hazarika D, Poria S, et al. Recent trends in deep learning based natural language processing. IEEE Comput Intell Mag, 2018, 13: 55–75

    Article  Google Scholar 

  96. Nadkarni PM, Ohno-Machado L, Chapman WW. Natural language processing: An introduction. J Am Med Inform Assoc, 2011, 18: 544–551

    Article  PubMed  PubMed Central  Google Scholar 

  97. Zhang L, He M. Unsupervised machine learning for solar cell materials from the literature. J Appl Phys, 2022, 131: 064902

    Article  CAS  Google Scholar 

  98. Huang S, Cole JM. A database of battery materials auto-generated using ChemDataExtractor. Sci Data, 2020, 7: 260

    Article  PubMed  PubMed Central  Google Scholar 

  99. Dong Q, Cole JM. Auto-generated database of semiconductor band gaps using ChemDataExtractor. Sci Data, 2022, 9: 193

    Article  PubMed  PubMed Central  Google Scholar 

  100. Vasylenko A, Gamon J, Duff BB, et al. Element selection for crystalline inorganic solid discovery guided by unsupervised machine learning of experimentally explored chemistry. Nat Commun, 2021, 12: 5561

    Article  PubMed  PubMed Central  Google Scholar 

  101. Xie T, Fu X, Ganea OE, et al. Crystal diffusion variational autoencoder for periodic material generation. 2022, https://doi.org/10.48550/arXiv.2110.06197

  102. Binks DJ, Dawson P, Oliver RA, et al. Cubic GaN and InGaN/GaN quantum wells. Appl Phys Rev, 2022, 9: 041309

    Article  CAS  Google Scholar 

  103. Zhao Y, Al-Fahdi M, Hu M, et al. High-throughput discovery of novel cubic crystal materials using deep generative neural networks. Adv Sci, 2021, 8: 2100566

    Article  CAS  Google Scholar 

  104. Lee IH, Chang KJ. Crystal structure prediction in a continuous representative space. Comput Mater Sci, 2021, 194: 110436

    Article  CAS  Google Scholar 

  105. Kong S, Guevarra D, Gomes CP, et al. Materials representation and transfer learning for multi-property prediction. Appl Phys Rev, 2021, 8: 021409

    Article  CAS  Google Scholar 

  106. Rigoni D, Navarin N, Sperduti A. Conditional constrained graph variational autoencoders for molecule design. 2020. http://arxiv.org/abs/2009.00725

  107. Jang J, Gu GH, Noh J, et al. Structure-based synthesizability prediction of crystals using partially supervised learning. J Am Chem Soc, 2020, 142: 18836–18843

    Article  CAS  PubMed  Google Scholar 

  108. Dan Y, Zhao Y, Li X, et al. Generative adversarial networks (GAN) based efficient sampling of chemical composition space for inverse design of inorganic materials. npj Comput Mater, 2020, 6: 84

    Article  CAS  Google Scholar 

  109. Court CJ, Yildirim B, Jain A, et al. 3-D inorganic crystal structure generation and property prediction via representation learning. J Chem Inf Model, 2020, 60: 4518–4535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Noh J, Kim J, Stein HS, et al. Inverse design ofsolid-state materials via a continuous representation. Matter, 2019, 1: 1370–1384

    Article  Google Scholar 

  111. Jin W, Barzilay R, Jaakkola T. Junction tree variational autoencoder for molecular graph generation. 2019. http://arxiv.org/abs/1802.04364

  112. Kipf TN, Welling M. Variational graph auto-encoders. 2016. http://arxiv.org/abs/1611.07308

  113. Hu J, Li M, Gao P. MATGANIP: Learning to discover the structure-property relationship in perovskites with generative adversarial networks. 2019. https://doi.org/10.48550/arXiv.1910.09003

  114. Zhou ZH, Li M. Semi-supervised learning by disagreement. Knowl Inf Syst, 2010, 24: 415–439

    Article  Google Scholar 

  115. Han K, Chen W, Xu M. Investigating active positive-unlabeled learning with deep networks. In: Proceedings of AI 2021: Advances in Artificial Intelligence: 34th Australasian Joint Conference. Sydney: Springer-Verlag, 2022. 13151

    Google Scholar 

  116. Bekker J, Davis J. Learning from positive and unlabeled data: A survey. Mach Learn, 2020, 109: 719–760

    Article  Google Scholar 

  117. Gu GH, Jang J, Noh J, et al. Perovskite synthesizability using graph neural networks. npj Comput Mater, 2022, 8: 71

    Article  Google Scholar 

  118. Arulkumaran K, Deisenroth MP, Brundage M, et al. Deep reinforcement learning: A brief survey. IEEE Signal Process Mag, 2017, 34: 26–38

    Article  Google Scholar 

  119. Świechowski M, Godlewski K, Sawicki B, et al. Monte Carlo tree search: A review of recent modifications and applications. Artif Intell Rev, 2023, 56: 2497–2562

    Article  Google Scholar 

  120. Jensen JH. A graph-based genetic algorithm and generative model/Monte Carlo tree search for the exploration of chemical space. Chem Sci, 2019, 10: 3567–3572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Song Z, Zhou Q, Lu S, et al. Adaptive design of alloys for CO2 activation and methanation via reinforcement learning Monte Carlo tree search algorithm. J Phys Chem Lett, 2023, 14: 3594–3601

    Article  CAS  PubMed  Google Scholar 

  122. Ureel Y, Dobbelaere MR, Ouyang Y, et al. Active machine learning for chemical engineers: A bright future lies ahead! Engineering, 2023, doi: https://doi.org/10.1016/j.eng.2023.02.019

  123. Wen Y, Li Z, Xiang Y, et al. Improving molecular machine learning through adaptive subsampling with active learning. Digital Discov, 2023, 2: 1134–1142

    Article  CAS  Google Scholar 

  124. Lookman T, Balachandran PV, Xue D, et al. Active learning in materials science with emphasis on adaptive sampling using uncertainties for targeted design. npj Comput Mater, 2019, 5: 21

    Article  Google Scholar 

  125. Kim Y, Kim Y, Yang C, et al. Deep learning framework for material design space exploration using active transfer learning and data augmentation. npj Comput Mater, 2021, 7: 140

    Article  Google Scholar 

  126. Pan SJ, Yang Q. A survey on transfer learning. IEEE Trans Knowl Data Eng, 2010, 22: 1345–1359

    Article  Google Scholar 

  127. Zhuang F, Qi Z, Duan K, et al. A comprehensive survey on transfer learning. Proc IEEE, 2021, 109: 43–76

    Article  Google Scholar 

  128. Jha D, Choudhary K, Tavazza F, et al. Enhancing materials property prediction by leveraging computational and experimental data using deep transfer learning. Nat Commun, 2019, 10: 5316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Goodall REA, Lee AA. Predicting materials properties without crystal structure: Deep representation learning from stoichiometry. Nat Commun, 2020, 11: 6280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Chen C, Ye W, Zuo Y, et al. Graph networks as a universal machine learning framework for molecules and crystals. Chem Mater, 2019, 31: 3564–3572

    Article  CAS  Google Scholar 

  131. Chen C, Ong SP. AtomSets as a hierarchical transfer learning framework for small and large materials datasets. npj Comput Mater, 2021, 7: 173

    Article  Google Scholar 

  132. Pasupa K, Sunhem W. A comparison between shallow and deep architecture classifiers on small dataset. In: 2016 8th International Conference on Information Technology and Electrical Engineering (ICITEE). Yogyakarta: IEEE, 2016. 1–6

    Google Scholar 

  133. Janiesch C, Zschech P, Heinrich K. Machine learning and deep learning. Electron Markets, 2021, 31: 685–695

    Article  Google Scholar 

  134. Cortes C, Vapnik V. Machine learning and deep learning. Machine Learn, 1995, 20: 273–297

    Article  Google Scholar 

  135. Shawe-Taylor J, Sun S. A review of optimization methodologies in support vector machines. Neurocomputing, 2011, 74: 3609–3618

    Article  Google Scholar 

  136. Maddah HA, Berry V, Behura SK. Cuboctahedral stability in titanium halide perovskites via machine learning. Comput Mater Sci, 2020, 173: 109415

    Article  CAS  Google Scholar 

  137. Sagi O, Rokach L. Ensemble learning: A survey. WIREs Data Min Knowl, 2018, 8: e1249

    Article  Google Scholar 

  138. Dietterich TG. Ensemble methods in machine learning. In: Multiple Classifier Systems. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000: 1–15

    Google Scholar 

  139. Bauer E, Kohavi R. An empirical comparison of voting classification algorithms: Bagging, boosting, and variants. Machine Learn, 1999, 36: 105–139

    Article  Google Scholar 

  140. Biau G, Scornet E. A random forest guided tour. TEST, 2016, 25: 197–227

    Article  Google Scholar 

  141. Breiman L. Random forests. Machine Learn, 2001, 45: 5–32

    Article  Google Scholar 

  142. Talapatra A, Uberuaga BP, Stanek CR, et al. Band gap predictions of double perovskite oxides using machine learning. Commun Mater, 2023, 4: 46

    Article  CAS  Google Scholar 

  143. Freund Y, Schapire RE. Experiments with a new boosting algorithm. In: Proceedings of the Thirteenth International Conference on International Conference on Machine Learning. San Francisco: Morgan Kaufmann Publishers Inc., 1996. 148–156

    Google Scholar 

  144. Friedman JH. Greedy function approximation: A gradient boosting machine.. Ann Statist, 2001, 29

  145. Chen T, Guestrin C. XGBoost: A scalable tree boosting system. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: Association for Computing Machinery, 2016. 785–794

    Chapter  Google Scholar 

  146. Ke G, Meng Q, Finley T, et al. LightGBM: A highly efficient gradient boosting decision tree. In: Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2017. 3149–3157

    Google Scholar 

  147. Liu H, Cheng J, Dong H, et al. Screening stable and metastable ABO3 perovskites using machine learning and the materials project. Comput Mater Sci, 2020, 177: 109614

    Article  CAS  Google Scholar 

  148. Tsymbalov E, Shi Z, Dao M, et al. Machine learning for deep elastic strain engineering of semiconductor electronic band structure and effective mass. npj Comput Mater, 2021, 7: 76

    Article  CAS  Google Scholar 

  149. Himanen L, Jäger MOJ, Morooka EV, et al. DScribe: Library of descriptors for machine learning in materials science. Comput Phys Commun, 2020, 247: 106949

    Article  CAS  Google Scholar 

  150. Batra R, Song L, Ramprasad R. Emerging materials intelligence ecosystems propelled by machine learning. Nat Rev Mater, 2021, 6: 655–678

    Article  Google Scholar 

  151. Wang Z, Sun Z, Yin H, et al. Data-driven materials innovation and applications. Adv Mater, 2022, 34: 2104113

    Article  CAS  Google Scholar 

  152. Hu W, Zhang L, Pan Z. Designing two-dimensional halide perovskites based on high-throughput calculations and machine learning. ACS Appl Mater Interfaces, 2022, 14: 21596–21604

    Article  CAS  PubMed  Google Scholar 

  153. Im J, Lee S, Ko TW, et al. Identifying Pb-free perovskites for solar cells by machine learning. npj Comput Mater, 2019, 5: 37

    Article  Google Scholar 

  154. Park H, Ali A, Mall R, et al. Data-driven enhancement of cubic phase stability in mixed-cation perovskites. Mach Learn-Sci Technol, 2021, 2: 025030

    Article  Google Scholar 

  155. Balachandran PV, Emery AA, Gubernatis JE, et al. Predictions of new ABO3 perovskite compounds by combining machine learning and density functional theory. Phys Rev Mater, 2018, 2: 043802

    Article  CAS  Google Scholar 

  156. Choudhary K, DeCost B, Chen C, et al. Recent advances and applications of deep learning methods in materials science. npj Comput Mater, 2022, 8: 59

    Article  Google Scholar 

  157. Alom MZ, Taha TM, Yakopcic C, et al. A state-of-the-art survey on deep learning theory and architectures. Electronics, 2019, 8: 292

    Article  Google Scholar 

  158. Tan C, Sun F, Kong T, et al. A survey on deep transfer learning. In: Kůrková V, Manolopoulos Y, Hammer B, et al. (eds). Artificial Neural Networks and Machine Learning–ICANN 2018. Cham: Springer, 2018

    Google Scholar 

  159. Qian J, Kim T, Jeon M. Reliability of large scale GPU clusters for deep learning workloads. In: Companion Proceedings of the Web Conference. Now York: Association for Computing Machinery, 2021. 179–181

    Google Scholar 

  160. Zhang Q, Zhu S. Visual interpretability for deep learning: A survey. Front Inf Technol Electron Eng, 2018, 19: 27–39

    Article  Google Scholar 

  161. Bailly A, Blanc C, Francis É, et al. Effects of dataset size and interactions on the prediction performance of logistic regression and deep learning models. Comput Methods Programs Biomed, 2022, 213: 106504

    Article  PubMed  Google Scholar 

  162. Omee SS, Louis SY, Fu N, et al. Scalable deeper graph neural networks for high-performance materials property prediction. Patterns, 2022, 3: 100491

    Article  PubMed  PubMed Central  Google Scholar 

  163. Domhan T, Springenberg JT, Hutter F. Speeding up automatic hyperparameter optimization of deep neural networks by extrapolation of learning curves. In: Yang Q, Wooldridge M (eds). Proceedings of the 24th International Conference on Artificial Intelligence. Buenos Aires: AAAI Press, 2015. 3460–3468

    Google Scholar 

  164. Scarselli F, Gori M, Ah Chung Tsoi M, et al. The graph neural network model. IEEE Trans Neural Netw, 2009, 20: 61–80

    Article  PubMed  Google Scholar 

  165. Gong S, Yan K, Xie T, et al. Examining graph neural networks for crystal structures: Limitations and opportunities for capturing periodicity. Sci Adv, 2023, 9: eadi3245

    Article  PubMed  PubMed Central  Google Scholar 

  166. Reiser P, Neubert M, Eberhard A, et al. Graph neural networks for materials science and chemistry. Commun Mater, 2022, 3: 93

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Goswami L, Deka MK, Roy M. Artificial intelligence in material engineering: A review on applications of artificial intelligence in material engineering. Adv Eng Mater, 2023, 25: 2300104

    Article  CAS  Google Scholar 

  168. Choudhary K, DeCost B. Atomistic line graph neural network for improved materials property predictions. npj Comput Mater, 2021, 7: 185

    Article  Google Scholar 

  169. Schmidt J, Pettersson L, Verdozzi C, et al. Crystal graph attention networks for the prediction of stable materials. Sci Adv, 2021, 7: eabi7948

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Xie T, Grossman JC. Crystal graph convolutional neural networks for an accurate and interpretable prediction of material properties. Phys Rev Lett, 2018, 120: 145301

    Article  CAS  PubMed  Google Scholar 

  171. Antunes LM, Grau-Crespo R, Butler KT. Distributed representations of atoms and materials for machine learning. npj Comput Mater, 2022, 8: 44

    Article  Google Scholar 

  172. Louis SY, Zhao Y, Nasiri A, et al. Graph convolutional neural networks with global attention for improved materials property prediction. Phys Chem Chem Phys, 2020, 22: 18141–18148

    Article  CAS  PubMed  Google Scholar 

  173. Karamad M, Magar R, Shi Y, et al. Orbital graph convolutional neural network for material property prediction. Phys Rev Mater, 2020, 4: 093801

    Article  CAS  Google Scholar 

  174. Park CW, Wolverton C. Developing an improved crystal graph convolutional neural network framework for accelerated materials discovery. Phys Rev Mater, 2020, 4: 063801

    Article  CAS  Google Scholar 

  175. Li Z, Liu F, Yang W, et al. A survey of convolutional neural networks: Analysis, applications, and prospects. IEEE Trans Neural Netw Learn Syst, 2022, 33: 6999–7019

    Article  PubMed  Google Scholar 

  176. Chen C, Ong SP. A universal graph deep learning interatomic potential for the periodic table. Nat Comput Sci, 2022, 2: 718–728

    Article  PubMed  Google Scholar 

  177. Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need. In: Proceedings of the 31st International Conference on Neural Information Processing Systems. Long Beach: Curran Associates Inc., 2017. 6000–6010

    Google Scholar 

  178. Zhuo Y, Mansouri Tehrani A, Brgoch J. Predicting the band gaps of inorganic solids by machine learning. J Phys Chem Lett, 2018, 9: 1668–1673

    Article  CAS  PubMed  Google Scholar 

  179. Jha D, Ward L, Paul A, et al. ElemNet: Deep learning the chemistry of materials from only elemental composition. Sci Rep, 2018, 8: 17593

    Article  PubMed  PubMed Central  Google Scholar 

  180. Zeng S, Zhao Y, Li G, et al. Atom table convolutional neural networks for an accurate prediction of compounds properties. npj Comput Mater, 2019, 5: 84

    Article  Google Scholar 

  181. Wang AYT, Kauwe SK, Murdock RJ, et al. Compositionally restricted attention-based network for materials property predictions. npj Comput Mater, 2021, 7: 77

    Article  Google Scholar 

  182. Gm H, Gourisaria MK, Pandey M, et al. A comprehensive survey and analysis of generative models in machine learning. Comput Sci Rev, 2020, 38: 100285

    Article  Google Scholar 

  183. Wang B, Vastola JJ. Diffusion models generate images like painters: An analytical theory of outline first, details later. 2023. https://doi.org/10.48550/arXiv.2303.02490

  184. Turk H, Landini E, Kunkel C, et al. Assessing deep generative models in chemical composition space. Chem Mater, 2022, 34: 9455–9467

    Article  Google Scholar 

  185. Sanchez-Lengeling B, Aspuru-Guzik A. Inverse molecular design using machine learning: Generative models for matter engineering. Science, 2018, 361: 360–365

    Article  CAS  PubMed  Google Scholar 

  186. Kingma DP, Welling M. An introduction to variational autoencoders. FNT Machine Learn, 2019, 12: 307–392

    Article  Google Scholar 

  187. Goodfellow I, Pouget-Abadie J, Mirza M, et al. Generative adversarial networks. Commun ACM, 2020, 63: 139–144

    Article  Google Scholar 

  188. Glass CW, Oganov AR, Hansen N. USPEX—Evolutionary crystal structure prediction. Comput Phys Commun, 2006, 175: 713–720

    Article  CAS  Google Scholar 

  189. Wang Y, Lv J, Zhu L, et al. CALYPSO: A method for crystal structure prediction. Comput Phys Commun, 2012, 183: 2063–2070

    Article  CAS  Google Scholar 

  190. Pathak Y, Juneja KS, Varma G, et al. Deep learning enabled inorganic material generator. Phys Chem Chem Phys, 2020, 22: 26935–26943

    Article  CAS  PubMed  Google Scholar 

  191. Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: Navab N, Hornegger J, Wells W, et al. (eds). Medical Image Computing and Computer-assisted Intervention-MICCAI 2015. Cham: Springer, 2015

    Google Scholar 

  192. Groom CR, Bruno IJ, Lightfoot MP, et al. The Cambridge structural database. Acta Crystlogr B Struct Sci Cryst Eng Mater, 2016, 72: 171–179

    Article  CAS  Google Scholar 

  193. Choudhary K, Garrity KF, Reid ACE, et al. The joint automated repository for various integrated simulations (JARVIS) for data-driven materials design. npj Comput Mater, 2020, 6: 173

    Article  Google Scholar 

  194. Haastrup S, Strange M, Pandey M, et al. The computational 2D materials database: High-throughput modeling and discovery of atomically thin crystals. 2D Mater, 2018, 5: 042002

    Article  CAS  Google Scholar 

  195. Gjerding MN, Taghizadeh A, Rasmussen A, et al. Recent progress of the computational 2D materials database (C2DB). 2D Mater, 2021, 8: 044002

    Article  CAS  Google Scholar 

  196. Moustafa H, Larsen PM, Gjerding MN, et al. Computational exfoliation of atomically thin one-dimensional materials with application to Majorana bound states. Phys Rev Mater, 2022, 6: 064202

    Article  CAS  Google Scholar 

  197. Draxl C, Scheffler M. The NOMAD laboratory: From data sharing to artificial intelligence. J Phys Mater, 2019, 2: 036001

    Article  CAS  Google Scholar 

  198. Bobbitt NS, Shi K, Bucior BJ, et al. MOFX-DB: An online database of computational adsorption data for nanoporous materials. J Chem Eng Data, 2023, 68: 483–498

    Article  CAS  Google Scholar 

  199. Hachmann J, Olivares-Amaya R, Atahan-Evrenk S, et al. The Harvard clean energy project: Large-scale computational screening and design of organic photovoltaics on the World Community Grid. J Phys Chem Lett, 2011, 2: 2241–2251

    Article  CAS  Google Scholar 

  200. Borysov SS, Geilhufe RM, Balatsky AV. Organic materials database: An open-access online database for data mining. PLoS ONE, 2017, 12: e0171501

    Article  PubMed  PubMed Central  Google Scholar 

  201. Kim S, Thiessen PA, Bolton EE, et al. PubChem substance and compound databases. Nucleic Acids Res, 2016, 44: D1202–D1213

    Article  CAS  PubMed  Google Scholar 

  202. Bergerhoff G, Hundt R, Sievers R, et al. The inorganic crystal structure data base. J Chem Inf Comput Sci, 1983, 23: 66–69

    Article  CAS  Google Scholar 

  203. Court CJ, Cole JM. Magnetic and superconducting phase diagrams and transition temperatures predicted using text mining and machine learning. npj Comput Mater, 2020, 6: 18

    Article  Google Scholar 

  204. Swain MC, Cole JM. ChemDataExtractor: A toolkit for automated extraction of chemical information from the scientific literature. J Chem Inf Model, 2016, 56: 1894–1904

    Article  CAS  PubMed  Google Scholar 

  205. Mentel LM. Mendeleev—A Python resource for properties of chemical elements, ions and isotopes. 2014. https://github.com/lmmentel/mendeleev

  206. Ong SP, Richards WD, Jain A, et al. Python Materials Genomics (pymatgen): A robust, open-source python library for materials analysis. Comput Mater Sci, 2013, 68: 314–319

    Article  CAS  Google Scholar 

  207. Ward L, Dunn A, Faghaninia A, et al. Matminer: An open source toolkit for materials data mining. Comput Mater Sci, 2018, 152: 60–69

    Article  Google Scholar 

  208. Laakso J, Himanen L, Homm H, et al. Updates to the DScribe library: New descriptors and derivatives. J Chem Phys, 2023, 158: 234802

    Article  CAS  PubMed  Google Scholar 

  209. Ganose AM, Jain A. Robocrystallographer: Automated crystal structure text descriptions and analysis. MRS Commun, 2019, 9: 874–881

    Article  CAS  Google Scholar 

  210. Ouyang R, Curtarolo S, Ahmetcik E, et al. SISSO: A compressed-sensing method for identifying the best low-dimensional descriptor in an immensity of offered candidates. Phys Rev Mater, 2018, 2: 083802

    Article  CAS  Google Scholar 

  211. gplearn. https://gplearn.readthedocs.io/en/latest/intro.html

  212. Ward L, Agrawal A, Choudhary A, et al. A general-purpose machine learning framework for predicting properties of inorganic materials. npj Comput Mater, 2016, 2: 16028

    Article  Google Scholar 

  213. Zhou Q, Tang P, Liu S, et al. Learning atoms for materials discovery. Proc Natl Acad Sci USA, 2018, 115: E6411–E6417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Pedregosa F, Varoquaux G, Gramfort A, et al. Scikit-learn: Machine learning in Python. J Mach Learn Res, 2011, 12: 2825–2830

    Google Scholar 

  215. Paszke A, Gross S, Massa F, et al. PyTorch: An imperative style, high-performance deep learning library. 2019. https://doi.org/10.48550/arXiv.1912.01703

  216. Abadi M, Barham P, Chen J, et al. TensorFlow: A system for large-scale machine learning. 2016. https://doi.org/10.48550/arXiv.1605.08695

  217. Gossett E, Toher C, Oses C, et al. AFLOW-ML: A RESTful API for machine-learning predictions of materials properties. Comput Mater Sci, 2018, 152: 134–145

    Article  CAS  Google Scholar 

  218. Wang H, Zhang L, Han J, et al. DeePMD-kit: A deep learning package for many-body potential energy representation and molecular dynamics. Comput Phys Commun, 2018, 228: 178–184

    Article  CAS  Google Scholar 

  219. Zhao XG, Zhou K, Xing B, et al. JAMIP: An artificial-intelligence aided data-driven infrastructure for computational materials informatics. Sci Bull, 2021, 66: 1973–1985

    Article  CAS  Google Scholar 

  220. Wang G, Peng L, Li K, et al. ALKEMIE: An intelligent computational platform for accelerating materials discovery and design. Comput Mater Sci, 2021, 186: 110064

    Article  CAS  Google Scholar 

  221. Wang J, Gao H, Han Y, et al. MAGUS: Machine learning and graph theory assisted universal structure searcher. Natl Sci Rev, 2023, 10: nwad128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Jacobs R, Mayeshiba T, Afflerbach B, et al. The materials simulation toolkit for machine learning (MAST-ML): An automated open source toolkit to accelerate data-driven materials research. Comput Mater Sci, 2020, 176: 109544

    Article  Google Scholar 

  223. Peterson GGC, Brgoch J. Materials discovery through machine learning formation energy. J Phys Energy, 2021, 3: 022002

    Article  CAS  Google Scholar 

  224. Ballif C, Haug FJ, Boccard M, et al. Status and perspectives of crystalline silicon photovoltaics in research and industry. Nat Rev Mater, 2022, 7: 597–616

    Article  Google Scholar 

  225. Barrigón E, Heurlin M, Bi Z, et al. Synthesis and applications of III–V nanowires. Chem Rev, 2019, 119: 9170–9220

    Article  PubMed  Google Scholar 

  226. Lee TD, Ebong AU. A review of thin film solar cell technologies and challenges. Renew Sustain Energy Rev, 2017, 70: 1286–1297

    Article  CAS  Google Scholar 

  227. Castro Neto AH, Guinea F, Peres NMR, et al. The electronic properties of graphene. Rev Mod Phys, 2009, 81: 109–162

    Article  CAS  Google Scholar 

  228. Li L, Yu Y, Ye GJ, et al. Black phosphorus field-effect transistors. Nat Nanotech, 2014, 9: 372–377

    Article  CAS  Google Scholar 

  229. Aftab S, Hegazy HH. Emerging trends in 2D TMDs photodetectors and piezo-phototronic devices. Small, 2023, 19: 2205778

    Article  CAS  Google Scholar 

  230. Liang SJ, Cheng B, Cui X, et al. Van der Waals heterostructures for high-performance device applications: Challenges and opportunities. Adv Mater, 2020, 32: 1903800

    Article  CAS  Google Scholar 

  231. Liu Y, Duan X, Shin HJ, et al. Promises and prospects of two-dimensional transistors. Nature, 2021, 591: 43–53

    Article  CAS  PubMed  Google Scholar 

  232. Zhang L, Mei L, Wang K, et al. Advances in the application of perovskite materials. Nano-Micro Lett, 2023, 15: 177

    Article  Google Scholar 

  233. Chen X, Wang C, Li Z, et al. Bayesian optimization based on a unified figure of merit for accelerated materials screening: A case study of halide perovskites. Sci China Mater, 2020, 63: 1024–1035

    Article  CAS  Google Scholar 

  234. Wang JT, Wang SZ, Zhou YH, et al. Flexible perovskite light-emitting diodes: Progress, challenges and perspective. Sci China Mater, 2023, 66: 1–21

    Article  Google Scholar 

  235. Zhang B, Sun B, Liu F, et al. TiO2-based S-scheme photocatalysts for solar energy conversion and environmental remediation. Sci China Mater, 2024, 67: 424–443

    Article  CAS  Google Scholar 

  236. Zhou L, Xu Y, Chen B, et al. Synthesis and photocatalytic application of stable lead-free Cs2AgBiBr6 perovskite nanocrystals. Small, 2018, 14: 1703762

    Article  Google Scholar 

  237. Qiu P, Shi X, Chen L. Cu-based thermoelectric materials. Energy Storage Mater, 2016, 3: 85–97

    Article  Google Scholar 

  238. Wu X, Gao W, Chai J, et al. Defect tolerance in chalcogenide perovskite photovoltaic material BaZrS3. Sci China Mater, 2021, 64: 2976–2986

    Article  CAS  Google Scholar 

  239. Gan Y, Miao N, Lan P, et al. Robust design of high-performance optoelectronic chalcogenide crystals from high-throughput computation. J Am Chem Soc, 2022, 144: 5878–5886

    Article  CAS  PubMed  Google Scholar 

  240. Min H, Lee DY, Kim J, et al. Perovskite solar cells with atomically coherent interlayers on SnO2 electrodes. Nature, 2021, 598: 444–450

    Article  CAS  PubMed  Google Scholar 

  241. Zhu L, Cao H, Xue C, et al. Unveiling the additive-assisted oriented growth of perovskite crystallite for high performance light-emitting diodes. Nat Commun, 2021, 12: 5081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  242. Dou L, Yang YM, You J, et al. Solution-processed hybrid perovskite photodetectors with high detectivity. Nat Commun, 2014, 5: 5404

    Article  CAS  PubMed  Google Scholar 

  243. Qin C, Sandanayaka ASD, Zhao C, et al. Stable room-temperature continuous-wave lasing in quasi-2D perovskite films. Nature, 2020, 585: 53–57

    Article  CAS  PubMed  Google Scholar 

  244. Li Y, Zhu R, Wang Y, et al. Center-environment deep transfer machine learning across crystal structures: From spinel oxides to perovskite oxides. npj Comput Mater, 2023, 9: 109

    Article  Google Scholar 

  245. Davies DW, Butler KT, Walsh A. Data-driven discovery of photoactive quaternary oxides using first-principles machine learning. Chem Mater, 2019, 31: 7221–7230

    Article  CAS  Google Scholar 

  246. Li X, Mai H, Lu J, et al. Rational atom substitution to obtain efficient, lead-free photocatalytic perovskites assisted by machine learning and DFT calculations. Angew Chem Int Ed, 2023, 62: e202315002

    Article  CAS  Google Scholar 

  247. Choubisa H, Todorović P, Pina JM, et al. Interpretable discovery of semiconductors with machine learning. npj Comput Mater, 2023, 9: 117

    Article  Google Scholar 

  248. Cho H, Kim YH, Wolf C, et al. Improving the stability of metal halide perovskite materials and light-emitting diodes. Adv Mater, 2018, 30: 1704587

    Article  Google Scholar 

  249. Bartel CJ. Review of computational approaches to predict the thermodynamic stability of inorganic solids. J Mater Sci, 2022, 57: 10475–10498

    Article  CAS  Google Scholar 

  250. Ye W, Chen C, Wang Z, et al. Deep neural networks for accurate predictions of crystal stability. Nat Commun, 2018, 9: 3800

    Article  PubMed  PubMed Central  Google Scholar 

  251. Pandey S, Qu J, Stevanović V, et al. Predicting energy and stability of known and hypothetical crystals using graph neural network. Patterns, 2021, 2: 100361

    Article  PubMed  PubMed Central  Google Scholar 

  252. Bartel CJ, Trewartha A, Wang Q, et al. A critical examination of compound stability predictions from machine-learned formation energies. npj Comput Mater, 2020, 6: 97

    Article  Google Scholar 

  253. Sun W, Dacek ST, Ong SP, et al. The thermodynamic scale of inorganic crystalline metastability. Sci Adv, 2016, 2: e1600225

    Article  PubMed  PubMed Central  Google Scholar 

  254. Li X, Xie Y, Guo Q. A new intelligent prediction method for grade estimation. In: Zhang L, Lu BL, Kwok J. (eds). Advances in Neural Networks-ISNN 2010. Berlin, Heidelberg: Springer, 2010

    Google Scholar 

  255. Chen Z, Andrejevic N, Smidt T, et al. Direct prediction of phonon density of states with euclidean neural networks. Adv Sci, 2021, 8: 2004214

    Article  CAS  Google Scholar 

  256. Noh J, Kim S, Gu G, et al. Unveiling new stable manganese based photoanode materials via theoretical high-throughput screening and experiments. Chem Commun, 2019, 55: 13418–13421

    Article  CAS  Google Scholar 

  257. De Yoreo JJ, Gilbert PUPA, Sommerdijk NAJM, et al. Crystallization by particle attachment in synthetic, biogenic, and geologic environments. Science, 2015, 349: aaa6760

    Article  PubMed  Google Scholar 

  258. Rappe AK, Casewit CJ, Colwell KS, et al. UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations. J Am Chem Soc, 1992, 114: 10024–10035

    Article  CAS  Google Scholar 

  259. Yu W, Ji C, Wan X, et al. Machine-learning-based interatomic potentials for advanced manufacturing. Int J Mech Sys Dyn, 2021, 1: 159–172

    Article  Google Scholar 

  260. Haghighatlari M, Li J, Guan X, et al. NewtonNet: A Newtonian message passing network for deep learning of interatomic potentials and forces. Digital Discov, 2022, 1: 333–343

    Article  CAS  Google Scholar 

  261. Wang QH, Kalantar-Zadeh K, Kis A, et al. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat Nanotech, 2012, 7: 699–712

    Article  CAS  Google Scholar 

  262. Saparov B, Mitzi DB. Organic-inorganic perovskites: Structural versatility for functional materials design. Chem Rev, 2016, 116: 4558–4596

    Article  CAS  PubMed  Google Scholar 

  263. Yang J, Mannodi-Kanakkithodi A. High-throughput computations and machine learning for halide perovskite discovery. MRS Bull, 2022, 47: 940–948

    Article  Google Scholar 

  264. Liu Y, Tan X, Liang J, et al. Machine learning for perovskite solar cells and component materials: Key technologies and prospects. Adv Funct Mater, 2023, 33: 2214271

    Article  CAS  Google Scholar 

  265. Miyata A, Mitioglu A, Plochocka P, et al. Direct measurement of the exciton binding energy and effective masses for charge carriers in organic-inorganic tri-halide perovskites. Nat Phys, 2015, 11: 582–587

    Article  CAS  Google Scholar 

  266. Geim AK. Graphene: Status and prospects. Science, 2009, 324: 1530–1534

    Article  CAS  PubMed  Google Scholar 

  267. Madsen GKH, Singh DJ. BoltzTraP. A code for calculating band-structure dependent quantities. Comput Phys Commun, 2006, 175: 67–71

    Article  CAS  Google Scholar 

  268. Choudhary K, Garrity KF, Sharma V, et al. High-throughput density functional perturbation theory and machine learning predictions of infrared, piezoelectric, and dielectric responses. npj Comput Mater, 2020, 6: 64

    Article  Google Scholar 

  269. Takahashi A, Kumagai Y, Miyamoto J, et al. Machine learning models for predicting the dielectric constants of oxides based on high-throughput first-principles calculations. Phys Rev Mater, 2020, 4: 103801

    Article  CAS  Google Scholar 

  270. Dong R, Dan Y, Li X, et al. Inverse design of composite metal oxide optical materials based on deep transfer learning and global optimization. Comput Mater Sci, 2021, 188: 110166

    Article  CAS  Google Scholar 

  271. Mi JX, Li AD, Zhou LF. Review study of interpretation methods for future interpretable machine learning. IEEE Access, 2020, 8: 191969–191985

    Article  Google Scholar 

  272. Lundberg S, Lee SI. A unified approach to interpreting model predictions. 2017. http://arxiv.org/abs/1705.07874

  273. Zhang S, Lu T, Xu P, et al. Predicting the formability of hybrid organic-inorganic perovskites via an interpretable machine learning strategy. J Phys Chem Lett, 2021, 12: 7423–7430

    Article  CAS  PubMed  Google Scholar 

  274. Stephens T. gpleran. https://gplearn.readthedocs.io/en/latest/intro.html

  275. Liu S, Wang J, Duan Z, et al. Simple structural descriptor obtained from symbolic classification for predicting the oxygen vacancy defect formation of perovskites. ACS Appl Mater Interfaces, 2022, 14: 11758–11767

    Article  CAS  PubMed  Google Scholar 

  276. Guo Z, Hu S, Han ZK, et al. Improving symbolic regression for predicting materials properties with iterative variable selection. J Chem Theor Comput, 2022, 18: 4945–4951

    Article  CAS  Google Scholar 

  277. Song Z, Wang X, Liu F, et al. Distilling universal activity descriptors for perovskite catalysts from multiple data sources via multi-task symbolic regression. Mater Horiz, 2023, 10: 1651–1660

    Article  CAS  PubMed  Google Scholar 

  278. Weng B, Song Z, Zhu R, et al. Simple descriptor derived from symbolic regression accelerating the discovery of new perovskite catalysts. Nat Commun, 2020, 11: 3513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  279. Bartel CJ, Sutton C, Goldsmith BR, et al. New tolerance factor to predict the stability of perovskite oxides and halides. Sci Adv, 2019, 5: eaav0693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  280. Aggour KS, Detor A, Gabaldon A, et al. Compound knowledge graph-enabled AI assistant for accelerated materials discovery. Integr Mater Manuf Innov, 2022, 11: 467–478

    Article  Google Scholar 

  281. Xie C, Pan Z, Shu C. Microstructure representation knowledge graph to explore the twinning formation. Crystals, 2022, 12: 466

    Article  CAS  Google Scholar 

  282. Zunger A. Inverse design in search of materials with target functionalities. Nat Rev Chem, 2018, 2: 0121

    Article  CAS  Google Scholar 

  283. Wang J, Wang Y, Chen Y. Inverse design of materials by machine learning. Materials, 2022, 15: 1811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  284. Mroz AM, Posligua V, Tarzia A, et al. Into the unknown: How computation can help explore uncharted material space. J Am Chem Soc, 2022, 144: 18730–18743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  285. Lyngby P, Thygesen KS. Data-driven discovery of 2D materials by deep generative models. npj Comput Mater, 2022, 8: 232

    Article  Google Scholar 

  286. Moustafa H, Lyngby PM, Mortensen JJ, et al. Hundreds ofnew, stable, one-dimensional materials from a generative machine learning model. Phys Rev Mater, 2023, 7: 014007

    Article  CAS  Google Scholar 

  287. Wines D, Xie T, Choudhary K. Inverse design of next-generation superconductors using data-driven deep generative models. J Phys Chem Lett, 2023, 14: 6630–6638

    Article  CAS  PubMed  Google Scholar 

  288. Zhu L, Zhou J, Sun Z. Materials data toward machine learning: Advances and challenges. J Phys Chem Lett, 2022, 13: 3965–3977

    Article  CAS  PubMed  Google Scholar 

  289. Zhang Y, Ling C. A strategy to apply machine learning to small datasets in materials science. npj Comput Mater, 2018, 4: 25

    Article  CAS  Google Scholar 

  290. Acar P. Recent progress of uncertainty quantification in small-scale materials science. Prog Mater Sci, 2021, 117: 100723

    Article  CAS  Google Scholar 

  291. Emery AA, Wolverton C. High-throughput DFT calculations of formation energy, stability and oxygen vacancy formation energy of ABO3 perovskites. Sci Data, 2017, 4: 170153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  292. Shen C, Li T, Zhang Y, et al. Accelerated screening of ternary chalcogenides for potential photovoltaic applications. J Am Chem Soc, 2023, 145: 21925–21936

    Article  CAS  PubMed  Google Scholar 

  293. Goldschmidt VM. Die gesetze der krystallochemie. Naturwissenschaften, 1926, 14: 477–485

    Article  CAS  Google Scholar 

  294. Robinson K, Gibbs GV, Ribbe PH. Quadratic elongation: A quantitative measure of distortion in coordination polyhedra. Science, 1971, 172: 567–570

    Article  CAS  PubMed  Google Scholar 

  295. Stoumpos CC, Frazer L, Clark DJ, et al. Hybrid germanium iodide perovskite semiconductors: Active lone pairs, structural distortions, direct and indirect energy gaps, and strong nonlinear optical properties. J Am Chem Soc, 2015, 137: 6804–6819

    Article  CAS  PubMed  Google Scholar 

  296. Baur WH. The geometry of polyhedral distortions. Predictive relationships for the phosphate group. Acta Crystlogr B Struct Sci, 1974, 30: 1195–1215

    Article  CAS  Google Scholar 

  297. Pan H, Ganose AM, Horton M, et al. Benchmarking coordination number prediction algorithms on inorganic crystal structures. Inorg Chem, 2021, 60: 1590–1603

    Article  CAS  PubMed  Google Scholar 

  298. Zimmermann NER, Jain A. Local structure order parameters and site fingerprints for quantification of coordination environment and crystal structure similarity. RSC Adv, 2020, 10: 6063–6081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  299. Tamtaji M, Gao H, Hossain MD, et al. Machine learning for design principles for single atom catalysts towards electrochemical reactions. J Mater Chem A, 2022, 10: 15309–15331

    Article  CAS  Google Scholar 

  300. Birschitzky VC, Ellinger F, Diebold U, et al. Machine learning for exploring small polaron configurational space. npj Comput Mater, 2022, 8: 125

    Article  Google Scholar 

  301. Wu X, Wang H, Gong Y, et al. Graph neural networks for molecular and materials representation. J Mater Inf, 2023, 3: 12

    Article  CAS  Google Scholar 

  302. Bilodeau C, Jin W, Jaakkola T, et al. Generative models for molecular discovery: Recent advances and challenges. WIREs Comput Mol Sci, 2022, 12: e1608

    Article  Google Scholar 

  303. Peña-Guerrero J, Nguewa PA, García-Sosa AT. Machine learning, artificial intelligence, and data science breaking into drug design and neglected diseases. WIREs Comput Mol Sci, 2021, 11: e1513

    Article  Google Scholar 

  304. Bagal V, Aggarwal R, Vinod PK, et al. MolGPT: Molecular generation using a transformer-decoder model. J Chem Inf Model, 2022, 62: 2064–2076

    Article  CAS  PubMed  Google Scholar 

  305. Song Y, Ermon S. Generative modeling by estimating gradients of the data distribution. 2020. http://arxiv.org/abs/1907.05600

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (62125402 and 62321166653).

Author information

Authors and Affiliations

Authors

Contributions

Author contributions Yang X prepared the manuscript under the direction of Zhang L; Zhou K helped prepare the figures and tables; Zhang L and He X revised the manuscript. All authors contributed to the general discussion.

Corresponding authors

Correspondence to Xin He  (贺欣) or Lijun Zhang  (张立军).

Ethics declarations

Conflict of interest The authors declare that they have no conflict of interest.

Additional information

Xiaoyu Yang is a doctoral student at the School of Materials Science and Engineering, Jilin University. He received a Bachelor degree in materials physics from Jilin University in 2020. His research interests focus on promoting the study of new optoelectronic semiconductor materials through high-throughput computation and machine learning.

Xin He obtained her PhD degree at Jilin University (2019), and now is an associate professor and Tang Aoqing Young Scholars of Jilin University. She was awarded the Postdoctoral Innovative Talents Supporting Program in 2019. Her current interests focus on designing novel semiconductor materials for optoelectronic applications.

Lijun Zhang is the Tang Aoqing Distinguished Professor, Dean of the School of Materials Science and Engineering, Jilin University, China. He obtained his BS degree from the Northeast Normal University (2003), and completed his PhD degree at Jilin University (2008), China. He then worked as a postdoctoral researcher at Oak Ridge National Laboratory (2008–2010) and National Renewable Energy Laboratory (2010–2013), and became a research assistant professor at the University of Colorado at Boulder (2013–2014). In September 2014, he became a permanent faculty of the School of Materials Science and Engineering, Jilin University. His current interest focuses on the design of new materials and the enhancement of semiconductor performance tailored for diverse optoelectronic applications.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, X., Zhou, K., He, X. et al. Methods and applications of machine learning in computational design of optoelectronic semiconductors. Sci. China Mater. 67, 1042–1081 (2024). https://doi.org/10.1007/s40843-024-2851-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40843-024-2851-9

Keywords