Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Advertisement

A data-driven method for optimization of classical interatomic potentials

  • Original Paper
  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

Training an interatomic potential (IP) to predict material properties requires appropriate experimental or first principles, e.g. density functional theory (DFT), ground truth values, along with an efficient optimization algorithm to select parameter values. Atomistic simulations are required to check each proposed parameter set, which can be costly depending on the desired property. We present an optimization algorithm that leverages existing model parameter data with a dual neural network approach to accelerate the fitting process. We extract model parameters from OpenKIM and identify correlations between them and select material properties. We then create a surrogate model and couple it with an optimization algorithm to determine the desired IP parameters. This information can be leveraged, along with DFT training data and additional atomistic simulations, to further optimize the parameters. We believe this framework can be used to expedite the optimization process and enable better models for large scale properties.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The python code and data used for this paper will be made available at: https://github.com/bjasperson/MEAM-Opt.

References

  1. J.A. Martinez, D.E. Yilmaz, T. Liang, S.B. Sinnott, S.R. Phillpot, Fitting empirical potentials: Challenges and methodologies. Curr. Opin. Solid State Mater. Sci. 17(6), 263–270 (2023). https://doi.org/10.1016/j.cossms.2013.09.001

    Article  CAS  Google Scholar 

  2. F. Ercolessi, J.B. Adams, Interatomic potentials from first-principles calculations: The force-matching method. Europhys. Lett. (EPL) 26(8), 583–588 (2022). https://doi.org/10.1209/0295-5075/26/8/005

    Article  Google Scholar 

  3. P. Brommer, A. Kiselev, D. Schopf, P. Beck, J. Roth, H.-R. Trebin, Classical interaction potentials for diverse materials from ab initio data: a review of potfit. Modell. Simul. Mater. Sci. Eng. 23(7), 074002 (2023). https://doi.org/10.1088/0965-0393/23/7/074002

    Article  Google Scholar 

  4. R. Kobayashi, Nap: a molecular dynamics package with parameter-optimization programs for classical and machine-learning potentials. J. Open Source Softw. 6(57), 2768 (2023)

    Article  Google Scholar 

  5. M. Wen, Y. Afshar, R.S. Elliott, E.B. Tadmor, KLIFF: A framework to develop physics-based and machine learning interatomic potentials. Comput. Phys. Commun. 272, 108218 (2023). https://doi.org/10.1016/j.cpc.2021.108218

    Article  CAS  Google Scholar 

  6. V.L. Deringer, M.A. Caro, G. Csányi, Machine learning interatomic potentials as emerging tools for materials science. Adv. Mater. 31(46), 1902765 (2023). https://doi.org/10.1002/adma.201902765

    Article  CAS  Google Scholar 

  7. P. Friederich, F. Häse, J. Proppe, A. Aspuru-Guzik, Machine-learned potentials for next-generation matter simulations. Nat. Mater. 20(6), 750–761 (2023). https://doi.org/10.1038/s41563-020-0777-6

    Article  CAS  Google Scholar 

  8. A.M. Miksch, T. Morawietz, J. Kästner, A. Urban, N. Artrith, Strategies for the construction of machine-learning potentials for accurate and efficient atomic-scale simulations. Mach. Learn.: Sci. Technol. 2(3), 031001 (2023). https://doi.org/10.1088/2632-2153/abfd96

    Article  Google Scholar 

  9. M.F. Langer, A. Goeßmann, M. Rupp, Representations of molecules and materials for interpolation of quantum-mechanical simulations via machine learning. NPJ Comput. Mater. 8(1), 41 (2023). https://doi.org/10.1038/s41524-022-00721-x

    Article  Google Scholar 

  10. S.R. Xie, M. Rupp, R.G. Hennig, Ultra-fast interpretable machine-learning potentials. NPJ Comput. Mater. 9(1), 162 (2023). https://doi.org/10.1038/s41524-023-01092-7

    Article  Google Scholar 

  11. L.A. Zepeda-Ruiz, A. Stukowski, T. Oppelstrup, V.V. Bulatov, Probing the limits of metal plasticity with molecular dynamics simulations. Nature 550(7677), 492–495 (2022). https://doi.org/10.1038/nature23472

    Article  CAS  Google Scholar 

  12. T.P. Senftle, S. Hong, M.M. Islam, S.B. Kylasa, Y. Zheng, Y.K. Shin, C. Junkermeier, R. Engel-Herbert, M.J. Janik, H.M. Aktulga, T. Verstraelen, A. Grama, A.C.T. Duin, The ReaxFF reactive force-field: development, applications and future directions. NPJ Comput. Mater. 2(1), 15011 (2021). https://doi.org/10.1038/npjcompumats.2015.11

    Article  CAS  Google Scholar 

  13. M. Dittner, J. Müller, H.M. Aktulga, B. Hartke, Efficient global optimization of reactive force-field parameters. J. Comput. Chem. 36(20), 1550–1561 (2023). https://doi.org/10.1002/jcc.23966

    Article  CAS  Google Scholar 

  14. A. Jain, S.P. Ong, G. Hautier, W. Chen, W.D. Richards, S. Dacek, S. Cholia, D. Gunter, D. Skinner, G. Ceder, K.A. Persson, Commentary: the materials project: a materials genome approach to accelerating materials innovation. APL Mater. 1(1), 011002 (2023). https://doi.org/10.1063/1.4812323

    Article  CAS  Google Scholar 

  15. K. Choudhary, K.F. Garrity, A.C.E. Reid, B. DeCost, A.J. Biacchi, A.R. Hight Walker, Z. Trautt, J. Hattrick-Simpers, A.G. Kusne, A. Centrone, A. Davydov, J. Jiang, R. Pachter, G. Cheon, E. Reed, A. Agrawal, X. Qian, V. Sharma, H. Zhuang, S.V. Kalinin, B.G. Sumpter, G. Pilania, P. Acar, S. Mandal, K. Haule, D. Vanderbilt, K. Rabe, F. Tavazza, The joint automated repository for various integrated simulations (JARVIS) for data-driven materials design. NPJ Comput. Mater. 6(1), 173 (2023). https://doi.org/10.1038/s41524-020-00440-1

    Article  Google Scholar 

  16. E.B. Tadmor, R.S. Elliott, J.P. Sethna, R.E. Miller, C.A. Becker, The potential of atomistic simulations and the knowledgebase of interatomic models. JOM 63(7), 17–17 (2023). https://doi.org/10.1007/s11837-011-0102-6

    Article  Google Scholar 

  17. B.A. Jasperson, M.G. Wood, H.T. Johnson, A dual neural network approach to topology optimization for thermal-electromagnetic device design. Comput. Aided Des. (2023). https://doi.org/10.1016/j.cad.2023.103665

    Article  Google Scholar 

  18. M.I. Baskes, Modified embedded-atom potentials for cubic materials and impurities. Phys. Rev. B 46(5), 2727–2742 (2023). https://doi.org/10.1103/PhysRevB.46.2727

    Article  Google Scholar 

  19. A.P. Thompson, H.M. Aktulga, R. Berger, D.S. Bolintineanu, W.M. Brown, P.S. Crozier, P.J. Veld, A. Kohlmeyer, S.G. Moore, T.D. Nguyen, R. Shan, M.J. Stevens, J. Tranchida, C. Trott, S.J. Plimpton, LAMMPS - a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales. Comput. Phys. Commun. 271, 108171 (2021). https://doi.org/10.1016/j.cpc.2021.108171

    Article  CAS  Google Scholar 

  20. M.I. Baskes, J.S. Nelson, A.F. Wright, Semiempirical modified embedded-atom potentials for silicon and germanium. Phys. Rev. B 40(9), 6085–6100 (2023). https://doi.org/10.1103/PhysRevB.40.6085

    Article  Google Scholar 

  21. R.S. Elliott, E.B. Tadmor, Knowledgebase of interatomic models (KIM) application programming interface (API). OpenKIM (2023). https://doi.org/10.25950/FF8F563A

    Article  Google Scholar 

  22. Y. Afshar, S. Hütter, R. Rudd, A. Stukowski, W. Tipton, D. Trinkle, G. Wagner, P. Zhang, E. Alonso, M. Baskes, V. Bulatov, T. Rubia, J. Kim, J. Kress, B.-J. Lee, T. Lenosky, J. Nelson, B. Sadigh, A. Voter, A. Wright, The modified embedded atom method (MEAM) potential v002. OpenKIM (2023). https://doi.org/10.25950/EE5EBA52

    Article  Google Scholar 

  23. A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga et al., An imperative style, high-performance deep learning library. Adv. Neural. Inform. Process. Syst. 32, 1 (2019)

    Google Scholar 

  24. S. Kavousi, B.R. Novak, M.I. Baskes, M.A. Zaeem, D. Moldovan, Modified embedded-atom method potential for high-temperature crystal-melt properties of ti-ni alloys and its application to phase field simulation of solidification. Modell. Simul. Mater. Sci. Eng. 28(1), 015006 (2023). https://doi.org/10.1088/1361-651X/ab580c

    Article  Google Scholar 

  25. A.C.E. Silva, J. Agren, M.T. Clavaguera-Mora, D. Djurovic, T. Gomez-Acebo, B.-J. Lee, Z.-K. Liu, P. Miodownik, H.J. Seifert, Applications of computational thermodynamics—the extension from phase equilibrium to phase transformations and other properties. Calphad 31(1), 53–74 (2023). https://doi.org/10.1016/j.calphad.2006.02.006

    Article  CAS  Google Scholar 

  26. D. Liu, Y. Tan, E. Khoram, Z. Yu, Training deep neural networks for the inverse design of nanophotonic structures. ACS Photonics 5(4), 1365–1369 (2022). https://doi.org/10.1021/acsphotonics.7b01377

    Article  CAS  Google Scholar 

  27. X. Zheng, P. Zheng, R.-Z. Zhang, Machine learning material properties from the periodic table using convolutional neural networks. Chem. Sci. 9(44), 8426–8432 (2018). https://doi.org/10.1039/c8sc02648c

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors acknowledge helpful comments from the OpenKIM team (Dr. Ilia Nikiforov, Professor Ellad Tadmor, Dr. Brendon Waters and others).

Funding

This material is based in part upon work supported by the National Science Foundation under Grant No. 1922758.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by BJ. The first draft of the manuscript was written by BJ and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Benjamin A. Jasperson.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 99.1 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jasperson, B.A., Johnson, H.T. A data-driven method for optimization of classical interatomic potentials. MRS Advances 9, 863–869 (2024). https://doi.org/10.1557/s43580-024-00802-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43580-024-00802-7