Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Quantum Compiling

  • Chapter
  • First Online:
Quantum Computing Environments

Abstract

Quantum compiling fills the gap between the computing layer of high-level quantum algorithms and the layer of physical qubits with their specific properties and constraints. Quantum compiling is a hybrid between the general-purpose compilers of computers, transforming high-level language to assembly language, and hardware synthesis by hardware description language, where functions are automatically synthesized into customized hardware. Here we review the quantum compiling stack of both gate-model quantum computers and the adiabatic quantum computers. The former involves low-level qubit control, quantum error correction, synthesis of short quantum circuits, and transpiling, while the latter involves the virtualization of qubits by embedding of QUBO and HUBO problems on constrained graphs of physical qubits and both quantum error suppression and correction. Commercial initiatives and quantum compiling products are reviewed, including explicit programming examples.

MM, LM, and LR equally contributed to this work as first author.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Grune, D., Van Reeuwijk, K., Bal, H. E., Jacobs, C. J., & Langendoen, K. (2012). Modern compiler design. Springer.

    Book  Google Scholar 

  2. Hu, X., de Sousa, R., & Sarma, S. D. (2002). Decoherence and dephasing in spin-based solid state quantum computers. In Foundations Of Quantum Mechanics In The Light Of New Technology: ISQM—Tokyo’01 (pp. 3–11). World Scientific.

    Google Scholar 

  3. Ladd, T. D., Jelezko, F., Laflamme, R., Nakamura, Y., Monroe, C., & O’Brien, J. L. (2010). Quantum computers. Nature, 464(7285), 45–53.

    Article  Google Scholar 

  4. Rotta, D., Sebastiano, F., Charbon, E., & Prati, E. (2017). Quantum information density scaling and qubit operation time constraints of CMOS silicon-based quantum computer architectures. NPJ Quantum Information, 3(1), 1–14.

    Article  Google Scholar 

  5. Huang, H.-L., Wu, D., Fan, D., & Zhu, X. (2020). Superconducting quantum computing: A review. Science China Information Sciences, 63(8), 1–32.

    Article  MathSciNet  Google Scholar 

  6. Bruzewicz, C. D., Chiaverini, J., McConnell, R., & Sage, J. M. (2019). Trapped-ion quantum computing: Progress and challenges. Applied Physics Reviews, 6(2), 021314.

    Article  Google Scholar 

  7. Saffman, M. (2019). Quantum computing with neutral atoms. National Science Review, 6(1), 24–25.

    Article  Google Scholar 

  8. Jones, N. C., Van Meter, R., Fowler, A. G., McMahon, P. L., Kim, J., Ladd, T. D., & Yamamoto, Y. (2012). Layered architecture for quantum computing. Physical Review X, 2(3), 031007.

    Article  Google Scholar 

  9. Albash, T., & Lidar, D. A. (2018). Adiabatic quantum computation. Reviews of Modern Physics, 90(1), 015002.

    Article  MathSciNet  Google Scholar 

  10. Raussendorf, R., & Briegel, H. J. (2001). A one-way quantum computer. Physical Review Letters, 86(22), 5188.

    Article  Google Scholar 

  11. Freedman, M., Kitaev, A., Larsen, M., & Wang, Z. (2003). Topological quantum computation. Bulletin of the American Mathematical Society, 40(1), 31–38.

    Article  MathSciNet  MATH  Google Scholar 

  12. Zimmermann, H. (1980). OSI reference model: the ISO model of architecture for open systems interconnection. IEEE Transactions on Communications, 28(4), 425–432.

    Article  Google Scholar 

  13. Harris, R., Johnson, M. W., Lanting, T., Berkley, A., Johansson, J., Bunyk, P., Tolkacheva, E., Ladizinsky, E., Ladizinsky, N., Oh, T., et al. (2010). Experimental investigation of an eight-qubit unit cell in a superconducting optimization processor. Physical Review B, 82(2), 024511.

    Article  Google Scholar 

  14. Gambetta, J. M., Chow, J. M., & Steffen, M. (2017). Building logical qubits in a superconducting quantum computing system. NPJ Quantum Information, 3(1), 1–7.

    Article  Google Scholar 

  15. Ferraro, E., & Prati, E. (2020). Is all-electrical silicon quantum computing feasible in the long term? Physics Letters A, 384(17), 126352.

    Article  Google Scholar 

  16. Lekitsch, B., Weidt, S., Fowler, A. G., Mølmer, K., Devitt, S. J., Wunderlich, C., & Hensinger, W. K. (2017). Blueprint for a microwave trapped ion quantum computer. Science Advances, 3(2), e1601540.

    Article  Google Scholar 

  17. Henriet, L., Beguin, L., Signoles, A., Lahaye, T., Browaeys, A., Reymond, G.-O., & Jurczak, C. (2020). Quantum computing with neutral atoms. Quantum, 4, 327.

    Article  Google Scholar 

  18. Gu, M., Weedbrook, C., Menicucci, N. C., Ralph, T. C., & van Loock, P. (2009). Quantum computing with continuous-variable clusters. Physical Review A, 79(6), 062318.

    Article  Google Scholar 

  19. Moro, L., & Prati, E. (2020). Optical manipulation of qubits by deep reinforcement learning. In Quantum 2.0 (p. QM6A-4). Optical Society of America.

    Google Scholar 

  20. Ferraro, E., De Michielis, M., Mazzeo, G., Fanciulli, M., & Prati, E. (2014). Effective Hamiltonian for the hybrid double quantum dot qubit. Quantum Information Processing, 13(5), 1155–1173.

    Article  MathSciNet  MATH  Google Scholar 

  21. Ferraro, E., De Michielis, M., Fanciulli, M., & Prati, E. (2015). Effective Hamiltonian for two interacting double-dot exchange-only qubits and their controlled-not operations. Quantum Information Processing, 14(1), 47–65.

    Article  MathSciNet  MATH  Google Scholar 

  22. Tomita, Y., Merrill, J., & Brown, K. R. (2010). Multi-qubit compensation sequences. New Journal of Physics, 12(1), 015002.

    Article  Google Scholar 

  23. Khodjasteh, K., & Viola, L. (2009). Dynamically error-corrected gates for universal quantum computation. Physical Review Letters, 102(8), 080501.

    Article  Google Scholar 

  24. Devitt, S. J., Munro, W. J., & Nemoto, K. (2013). Quantum error correction for beginners. Reports on Progress in Physics, 76(7), 076001.

    Article  Google Scholar 

  25. Bravyi, S., & Kitaev, A. (2005). Universal quantum computation with ideal Clifford gates and noisy ancillas. Physical Review A, 71(2), 022316.

    Article  MathSciNet  MATH  Google Scholar 

  26. Farhi, E., Goldstone, J., & Gutmann, S. (2002). Quantum adiabatic evolution algorithms versus simulated annealing. arXiv preprint quant-ph/0201031.

    Google Scholar 

  27. Jordan, S. P., Farhi, E., & Shor, P. W. (2006). Error-correcting codes for adiabatic quantum computation. Physical Review A, 74(5), 052322.

    Article  MathSciNet  Google Scholar 

  28. Lidar, D. A. (2008). Towards fault tolerant adiabatic quantum computation. Physical Review Letters, 100(16), 160506.

    Article  Google Scholar 

  29. Rocutto, L., Destri, C., & Prati, E. (2021). Quantum semantic learning by reverse annealing of an adiabatic quantum computer. Advanced Quantum Technologies, 4(2), 2000133.

    Article  Google Scholar 

  30. Rocutto, L., & Prati, E. (2021). A complete restricted Boltzmann machine on an adiabatic quantum computer. International Journal of Quantum Information, 19, 2141003.

    Article  MathSciNet  MATH  Google Scholar 

  31. Young, K. C., Sarovar, M., & Blume-Kohout, R. (2013). Error suppression and error correction in adiabatic quantum computation: Techniques and challenges. Physical Review X, 3(4), 041013.

    Article  Google Scholar 

  32. Sarovar, M., & Young, K. C. (2013). Error suppression and error correction in adiabatic quantum computation: Non-equilibrium dynamics. New Journal of Physics, 15(12), 125032.

    Article  MATH  Google Scholar 

  33. Boros, E., & Hammer, P. L. (2002). Pseudo-Boolean optimization. Discrete Applied Mathematics, 123(1–3), 155–225.

    Article  MathSciNet  MATH  Google Scholar 

  34. Rieffel, E. G., & Polak, W. H. (2011). Quantum computing: A gentle introduction. MIT Press.

    MATH  Google Scholar 

  35. Barenco, A., Bennett, C. H., Cleve, R., DiVincenzo, D. P., Margolus, N., Shor, P., Sleator, T., Smolin, J. A., & Weinfurter, H. (1995). Elementary gates for quantum computation. Physical Review A, 52, 3457–3467.

    Article  Google Scholar 

  36. Gottesman, D. (1998). Theory of fault-tolerant quantum computation. Physical Review A, 57(1), 127–137.

    Article  MathSciNet  Google Scholar 

  37. Linke, N. M., Maslov, D., Roetteler, M., Debnath, S., Figgatt, C., Landsman, K. A., Wright, K., & Monroe, C. (2017). Experimental comparison of two quantum computing architectures. Proceedings of the National Academy of Sciences, 114(13), 3305–3310.

    Article  Google Scholar 

  38. Zulehner, A., & Wille, R. (2019). Compiling su (4) quantum circuits to IBM QX architectures. In Proceedings of the 24th Asia and South Pacific Design Automation Conference (pp. 185–190).

    Google Scholar 

  39. LaRose, R. (2019). Overview and comparison of gate level quantum software platforms. Quantum, 3, 130.

    Article  Google Scholar 

  40. Zhiyenbayev, Y., Akulin, V., & Mandilara, A. (2018). Quantum compiling with diffusive sets of gates. Physical Review A, 98, 012325.

    Article  Google Scholar 

  41. Dawson, C. M., & Nielsen, M. A. (2005). The Solovay-Kitaev algorithm. arXiv preprint quant-ph/0505030.

    Google Scholar 

  42. Kitaev, A. Y. (1997). Quantum computations: algorithms and error correction. Russian Mathematical Surveys, 52(6), 1191.

    Article  MathSciNet  MATH  Google Scholar 

  43. Zhiyenbayev, Y., Akulin, V., & Mandilara, A. (2018). Quantum compiling with diffusive sets of gates. Physical Review A, 98(1), 012325.

    Article  Google Scholar 

  44. Barenco, A., Bennett, C. H., Cleve, R., DiVincenzo, D. P., Margolus, N., Shor, P., Sleator, T., Smolin, J. A., & Weinfurter, H. (1995). Elementary gates for quantum computation. Physical Review A, 52(5), 3457.

    Article  Google Scholar 

  45. Harrow, A. W., Recht, B., & Chuang, I. L. (2002). Efficient discrete approximations of quantum gates. Journal of Mathematical Physics, 43(9), 4445–4451.

    Article  MathSciNet  MATH  Google Scholar 

  46. Kitaev, A. Y., Shen, A., Vyalyi, M. N., & Vyalyi, M. N. (2002). Classical and quantum computation (Vol. 47). American Mathematical Soc.

    Google Scholar 

  47. Lloyd, S. (1995). Almost any quantum logic gate is universal. Physical Review Letters, 75(2), 346.

    Article  Google Scholar 

  48. Deutsch, D. E., Barenco, A., & Ekert, A. (1995). Universality in quantum computation. Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences, 449(1937), 669–677.

    MathSciNet  MATH  Google Scholar 

  49. Vatan, F., & Williams, C. (2004). Optimal quantum circuits for general two-qubit gates. Physical Review A, 69, 032315.

    Article  Google Scholar 

  50. Cao, Y., Romero, J., Olson, J. P., Degroote, M., Johnson, P. D., Kieferová, M., Kivlichan, I. D., Menke, T., Peropadre, B., Sawaya, N. P., et al. (2019). Quantum chemistry in the age of quantum computing. Chemical Reviews, 119(19), 10856–10915.

    Article  Google Scholar 

  51. Davis, M. G., Smith, E., Tudor, A., Sen, K., Siddiqi, I., & Iancu, C. (2020). Towards optimal topology aware quantum circuit synthesis. In 2020 IEEE International Conference on Quantum Computing and Engineering (QCE) (pp. 223–234). IEEE.

    Google Scholar 

  52. Swaddle, M., Noakes, L., Smallbone, H., Salter, L., & Wang, J. (2017). Generating three-qubit quantum circuits with neural networks. Physics Letters A, 381(39), 3391–3395.

    Article  MathSciNet  MATH  Google Scholar 

  53. Porotti, R., Tamascelli, D., Restelli, M., & Prati, E. (2019). Coherent transport of quantum states by deep reinforcement learning. Communications Physics, 2(1), 61.

    Article  Google Scholar 

  54. Porotti, R., Tamascelli, D., Restelli, M., & Prati, E. (2019). Reinforcement learning based control of coherent transport by adiabatic passage of spin qubits. In Journal of Physics: Conference Series (Vol. 1275, p. 012019). IOP Publishing.

    Google Scholar 

  55. Paparelle, I., Moro, L., & Prati, E. (2020). Digitally stimulated Raman passage by deep reinforcement learning. Physics Letters A, 374(14), 126266.

    Article  Google Scholar 

  56. An, Z., & Zhou, D. L. (2019). Deep reinforcement learning for quantum gate control. EPL (Europhysics Letters), 126(6), 60002.

    Article  Google Scholar 

  57. Moro, L., Paris, M., Restelli, M., & Prati, E. (2021). Quantum compiling by deep reinforcement learning. Communications Physics, 4(1), 178.

    Article  Google Scholar 

  58. Zhang, Y.-H., Zheng, P.-L., Zhang, Y., & Deng, D.-L. (2020). Topological quantum compiling with reinforcement learning. Physical Review Letters, 125, 170501.

    Article  Google Scholar 

  59. Linke, N. M., Maslov, D., Roetteler, M., Debnath, S., Figgatt, C., Landsman, K. A., Wright, K., & Monroe, C. (2017). Experimental comparison of two quantum computing architectures. Proceedings of the National Academy of Sciences, 114(13), 3305–3310.

    Article  Google Scholar 

  60. Debnath, S., Linke, N. M., Figgatt, C., Landsman, K. A., Wright, K., & Monroe, C. (2016). Demonstration of a small programmable quantum computer with atomic qubits. Nature, 536(7614), 63–66.

    Article  Google Scholar 

  61. Wille, R., Lye, A., & Drechsler, R. (2014). Exact reordering of circuit lines for nearest neighbor quantum architectures. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 33, 1818–1831.

    Article  Google Scholar 

  62. Saeedi, M., Wille, R., & Drechsler, R. (2011). Synthesis of quantum circuits for linear nearest neighbor architectures. Quantum Information Processing, 10(3), 355–377.

    Article  MathSciNet  MATH  Google Scholar 

  63. Hirata, Y., Nakanishi, M., Yamashita, S., & Nakashima, Y. (2009). An efficient method to convert arbitrary quantum circuits to ones on a linear nearest neighbor architecture. In 2009 Third International Conference on Quantum, Nano and Micro Technologies (pp. 26–33). IEEE.

    Google Scholar 

  64. Wille, R., Keszocze, O., Walter, M., Rohrs, P., Chattopadhyay, A., & Drechsler, R. (2016). Look-ahead schemes for nearest neighbor optimization of 1d and 2d quantum circuits. In 2016 21st Asia and South Pacific Design Automation Conference (ASP-DAC) (pp. 292–297). IEEE.

    Google Scholar 

  65. Zulehner, A., Paler, A., & Wille, R. (2018). An efficient methodology for mapping quantum circuits to the IBM QX architectures. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 38(7), 1226–1236.

    Article  Google Scholar 

  66. Morita, S., & Nishimori, H. (2008). Mathematical foundation of quantum annealing. Journal of Mathematical Physics, 49(12), 125210.

    Article  MathSciNet  MATH  Google Scholar 

  67. Morita, S., & Nishimori, H. (2007). Convergence of quantum annealing with real-time Schrödinger dynamics. Journal of the Physical Society of Japan, 76(6), 064002.

    Article  MathSciNet  MATH  Google Scholar 

  68. Systems, D.-W. (2019). Technical description of the d-wave quantum processing unit.

    Google Scholar 

  69. Friedman, J. R., Patel, V., Chen, W., Tolpygo, S., & Lukens, J. E. (2000). Quantum superposition of distinct macroscopic states. Nature, 406(6791), 43.

    Article  Google Scholar 

  70. Zimmerman, J., & Silver, A. (1966). Macroscopic quantum interference effects through superconducting point contacts. Physical Review, 141(1), 367.

    Article  Google Scholar 

  71. Harris, R., Lanting, T., Berkley, A., Johansson, J., Johnson, M., Bunyk, P., Ladizinsky, E., Ladizinsky, N., Oh, T., & Han, S. (2009). Compound Josephson-junction coupler for flux qubits with minimal crosstalk. Physical Review B, 80(5), 052506.

    Article  Google Scholar 

  72. Quiroz, G., & Lidar, D. A. (2012). High-fidelity adiabatic quantum computation via dynamical decoupling. Physical Review A, 86(4), 042333.

    Article  Google Scholar 

  73. Pearson, A., Mishra, A., Hen, I., & Lidar, D. A. (2019). Analog errors in quantum annealing: doom and hope. NPJ Quantum Information, 5, 1–9.

    Article  Google Scholar 

  74. Ayanzadeh, R., Dorband, J., Halem, M., & Finin, T. (2020). Post-quantum error-correction for quantum annealers. arXiv preprint arXiv:2010.00115.

    Google Scholar 

  75. Viola, L., Knill, E., & Lloyd, S. (1999). Dynamical decoupling of open quantum systems. Physical Review Letters, 82(12), 2417.

    Article  MathSciNet  MATH  Google Scholar 

  76. Dumoulin, V., Goodfellow, I. J., Courville, A., & Bengio, Y. (2014). On the challenges of physical implementations of RBMS. In Twenty-Eighth AAAI Conference on Artificial Intelligence.

    Google Scholar 

  77. Fogarty, M., Chan, K., Hensen, B., Huang, W., Tanttu, T., Yang, C., Laucht, A., Veldhorst, M., Hudson, F., Itoh, K. M., et al. (2018). Integrated silicon qubit platform with single-spin addressability, exchange control and single-shot singlet-triplet readout. Nature Communications, 9(1), 1–8.

    Article  Google Scholar 

  78. Amin, M. H. (2015). Searching for quantum speedup in quasistatic quantum annealers. Physical Review A, 92(5), 052323.

    Article  Google Scholar 

  79. Johnson, M. W., Amin, M. H., Gildert, S., Lanting, T., Hamze, F., Dickson, N., Harris, R., Berkley, A. J., Johansson, J., Bunyk, P., et al. (2011). Quantum annealing with manufactured spins. Nature, 473(7346), 194.

    Article  Google Scholar 

  80. Boixo, S., Smelyanskiy, V. N., Shabani, A., Isakov, S. V., Dykman, M., Denchev, V. S., Amin, M. H., Smirnov, A. Y., Mohseni, M., & Neven, H. (2016). Computational multiqubit tunnelling in programmable quantum annealers. Nature Communications, 7, 10327.

    Article  Google Scholar 

  81. Benedetti, M., Realpe-Gómez, J., Biswas, R., & Perdomo-Ortiz, A. (2016). Estimation of effective temperatures in quantum annealers for sampling applications: A case study with possible applications in deep learning. Physical Review A, 94(2), 022308.

    Article  Google Scholar 

  82. Korenkevych, D., Xue, Y., Bian, Z., Chudak, F., Macready, W. G., Rolfe, J., & Andriyash, E. (2016). Benchmarking quantum hardware for training of fully visible Boltzmann machines. arXiv preprint arXiv:1611.04528.

    Google Scholar 

  83. Pudenz, K. L., Albash, T., & Lidar, D. A. (2014). Error-corrected quantum annealing with hundreds of qubits. Nature Communications, 5(1), 1–10.

    Article  Google Scholar 

  84. Denil, M., & De Freitas, N. (2011). Toward the implementation of a quantum RBM.

    Google Scholar 

  85. Preskill, J. (2018). Quantum computing in the NISQ era and beyond. Quantum, 2, 79.

    Article  Google Scholar 

  86. Häner, T., Steiger, D. S., Svore, K., & Troyer, M. (2018). A software methodology for compiling quantum programs. Quantum Science and Technology, 3(2), 020501.

    Article  Google Scholar 

  87. Ball, H., Biercuk, M. J., Carvalho, A., Chakravorty, R., Chen, J., de Castro, L. A., Gore, S., Hover, D., Hush, M., Liebermann, P. J., et al. (2020). Software tools for quantum control: Improving quantum computer performance through noise and error suppression. arXiv preprint arXiv:2001.04060.

    Google Scholar 

  88. Sivarajah, S., Dilkes, S., Cowtan, A., Simmons, W., Edgington, A., & Duncan, R. (2020). t— ket>: A retargetable compiler for NISQ devices. Quantum Science and Technology.

    Google Scholar 

  89. Smith, R. S., Curtis, M. J., & Zeng, W. J. (2016). A practical quantum instruction set architecture. arXiv preprint arXiv:1608.03355.

    Google Scholar 

  90. Cai, J., Macready, W. G., & Roy, A. (2014). A practical heuristic for finding graph minors. arXiv preprint arXiv:1406.2741.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Maronese, M., Moro, L., Rocutto, L., Prati, E. (2022). Quantum Compiling. In: Iyengar, S.S., Mastriani, M., Kumar, K.L. (eds) Quantum Computing Environments. Springer, Cham. https://doi.org/10.1007/978-3-030-89746-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-89746-8_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-89745-1

  • Online ISBN: 978-3-030-89746-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics