Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Prediction of Remaining Useful Life of Passive and Adjustable Fluid Film Bearings Using Physics-Based Models of Their Degradation

  • Conference paper
  • First Online:
Proceedings of the 11th IFToMM International Conference on Rotordynamics (IFToMM 2023)

Part of the book series: Mechanisms and Machine Science ((Mechan. Machine Science,volume 139))

Included in the following conference series:

  • 440 Accesses

Abstract

Systems for online prediction of remaining useful life (RUL) of technological equipment, and, in particular, fluid film bearings, are usually based on the analysis of a large amount of data received from the operated objects. In practice, formation of a data set meeting the size and quality requirements often encounters a number of difficulties. The work presents the approach to the possible overcoming of such difficulties through the use of physics-based models of degradation of fluid film bearings. The most common reasons for replacing them in rotating machines are considered as the criteria for the end of the service life. They include achievement of the wear limit in accordance with the current standard, and disruption of the bearing surfaces after reaching the material’s fatigue strength limit. The work focuses mainly on the last factor and demonstrates mathematical and numerical simulation models of rotor-bearing systems considering this phenomenon and allowing generating data on the bearing degradation process. The generated data is used to train a predictive model that estimates online the current state and RUL of the bearing. In addition, the proposed physics-based models also allow to evaluate the impact of the adjustable design of the fluid film bearings on their expected service life. The variable parameters of the adjustable bearings are also taken into account by the proposed predictive model. The work shows the results of numerical studies demonstrating the change in the service life taking in account the adjustable bearing parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

x, y, z :

Cartesian coordinates

h 0 , h :

initial and local radial gap

α :

angular coordinate

O, O 1 , O 2 :

center of shaft and bearing

e :

eccentricity

V 1 :

circumferential velocity

V 2 :

radial velocity

µ :

dynamic viscosity of lubricant

ρ :

density of lubricant

p, pmax, pmin:

pressure

n, ω :

rotation speed and angle speed

r :

shaft radius

R, D :

bearing radius and diameter

L :

bearing length

d :

rotor imbalance

mg :

rotor weight

δ :

adjustable displacement of the upper half of the bearing

d 0 :

current wear value

I :

wear rate under current operating conditions

N :

number of cycles to failure

S :

stress amplitude

A :

amplitude of the rotor oscillations

D :

fatigue damage parameter

n i :

number of cycles at a certain load level

Ni:

number of cycles to failure under a certain loading mode

U:

control actions vector

RULw:

RUL estimate by the wear factor

References

  1. Machado, T., Cavalca, K.: Modeling of hydrodynamic bearing wear in rotor-bearing systems. Mech. Res. Commun. 69, 15–23 (2015)

    Article  Google Scholar 

  2. Machado, T., Alves, D., Cavalca, K.: Investigation about journal bearing wear effect on rotating system dynamic response in time domain. Tribol. Int. 129, 124–136 (2019)

    Article  Google Scholar 

  3. Alves, D., Fieux, G., Machado, T., Keogh, P., Cavalca, K.: A parametric model to identify hydrodynamic bearing wear at a single rotating speed. Tribol. Int. 153(6), 106640 (2021)

    Article  Google Scholar 

  4. Li, N., et al.: Multi-sensor data-driven remaining useful life prediction of semi-observable systems. IEEE Trans. Ind. Electron. 68, 11482–11491 (2021)

    Article  Google Scholar 

  5. Wen, P., Li, Y., Chen, S., Zhao, S.: Remaining useful life prediction of IoT-enabled complex industrial systems with hybrid fusion of multiple information sources. IEEE Internet Things J. 8, 9045–9058 (2021)

    Article  Google Scholar 

  6. RU2750542C1 – Mechatronic Journal Bearing –Google Patents. https://patents.google.com/patent/RU2750542C1/ru?oq=2750542. Accessed 25 Feb 2023

  7. Hase, A.: Early detection and identification of fatigue damage in thrust ball bearings by an acoustic emission technique. Lubricants 8(3), 37 (2020)

    Article  Google Scholar 

  8. Shen, G., Xiang, D., Zhu, K., Jiang, L., Shen, Y., Li, Y.: Fatigue failure mechanism of planetary gear train for wind turbine gearbox. Eng. Fail. Anal. 87, 96–110 (2018)

    Article  Google Scholar 

  9. Dong, Q., Yin, Z., Li, H., Gao, G., Zhong, N., Chen, Y.: Simulation and experimental verification of fatigue strength evaluation of journal bearing bush. Eng. Fail. Anal. 109, 104275 (2020)

    Article  Google Scholar 

  10. El-Daher, C., Kebir, H., Bouvier, S., Pont, M., Hay, M.: Prediction of fatigue damage and spalling in a multilayered journal bearing shell. Tribol. Int. 175, 107850 (2022)

    Article  Google Scholar 

  11. Ding, H., Yang, L., Cheng, Z., Yang, Z.: A remaining useful life prediction method for bearing based on deep neural networks. Measurement 172(3), 108878 (2021)

    Article  Google Scholar 

  12. Chen, X., van Hillegersberg, J., Topan, E., Smith, S., Roberts, M.: Application of data-driven models to predictive maintenance: bearing wear prediction at TATA steel. Expert Syst. Appl. 186(2), 115699 (2021)

    Article  Google Scholar 

  13. Ding, N., Li, H., Yin, Z., Zhong, N., Zhang, L.: Journal bearing seizure degradation assessment and remaining useful life prediction based on long short-term memory neural network. Measurement 166, 108215 (2020)

    Article  Google Scholar 

  14. Suh, S., Jang, J., Won, S., Jha, M., Lee, Y.: Supervised health stage prediction using convolutional neural networks for bearing wear. Sensors 20, 1–19 (2020)

    Article  Google Scholar 

  15. Xinyu, P., Xuanyi, X., Xiaowu, J.: Experimental study on wear life of journal bearings in the rotor system subjected to torque. Trans. Can. Soc. Mech. Eng. 44(2), 272–278 (2019)

    Google Scholar 

  16. Yan, J., He, Z., He, S.: A deep learning framework for sensor-equipped machine health indicator construction and remaining useful life prediction. Comput. Ind. Eng. 172(1), 108559 (2022)

    Article  Google Scholar 

  17. Huang, W., Zhang, X., Wu, C., Cao, S., Zhou, Q.: Tool wear prediction in ultrasonic vibration-assisted drilling of CFRP: a hybrid data-driven physics model-based framework. Tribol. Int. 174(1), 107755 (2022)

    Article  Google Scholar 

  18. Yang, K., Duan, W., Huang, L., Zhang, P., Ma, S.: A prediction method for ship added resistance based on symbiosis of data-driven and physics-based models. Ocean Eng. 260(3), 112012 (2022)

    Article  Google Scholar 

  19. Ye, S., Wang, C., Wang, Y., Lei, X., Wang, X., Yang, G.: Real-time model predictive control study of run-of-river hydropower plants with data-driven and physics-based coupled model. J. Hydrol. 617, 128942 (2023)

    Article  Google Scholar 

  20. Shutin, D., Bondarenko, M., Polyakov, R., Stebakov, I., Savin, L.: Method for on-line remaining useful life and wear prediction for adjustable journal bearings utilizing a combination of physics-based and data-driven models: a numerical investigation. Lubricants 11(1), 33 (2023)

    Article  Google Scholar 

  21. Zhu, H., Huang, Z., Lu, B., Zhou, C.: Bearing remaining useful life prediction of fatigue degradation process based on dynamic feature construction. Int. J. Fatigue 164, 107169 (2022)

    Article  Google Scholar 

  22. Shutin, D., Polyakov, R.: Active hybrid bearings as mean for improving stability and diagnostics of heavy rotors of power generating machinery. IOP Conf. Ser. Mater. Sci. Eng. 862(3), 032098 (2020)

    Article  Google Scholar 

  23. Zhang, S., Xu, H., Zhang, L., Xing, Y., Guo, Y.: Vibration suppression mechanism research of adjustable elliptical journal bearing under synchronous unbalance load. Tribol. Int. 132, 185–198 (2019)

    Article  Google Scholar 

  24. Chasalevris, A., Dohnal, F.: Improving stability and operation of turbine rotors using adjustable journal bearings. Tribol. Int. 104, 369–382 (2016)

    Article  Google Scholar 

  25. Polyakov, R., Shutin, D., Savin, L., Babin, A.: Peculiarities of reactions control for rotor positioning in an active journal hybrid bearing. Int. J. Mech. 10, 62–67 (2016)

    Google Scholar 

  26. Khutoretskiy, G., Tokov, M., Tolvinskaya, E.: Design of Turbogenerators. Energoatomizdat, Leningrad (1987)

    Google Scholar 

  27. Miner, M.: Cumulative damage in fatigue. J. Appl. Mech. 12, A159-A164 (1945). https://www.scirp.org/reference/ReferencesPapers.aspx?ReferenceID=1751417. Accessed 25 Feb 2023

  28. Die Lebensdauer von Kugellagern, P.A.: Life length of roller bearings or durability of ball bearings. Zeitschrift des Vereines Deutscher Ingenieure (ZVDI) 14, 339–341 (1924). https://www.scirp.org/reference/referencespapers.aspx?referenceid=1754153. Accessed 15 Feb 2023

  29. GOST 27165-97 Stationary Steam Turbine Units. Shafting Vibration Standards and General Requirements for Measurements – docs.cntd.ru. https://docs.cntd.ru/document/1200011635. Accessed 25 Feb 2023

  30. Jang, J., Khonsari, M., Glovnea, R., Fillon, M.: On the characteristics of misaligned journal bearings. Lubricants 3, 27–53 (2015)

    Article  Google Scholar 

  31. Feng, H., Jiang, S., Ji, A.: Investigations of the static and dynamic characteristics of water-lubricated hydrodynamic journal bearing considering turbulent, thermohydrodynamic and misaligned effects. Tribol. Int. 130, 245–260 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

The study was supported by the Russian Science Foundation grant No. 22-19-00789, https://rscf.ru/en/project/22-19-00789/.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Denis Shutin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Shutin, D., Bondarenko, M., Polyakov, R., Stebakov, I., Savin, L. (2024). Prediction of Remaining Useful Life of Passive and Adjustable Fluid Film Bearings Using Physics-Based Models of Their Degradation. In: Chu, F., Qin, Z. (eds) Proceedings of the 11th IFToMM International Conference on Rotordynamics. IFToMM 2023. Mechanisms and Machine Science, vol 139. Springer, Cham. https://doi.org/10.1007/978-3-031-40455-9_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-40455-9_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-40454-2

  • Online ISBN: 978-3-031-40455-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics