Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Classification of Meditation Expertise from EEG Signals Using Shallow Neural Networks

  • Conference paper
  • First Online:
Biomedical Engineering Science and Technology (ICBEST 2023)

Abstract

Recently machine-learning and deep-learning approaches have been widely adopted for automatic inter-group and inter-state classification of the brain states. Traditional machine learning-based classification requires a complicated pipeline of signal processing, artifact removal, feature extraction, and selection, which is time-consuming and requires human intervention. Whereas deep learning-based classifiers attempt to overcome this manual overhead by allowing end-to-end processing however at the cost of training time and model complexity. In this work, we have explored the use of different Shallow Convolutional Neural Networks (SCNN) based classifiers for inter-group (expert and non-expert) classification of EEG signals during Himalayan Yoga meditation. Several experiments were carried out to record the effects on the classification performance under varied conditions. We experimented with input representation of the signal, window size for signal segmentation, and various model parameters. It was observed that a very simple time domain representation of the raw signal, segmented by a window of 5s, when combined with a shallow 1D-CNN showed the best performance, with an accuracy score of 99.48%. The performance of all the shallow networks was found to be at par with the pre-trained state-of-the-art deep-CNN model, VGG-16, fine-tuned on the same data. Such lightweight models can be particularly useful for the on-the-go wearable and personal EEG devices which are latency sensitive, and highly susceptible to artifactual noise.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ansari, A.H., Cherian, P.J., Caicedo, A., Naulaers, G., De Vos, M., Van Huffel, S.: Neonatal seizure detection using deep convolutional neural networks. Int. J. Neural Syst. 29(04), 1850011 (2019). https://doi.org/10.1142/S0129065718500119

    Article  Google Scholar 

  2. Banquet, J.P.: Spectral analysis of the EEG in meditation. Electroencephalogr. Clin. Neurophysiol. 35(2), 143–151 (1973). https://doi.org/10.1016/00134694(73)90170-3

    Article  Google Scholar 

  3. Borboudakis, G., Tsamardinos, I.: Extending greedy feature selection algorithms to multiple solutions. Data Min. Knowl. Disc. 35(4), 1393–1434 (2021)

    Article  MathSciNet  Google Scholar 

  4. Braboszcz, C., Cahn, B.R., Levy, J., Fernandez, M., Delorme, A.: Increased gamma brainwave amplitude compared to control in three different meditation traditions. PLoS ONE 12(1), e0170647 (2017). https://doi.org/10.1371/journal.pone.0170647

    Article  Google Scholar 

  5. Brandmeyer, T., Delorme, A.: Reduced mind wandering in experienced meditators and associated EEG correlates. Exp. Brain Res. 236(9), 2519–2528 (2018). https://doi.org/10.1007/s00221-016-4811-5

    Article  Google Scholar 

  6. Cahn, B.R., Polich, J.: Meditation states and traits: EEG, ERP, and neuroimaging studies. Psychol. Bull. 132(2), 180 (2006)

    Article  Google Scholar 

  7. Carter, K.S., Carter, R., III.: Breath-based meditation: a mechanism to restore the physiological and cognitive reserves for optimal human performance. World Journal of Clinical Cases 4(4), 99 (2016)

    Article  Google Scholar 

  8. Chan, D., Woollacott, M.: Effects of level of meditation experience on attentional focus: is the efficiency of executive or orientation networks improved? The J. Altern. Complement. Med. 13(6), 651–658 (2007)

    Article  Google Scholar 

  9. Chollet, F., et al.: Keras https://github.com/fchollet/keras (2015)

  10. Craik, A., He, Y., Contreras-Vidal, J.L.: Deep learning for electroencephalogram (EEG) classification tasks: a review. J. Neural Eng. 16(3), 031001 (2019). https://doi.org/10.1088/1741-2552/ab0ab5

    Article  Google Scholar 

  11. De Filippi, E., Escrichs, A., Camara, E., Garrido, C., Marins, T., Sanchez-Fibla, M., Gilson, M., Deco, G.: Meditation-induced effects on whole-brain structural and effective connectivity. Brain Struct. Funct. 12, 92 (2022)

    Google Scholar 

  12. Dose, H., Møller, J.S., Iversen, H.K., Puthusserypady, S.: An end-to-end deep learning approach to MI-EEG signal classification for BCIS. Expert Syst. Appl. 114, 532–542 (2018)

    Article  Google Scholar 

  13. González-Valero, G., Zurita-Ortega, F., Ubago-Jiménez, J.L., Puertas-Molero, P.: Use of meditation and cognitive behavioral therapies for the treatment of stress, depression and anxiety in students. a systematic review and meta-analysis. Int. J. Env. Res. Public Health 16(22), 4394 (2019). https://doi.org/10.3390/ijerph16224394

    Article  Google Scholar 

  14. Gramfort, A., et al.: MEG and EEG data analysis with MNE-Python. Front. Neurosci. 7(267), 1–13 (2013)

    Google Scholar 

  15. Grossman, P., Niemann, L., Schmidt, S., Walach, H.: Mindfulness-based stress reduction and health benefits: a meta-analysis. J. Psychosom. Res. 57(1), 35–43 (2004). https://doi.org/10.1016/S0022-3999(03)00573-7

    Article  Google Scholar 

  16. Hemanth, D.J.: Automated feature extraction in deep learning models: a boon or a bane? In: 2021 8th International Conference on Electrical Engineering, Computer Science and Informatics (EECSI), p. 3 (2021). https://doi.org/10.23919/EECSI53397.2021.9624287

  17. Hernandez, S.E., Suero, J., Barros, A., Gonzalez-Mora, J.L., Rubia, K.: Increased grey matter associated with long-term Sahaja yoga meditation: a voxel-based morphometry study. PLoS ONE 11(3), e0150757 (2016)

    Article  Google Scholar 

  18. Hofmann, S.G., Grossman, P., Hinton, D.E.: Loving-kindness and compassion meditation: potential for psychological interventions. Clin. Psychol. Rev. 31(7), 1126–1132 (2011). https://doi.org/10.1016/j.cpr.2011.07.003

    Article  Google Scholar 

  19. Kabat-Zinn, J., et al.: Influence of a mindfulness meditation-based stress reduction intervention on rates of skin clearing in patients with moderate to severe psoriasis undergoing phototherapy (UVB) and photochemotherapy (PUVA). Psychosom. Med. 60(5), 625–632 (1998)

    Article  Google Scholar 

  20. Khosla, A., Khandnor, P., Chand, T.: A comparative analysis of signal processing and classification methods for different applications based on EEG signals. Biocybernet. Biomed. Eng. 40(2), 649–690 (2020)

    Article  Google Scholar 

  21. Lazar, S.W., et al.: Meditation experience is associated with increased cortical thickness. NeuroReport 16(17), 1893–1897 (2005)

    Article  Google Scholar 

  22. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015)

    Article  Google Scholar 

  23. Lee, D.J., Kulubya, E., Goldin, P., Goodarzi, A., Girgis, F.: Review of the neural oscillations underlying meditation. Front. Neurosci. 12, 178 (2018)

    Article  Google Scholar 

  24. Panachakel, J.T., Govindaiah, P.K., Sharma, K., Ganesan, R.A.: Binary classification of meditative state from the resting state using EEG. In: 2021 IEEE 18th India Council International Conference (INDICON), pp. 1–6. IEEE (2021)

    Google Scholar 

  25. Panachakel, J.T., Kumar, P., Ramakrishnan, A., Sharma, K.: Automated classification of EEG into meditation and non-meditation epochs using common spatial pattern, linear discriminant analysis, and LSTM. In: TENCON 2021–2021 IEEE Region 10 Conference (TENCON), pp. 215–218. IEEE (2021)

    Google Scholar 

  26. Pandey, P., Miyapuram, K.P.: Brain2depth: Lightweight CNN model for classification of cognitive states from EEG recordings. In: Papież, B.W., Yaqub, M., Jiao, J., Namburete, A.I.L., Alison Noble, J. (eds.) Medical Image Understanding and Analysis: 25th Annual Conference, MIUA 2021, Oxford, United Kingdom, July 12–14, 2021, Proceedings, pp. 394–407. Springer International Publishing, Cham (2021). https://doi.org/10.1007/978-3-030-80432-9_30

    Chapter  Google Scholar 

  27. Pandey, P., Prasad Miyapuram, K.: Classifying oscillatory signatures of expert vs nonexpert meditators. In: 2020 International Joint Conference on Neural Networks (IJCNN), pp. 1–7 (2020)

    Google Scholar 

  28. Shaw, L., Routray, A.: A critical comparison between SVM and K-SVM in the classification of KRIYA yoga meditation state-allied EEG. In: 2016 IEEE International WIE Conference on Electrical and Computer Engineering (WIECON-ECE), pp. 134–138. IEEE (2016)

    Google Scholar 

  29. Shaw, L., Routray, A.: Statistical features extraction for multivariate pattern analysis in meditation EEG using pca. In: 2016 IEEE EMBS International Student Conference (ISC), pp. 1–4. IEEE (2016)

    Google Scholar 

  30. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  31. Stapleton, P., Dispenza, J., McGill, S., Sabot, D., Peach, M., Raynor, D.: Large effects of brief meditation intervention on EEG spectra in meditation novices. IBRO Reports 9, 290–301 (2020). https://doi.org/10.1016/j.ibror.2020.10.006

    Article  Google Scholar 

  32. Tee, J.L., Phang, S.K., Chew, W.J., Phang, S.W., Mun, H.K.: Classification of meditation states through EEG: a method using discrete wavelet transform. In: AIP Conference Proceedings. vol. 2233, p. 030010. AIP Publishing LLC (2020)

    Google Scholar 

  33. Van Putten, M.J., Olbrich, S., Arns, M.: Predicting sex from brain rhythms with deep learning. Sci. Rep. 8(1), 1–7 (2018)

    Google Scholar 

  34. Vazquez, M.A., Jin, J., Dauwels, J., Vialatte, F.B.: Automated detection of paroxysmal gamma waves in meditation EEG. In: 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 1192–1196. IEEE (2013)

    Google Scholar 

  35. Waytowich, N., et al.: Compact convolutional neural networks for classification of asynchronous steady-state visual evoked potentials. J. Neural Eng. 15(6), 066031 (2018)

    Article  Google Scholar 

  36. Zeidan, F., Martucci, K.T., Kraft, R.A., Gordon, N.S., McHaffie, J.G., Coghill, R.C.: Brain mechanisms supporting the modulation of pain by mindfulness meditation. J. Neurosci. 31(14), 5540–5548 (2011). https://doi.org/10.1523/JNEUROSCI.5791-10.2011

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katinder Kaur .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kaur, K., Khandnor, P., Khosla, A. (2024). Classification of Meditation Expertise from EEG Signals Using Shallow Neural Networks. In: Singh, B.K., Sinha, G., Pandey, R. (eds) Biomedical Engineering Science and Technology. ICBEST 2023. Communications in Computer and Information Science, vol 2003. Springer, Cham. https://doi.org/10.1007/978-3-031-54547-4_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-54547-4_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-54546-7

  • Online ISBN: 978-3-031-54547-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics