Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Implementing 3-SAT Gadgets for Quantum Annealers with Random Instances

  • Conference paper
  • First Online:
Computational Science – ICCS 2024 (ICCS 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14837))

Included in the following conference series:

Abstract

The Maximum Boolean Satisfiability Problem (also known as the Max-SAT problem) is the problem of determining the maximum number of disjunctive clauses that can be satisfied (i.e., made true) by an assignment of truth values to the formula’s variables. This is a generalization of the well-known Boolean Satisfiability Problem (also known as the SAT problem), the first problem that was proven to be NP-complete. With the proliferation of quantum computing, a current approach to tackle this optimization problem is Quantum Annealing (QA). In this work, we compare several gadgets that translate 3-SAT problems into Quadratic Unconstrained Binary Optimization (QUBO) problems to be able to solve them in a quantum annealer. We show the performance superiority of the not-yet-considered gadgets in comparison to state-of-the-art approaches when solving random instances in D-Wave’s quantum annealer.

P. R. Farrés and R. Ballester—These authors contributed equally to this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now
Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://www.dwavesys.com.

  2. 2.

    Notice that 3-SAT, Max-3-SAT, and even Max-2-SAT are NP-complete problems. Therefore, a bounded-error quantum polynomial-time algorithm for any of these problems would result in a proof of \(NP\subseteq BQP\), which, obviously, we do not have.

  3. 3.

    https://www.dwavesys.com/solutions-and-products/systems/.

References

  1. Ansótegui, C., Levy, J.: SAT, Gadgets, Max2XOR, and Quantum Annealers (2024). http://arxiv.org/abs/2403.00182 [quant-ph]

  2. Biamonte, J., Wittek, P., Pancotti, N., Rebentrost, P., Wiebe, N., Lloyd, S.: Quantum machine learning. Nature 549(7671), 195–202 (2017). https://doi.org/10.1038/nature23474, https://www.nature.com/articles/nature23474, number: 7671. Publisher: Nature Publishing Group

  3. Bian, Z., Chudak, F., Israel, R., Lackey, B., Macready, W.G., Roy, A.: Discrete optimization using quantum annealing on sparse Ising models. Front. Phys. 2 (2014). https://www.frontiersin.org/articles/10.3389/fphy.2014.00056

  4. Bian, Z., Chudak, F., Macready, W., Roy, A., Sebastiani, R., Varotti, S.: Solving SAT (and MaxSAT) with a Quantum Annealer: foundations, encodings, and preliminary results. Inf. Comput. 275, 104609 (2020). https://doi.org/10.1016/j.ic.2020.104609, https://www.sciencedirect.com/science/article/pii/S0890540120300973

  5. Chancellor, N., Zohren, S., Warburton, P.A., Benjamin, S.C., Roberts, S.: A direct mapping of Max k-SAT and high order parity checks to a chimera graph. Sci. Rep. 6(1), 37107 (2016).https://doi.org/10.1038/srep37107, https://www.nature.com/articles/srep37107, number: 1. Publisher: Nature Publishing Group

  6. Choi, V.: Adiabatic quantum algorithms for the NP-complete maximum-weight independent set, exact cover and 3SAT problems. ArXiv (2010). https://www.semanticscholar.org/paper/Adiabatic-Quantum-Algorithms-for-the-NP-Complete-Choi/1fcb4d5749074714ca2eb0b56ab986ca66fd0b95

  7. Choi, V.: Minor-embedding in adiabatic quantum computation: I. The parameter setting problem. Quantum Inf. Process. 7(5), 193–209 (2008). https://doi.org/10.1007/s11128-008-0082-9

  8. Cook, S.A.: The complexity of theorem-proving procedures. In: Proceedings of the Third Annual ACM Symposium on Theory of Computing, pp. 151–158. STOC ’71, Association for Computing Machinery, New York, NY, USA (1971). https://doi.org/10.1145/800157.805047

  9. Farhi, E., Goldstone, J., Gutmann, S., Lapan, J., Lundgren, A., Preda, D.: A quantum adiabatic evolution algorithm applied to random instances of an NP-complete problem. Science 292(5516), 472–475 (2001). https://doi.org/10.1126/science.1057726, http://arxiv.org/abs/quant-ph/0104129

  10. Gabor, T., et al.: Assessing solution quality of 3SAT on a quantum annealing platform (2019). http://arxiv.org/abs/1902.04703 [quant-ph] version: 1

  11. Glover, F., Kochenberger, G., Du, Y.: A tutorial on formulating and using QUBO models (2019). https://doi.org/10.48550/arXiv.1811.11538 [quant-ph]

  12. Gonzalez Calaza, C.D., Willsch, D., Michielsen, K.: Garden optimization problems for benchmarking quantum annealers. Quantum Inf. Process. 20, 305 (2021). https://doi.org/10.1007/s11128-021-03226-6

  13. Li, C.M.: Detecting disjoint inconsistent subformulas for computing lower bounds for Max- SAT (2006)

    Google Scholar 

  14. Lucas, A.: Ising formulations of many NP problems. Front. Phys. 2 (2014). https://doi.org/10.3389/fphy.2014.00005, http://arxiv.org/abs/1302.5843 [cond-mat, physics:quant-ph]

  15. Nüßlein, J., Zielinski, S., Gabor, T., Linnhoff-Popien, C., Feld, S.: Solving (Max) 3-SAT via quadratic unconstrained binary optimization (2023). https://doi.org/10.48550/arXiv.2302.03536 [quant-ph]

  16. Schuld, M., Petruccione, F.: Supervised Learning with Quantum Computers. QST, Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96424-9

    Book  Google Scholar 

  17. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comput. 26(5), 1484–1509 (1997). https://doi.org/10.1137/S0097539795293172. Publisher: Society for Industrial and Applied Mathematics

  18. Tseitin, G.S.: On the complexity of derivation in propositional calculus. In: Siekmann, J.H., Wrightson, G. (eds.) Automation of Reasoning: 2: Classical Papers on Computational Logic 1967–1970, pp. 466–483. Symbolic Computation, Springer, Berlin, Heidelberg (1983). https://doi.org/10.1007/978-3-642-81955-1_28

Download references

Acknowledgments

This work was founded partially by the Government of Catalonia Exp. Num. 2023 DI 00071, by Enzyme Advising Group under the development of an industrial PhD on Quantum Machine Learning, by CSIC’s JAE Intro JAEICU_23_00782 and by grant PID2022-136787NB-I00 funded by MCIN/AEI/10.13039/501100011033. Jesus Cerquides is funded by European Union KHealthInAir, GUARDEN, and Humane-AI projects with No. 101057693, 101060693, and 952026.

Author information

Authors and Affiliations

Authors

Contributions

Pol Farrés and Rocco Ballester: These authors contributed equally to this work.

Corresponding author

Correspondence to Pol Rodríguez-Farrés .

Editor information

Editors and Affiliations

Ethics declarations

Disclosure of Interests.

The authors have no competing interests to declare that are relevant to the content of this article.

A Number of Physical Qubits Required per Gadget

A Number of Physical Qubits Required per Gadget

Table 2. Mean values and standard deviations of the required number of physical qubits for each gadget and each scenario.

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rodríguez-Farrés, P., Ballester, R., Ansótegui, C., Levy, J., Cerquides, J. (2024). Implementing 3-SAT Gadgets for Quantum Annealers with Random Instances. In: Franco, L., de Mulatier, C., Paszynski, M., Krzhizhanovskaya, V.V., Dongarra, J.J., Sloot, P.M.A. (eds) Computational Science – ICCS 2024. ICCS 2024. Lecture Notes in Computer Science, vol 14837. Springer, Cham. https://doi.org/10.1007/978-3-031-63778-0_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-63778-0_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-63777-3

  • Online ISBN: 978-3-031-63778-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics