Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Age-Related Face Recognition Using Siamese Networks and Vision Transformers

  • Conference paper
  • First Online:
South African Computer Science and Information Systems Research Trends (SAICSIT 2024)

Abstract

Face recognition plays a crucial role in various applications, ranging from security to personal convenience. Recent advancements have emphasized the importance of recognizing individuals based on age-related facial features within this domain. This paper presents a comprehensive evaluation of two deep learning architectures for age-based face recognition: Siamese Convolutional Networks (SCNs) and Vision Transformers (ViTs). Convolutional Neural Networks (CNNs), which are critical in modern face recognition, serve as the backbone for Siamese Convolutional Networks (SCNs). SCNs are specifically designed to detect similarities between input pairs by emphasising local features crucial for age-related distinctions. In contrast, ViTs, initially developed for natural language processing, have demonstrated promising performance in image recognition, showcasing their aptitude for capturing global image context. This work investigates the performance of these distinct architectures in discerning age-related variations within facial data features. Performance comparisons were conducted on three established SCN models and two ViT architectures. The results revealed that the optimal SCNs primarily focused on the mouth, nose, and eye regions, indicating their reliance on local features for age estimation. Interestingly, the ViT models achieved superior performance despite lacking explicit feature localization. This suggests that a holistic understanding of the facial context may be more effective than focusing solely on isolated features for age-based recognition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Agarap, A.: Deep learning using rectified linear units (ReLU). arXiv preprint arXiv:1803.08375 (2019)

  2. Alzubaidi, L., et al.: Review of deep learning: concepts, CNN architectures, challenges, applications, future directions. J. Big Data 8(1), 1–74 (2021)

    Article  Google Scholar 

  3. Bromley, J., Guyon, I., LeCun, Y., Säckinger, E., Shah, R.: Signature verification using a “siamese” time delay neural network. In: Advances in Neural Information Processing Systems, vol. 6 (1993)

    Google Scholar 

  4. Chen, B.-C., Chen, C.-S., Hsu, W.H.: Cross-age reference coding for age-invariant face recognition and retrieval. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014, Part VI. LNCS, vol. 8694, pp. 768–783. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10599-4_49

    Chapter  Google Scholar 

  5. Chen, D., Cao, X., Wen, F., Sun, J.: Blessing of dimensionality: high-dimensional feature and its efficient compression for face verification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3025–3032 (2013)

    Google Scholar 

  6. Dosovitskiy, A., et al.: An image is worth 16\(\times \)16 words: transformers for image recognition at scale. arXiv preprint arXiv:2010.11929 (October 2020)

  7. Ganin, Y., et al.: Domain-adversarial training of neural networks. J. Mach. Learn. Res. 17(1), 2096–2130 (2016)

    MathSciNet  Google Scholar 

  8. Gong, D., Li, Z., Lin, D., Liu, J., Tang, X.: Hidden factor analysis for age invariant face recognition. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2872–2879 (2013)

    Google Scholar 

  9. Gyawali, D., Pokharel, P., Chauhan, A., Shakya, S.: Age range estimation using MTCNN and VGG-face model. In: Proceedings of the 2020 11th International Conference on Computing, Communication and Networking Technologies (ICCCNT), pp. 1–6 (2020)

    Google Scholar 

  10. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  11. Heidari, M., Fouladi-Ghaleh, K.: Using siamese networks with transfer learning for face recognition on small-samples datasets. In: Proceedings of the 2020 International Conference on Machine Vision and Image Processing (MVIP), pp. 1–4 (2020)

    Google Scholar 

  12. Johnston, K., Ngxande, M.: Robust facial recognition for occlusions using facial landmarks. In: Proceedings of the 43rd Conference of the South African Institute of Computer Scientists and Information Technologists, vol. 85, pp. 48–61 (2022)

    Google Scholar 

  13. Keles, F., Wijewardena, P., Hegde, C.: On the computational complexity of self-attention. In: Proceedings of the International Conference on Algorithmic Learning Theory, pp. 597–619 (2023)

    Google Scholar 

  14. Koch, G., Zemel, R., Salakhutdinov, R.: Siamese neural networks for one-shot image recognition. In: Proceedings of the ICML Deep Learning Workshop, vol. 2 (2015)

    Google Scholar 

  15. Kouris, A., Venieris, S., Bouganis, C.: CascadeCNN: pushing the performance limits of quantisation in convolutional neural networks. In: Proceedings of the 2018 28th International Conference on Field Programmable Logic and Applications (FPL), pp. 155–1557 (2018)

    Google Scholar 

  16. Liu, W., et al.: SSD: single shot multibox detector. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016, Part I. LNCS, vol. 9905, pp. 21–37. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_2

    Chapter  Google Scholar 

  17. Melekhov, I., Kannala, J., Rahtu, E.: Siamese network features for image matching. In: Proceedings of the 2016 23rd International Conference on Pattern Recognition (ICPR), pp. 378–383 (2016)

    Google Scholar 

  18. Mishkin, D., Matas, J.: All you need is a good init. arXiv preprint arXiv:1511.06422 (2015)

  19. Mishra, S., et al.: Multivariate statistical data analysis-principal component analysis (PCA). Int. J. Livestock Res. 7(5), 60–78 (2017)

    Google Scholar 

  20. Moustafa, A., Elnakib, A., Areed, N.: Age-invariant face recognition based on deep features analysis. Signal Image Video Process. 14, 1027–1034 (2020)

    Article  Google Scholar 

  21. Pan, S., Yang, Q.: A survey on transfer learning. IEEE Trans. Knowl. Data Eng. 22(10), 1345–1359 (2009)

    Article  Google Scholar 

  22. Ramachandra, B., Jones, M., Vatsavai, R.: Learning a distance function with a siamese network to localize anomalies in videos. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 2598–2607 (2020)

    Google Scholar 

  23. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Trans. Pattern Anal. Mach. Intell. 28 (2015)

    Google Scholar 

  24. Russakovsky, O., et al.: ImageNet large scale visual recognition challenge. Int. J. Comput. Vision 115(3), 211–252 (2015)

    Article  MathSciNet  Google Scholar 

  25. Selvaraju, R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-CAM: visual explanations from deep networks via gradient-based localization. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 618–626 (2017)

    Google Scholar 

  26. Shi, C., Zhao, S., Zhang, K., Wang, Y., Liang, L.: Face-based age estimation using improved swin transformer with attention-based convolution. Front. Neurosci. 17, 1136934 (2023)

    Article  Google Scholar 

  27. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  28. Sun, Z., Tzimiropoulos, G.: Part-based face recognition with vision transformers. arXiv preprint arXiv:2212.00057 (2022)

  29. Swift, A., Liew, S., Weinkle, S., Garcia, J., Silberberg, M.: The facial aging process from the “inside out’’. Aesthetic Surg. J. 41(10), 1107–1119 (2021)

    Article  Google Scholar 

  30. Taigman, Y., Yang, M., Ranzato, M., Wolf, L.: DeepFace: closing the gap to human-level performance in face verification. In: Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1701–1708 (2014)

    Google Scholar 

  31. Tharwat, A., Gaber, T., Ibrahim, A., Hassanien, A.E.: Linear discriminant analysis: a detailed tutorial. AI Commun. 30(2), 169–190 (2017)

    Article  MathSciNet  Google Scholar 

  32. Touvron, H., Vedaldi, A., Douze, M., Jégou, H.: Fixing the train-test resolution discrepancy. In: Advances in Neural Information Processing Systems, vol. 32 (2019)

    Google Scholar 

  33. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, vol. 30 (2017)

    Google Scholar 

  34. Visani, G., Bagli, E., Chesani, F., Poluzzi, A., Capuzzo, D.: Statistical stability indices for lime: obtaining reliable explanations for machine learning models. J. Oper. Res. Soc. 73(1), 91–101 (2022)

    Article  Google Scholar 

  35. Wang, G., Wang, S., Chi, W., Liu, S., Fan, D.: A person reidentification algorithm based on improved Siamese network and hard sample. Math. Probl. Eng. 2020, 1–11 (2020)

    Google Scholar 

  36. Wang, J., Li, Z.: Research on face recognition based on CNN. In: Proceedings of the IOP Conference Series: Earth and Environmental Science, vol. 170, p. 032110 (2018)

    Google Scholar 

  37. Wang, Q., Li, B., Xiao, T., Zhu, J., Li, C., Wong, D., Chao, L.: Learning deep transformer models for machine translation. arXiv preprint arXiv:1906.01787 (2019)

  38. Wen, Y., Li, Z., Qiao, Y.: Latent factor guided convolutional neural networks for age-invariant face recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4893–4901 (2016)

    Google Scholar 

  39. Wu, H., Xin, M., Fang, W., Hu, H., Hu, Z.: Multi-level feature network with multi-loss for person re-identification. IEEE Access 7, 91052–91062 (2019)

    Article  Google Scholar 

  40. Wu, H., Xu, Z., Zhang, J., Yan, W., Ma, X.: Face recognition based on convolution Siamese networks. In: Proceedings of the 2017 10th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI), pp. 1–5 (2017)

    Google Scholar 

  41. Yu, Z., Huang, H., Chen, W., Su, Y., Liu, Y., Wang, X.: YOLO-facev2: a scale and occlusion aware face detector. arXiv preprint arXiv:2208.02019 (2022)

  42. Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE Signal Process. Lett. 23(10), 1499–1503 (2016)

    Article  Google Scholar 

  43. Zhong, Y., Deng, W.: Face transformer for recognition. arXiv preprint arXiv:2103.14803 (2021)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mkhuseli Ngxande .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mertens, P.J., Ngxande, M. (2024). Age-Related Face Recognition Using Siamese Networks and Vision Transformers. In: Gerber, A. (eds) South African Computer Science and Information Systems Research Trends. SAICSIT 2024. Communications in Computer and Information Science, vol 2159. Springer, Cham. https://doi.org/10.1007/978-3-031-64881-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-64881-6_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-64880-9

  • Online ISBN: 978-3-031-64881-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics