Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4692))

  • 1492 Accesses

Abstract

Efficient multi-scale manifold reconstruction from point clouds can be obtained through the Hierarchical Radial Basis Function (HRBF) network. An online training procedure for HRBF is here presented and applied to real-time surface reconstruction during a 3D scanning session. Results show that the online version compares well with the batch one.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Saad, D. (ed.): On-Line Learning in Neural Networks. Cambr. Univ. Press, Cambridge (1998)

    MATH  Google Scholar 

  2. Bishop, C.M.: Neural Networks for Pattern Recognition. Oxford Univ. Press, New York (1995)

    Google Scholar 

  3. Alexandridis, A., Sarimveis, H., Bafas, G.: A new algorithm for online structure and parameter adaptation of RBF networks. Neural Networks 16(7), 1003–1017 (2003)

    Article  Google Scholar 

  4. Freeman, J.A.S., Saad, D.: Online learning in radial basis function networks. Neural Computation 9(7), 1601–1622 (1997)

    Article  Google Scholar 

  5. Rubaai, A., Kotaruand, R., Kankam, M.D.: Online training of parallel neural network estimators for control of induction motors. IEEE Trans. on Ind. Appl. 37(5), 1512–1521 (2001)

    Article  Google Scholar 

  6. Fan, J., Dimitrova, N., Philomin, V.: Online face recognition system for videos based on modified probabilistic neural networks. In: Proc. of the 2004 Int. Conf. on Image Processing, 2004. ICIP ’04, vol. 3, pp. 2019–2022 (2004)

    Google Scholar 

  7. Borghese, N.A., Ferrigno, G., Baroni, G., Ferrari, S., Savaré, R., Pedotti, A.: Autoscan: a flexible and portable 3D scanner. IEEE C. G. & A. 18(3), 38–41 (1998)

    Article  Google Scholar 

  8. Rusinkiewicz, S., Hall-Holt, O., Levoy, M.: Real-time 3D model acquisition. In: Proc. of the 29th conf. on Comp. graph. and int. tech., pp. 438–446. ACM Press, New York (2002)

    Google Scholar 

  9. Rusinkiewicz, S., Levoy, M.: Qsplat: A multiresolution point rendering system for large meshes. In: Proc. of SIGGRAPH 2000, pp. 343–352 (2000), (ISBN 1-58113-208-5)

    Google Scholar 

  10. Ferrari, S., Frosio, I., Piuri, V., Borghese, N.A.: Automatic multiscale meshing through HRBF networks. IEEE Trans. on I. & M. 54(4), 1463–1470 (2005)

    Google Scholar 

  11. Girosi, F., Jones, M., Poggio, T.: Regularization theory and neural networks architectures. Neural Computation 7(2), 219–269 (1995)

    Google Scholar 

  12. Platt, J.: A resource-allocating network for function interpolation. Neural Computation 3(2), 213–225 (1991)

    Article  MathSciNet  Google Scholar 

  13. Fritzke, B.: Growing cell structures — A self-organizing network for unsupervised and supervised learning. Neural Networks 7(9), 1441–1460 (1994)

    Article  Google Scholar 

  14. Ferrari, S., Borghese, N.A., Piuri, V.: Multiscale models for data processing: an experimental sensitivity analysis. IEEE Trans. on I. & M. 50(4), 995–1002 (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Bruno Apolloni Robert J. Howlett Lakhmi Jain

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bellocchio, F., Ferrari, S., Piuri, V., Borghese, N.A. (2007). Online Training of Hierarchical RBF. In: Apolloni, B., Howlett, R.J., Jain, L. (eds) Knowledge-Based Intelligent Information and Engineering Systems. KES 2007. Lecture Notes in Computer Science(), vol 4692. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74819-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74819-9_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74817-5

  • Online ISBN: 978-3-540-74819-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics