
Exception handling and term labelling

Gilles Bernot 1 Pascale Le Gall 2

Abst rac t : We propose a new algebraic framework for exception handling which
is powerful enough to cope with many exception handling features such that recovery,
implicit propagation of exceptions, et.c. This formalism is capable of treating all the
exceptional cases, including the following ones: "intrinsic" exceptions which are
related to tile underlying data structure (for instance, popping an emptstack or
applying predecessor on zero for natural numbers), exceptions which are relied on
"dynamic" properties (as an acces to a non-initialized array cell) or else exceptions
which are due to certain limitations (mainly bounded data structures). We show
that within the already existing frameworks, the case of bounded data structures
with certain recoveries of exceptional values remains unsolved.

First, we justify the usefulness of "labelling" some terms in order to easily specify
exceptions without inconsistency, and we then define a general framework of label
algebras which allow.,; us to "type" terms instead of values. Ezception algebras and
exception specifications are defined as a direct application of label algebras. Indeed,
the usual inconsistency problems raised by exception handling are avoided by the
possibility of labelling terms.

As a conclusion, we also sketch out how far the application domain of label
algebras seems to be much more general than exception handling.

Key-words : Algebraic specifications of abstract data types, Error and exception
handling, Exception recovery, Bounded data structures, Structured specifications.

1 I n t r o d u c t i o n

Exception handling is often neglected in software engineering, especially at the spec-
ification stage. This results in incomplete specifications and the various choices of
"how to treat exceptional cases" are then often made at the programming stage.
As usual when spec:ifications are incomplete, this decreases the overall quality of
the software. When the exceptional cases are not well specified, the corresponding
bugs are very difficult to identify, as they do not cope with the standard verification
and validation methods (proving or testing methods). Nevertheless, most of these
exceptional cases are fairly easy to classify. An important class of exceptional cases
is related to "intrinsic" properties of the underlying abstract data types: access to
an empty data structure (e.g. popping an empty stack) or functions which are in-
trinsically not defined for certain values (e.g. predecessor for 0 in natural numbers).
Another important class of exceptional cases relates to on "dynamic" properties of

1LIVE, Univcrslt6 d'Evry - Val d'Essonne, Bd des Coquibus, 91025 Evry Cedex, FRANCE.
(bernotL~lri.fr)

2LRI, CNRS URA 4].0, Bat. 490, Universit~ Paris-Sud, 91405 Orsay, FRANCE. (legallOiri.fr)

422

the data structure (e.g. access to a non-initialized array cell). In addition, it is very
important not to neglect certain limitations, due to the system itself or required by
the specifier (mainly bounded data structures), ff bounded data structures are not
taken into account at the specification level, then almost all the specified properties
are actually false; and precisely, in practice, softwares requires a strong verification
and validation effort near the bounds of the underlying data structures.

Over the last fifteen years [LZ75][Gut75][GTW78], algebraic specifications have
been widely advocated as one of the most fruitful formal specification methods. In
this paper, a new framework for exception handling within algebraic specifications,
covering all the classes of exceptional cases, is proposed. First of all, we will jus-
tify the introduction of a new algebraic framework by studying different exception
handling cases. Then, before defining exception algebras, we will introduce a new
general framework, the label algebras. Exception specifications will be defined as a
direct application of label Specifications.

We assume that the reader is familiar with the elementary concepts of category
theory [McL71] and algebraic specifications [GTW78][EM85].

2 Crucial aspects of exception handling

Obviously, a good exception handling framework must cover all kinds of exceptional
cases. Two additional crucial aspects are often neglected, namely clarity and terse-
ness. For programming languages exception handling is actually not only used for
error handling; it is also a great tool for clarity and terseness. The "rare cases" are
extracted from the main program text; they are treated in the exception handler.
Thus, the exception handler, as well as the main program text, goes straight to the
point; exception handling improves both clarity and terseness of programs. For for-
mal specifications~ clarity and terseness are a fortiori an important aim of exception
handling. A formal framework only treating error handling is not sufficient; speci-
fication and abstraction require exception handling. An exception is not necessarily
an error; it simply requires a special treatment which has to be clearly distinguished
from the main properties.

Regarding clarity, it is necessary to separate the "exceptional properties" from
the "normal behaviour." When this partition is not available, it is necessary to
write complex axioms where additional predicates appear in order to restrict the
scope of the ~ o m s to normal (resp. exceptional) cases (see also Section 3). Thus,
the semantics should implicitly restrict the scope of the axioms.

Regarding terseness, the specialized semantics for each part o f the syntax (ex-
ceptional/normal properties) should be powerful enough to handle obvious general
properties of exceptions. For instance, an error propagation rule by default should
not have to be explicitly specified.

In addition, the following principles have been widely recognized as crucial for
abstract specifications with exception handling [Gog78a] [GDLE84] [Bid84] [Ber86]
[BBC86] [Sch91]: each exceptional (or erroneous) case should be declared with s o m e

exception name (or error message) which provides enough information to treat it eas-
ily; various recoveries of the exceptional cases must be possible (related to their ex-
ception names); more generally, all the relevant properties of exceptional behaviours
should be formally specified.

423

3 Algebraic specifications and exception handling
The main difficulty is that all the "simple" semantics that we can imagine lead to
inconsistencies. To illustrate this fact, let us simply consider natural numbers with
exception handling.

A simple idea would be to use the classical ADJ semantics [GTW?8], adding a
new constant error of sort Nat and the axiom: pred(O) = error . We have to face
error propagation: wi~at is the value of succ(error) ? A natural idea is to add, for
each operation / of the signature, axioms of the form: f (. . . e r r o r . . .) = error . But
the specification also contains the axiom: x • 0 = 0; thus we get error = 0 (with
f = x, via the assignment x = error). This inconsistency has already been shown in
[GTW78], where the explicit introduction of a predicate Ok (checking if a value is not
erroneous) is proposed in order to restrict the scope of the axioms. Unfortunately,
as pointed out by the authors in [GTW7S]: "the resulting total specification (. . .) is
unbelievably complicated" because Ok is very difficult to specify properly.

Clearly, these difficulties result from the explicit introduction of an erroneous
value in the signature. A simple idea could be to introduce partial functions [BW82]
(e.g. pred(O) being undefined). Unfortunately, specifying exceptions via partial func-
tions is not powerful enough for a full exception handling. Exceptional eases can
give rise to ulterior recoveries: even if pred(O) is not defined, we can require for
succ(pred(O)) to be recovered (e.g. on 0). This is not possible if pred(O) has no
semantical meaning.

Another idea is to use subsorting; the Ok-part (resp. the error-part) of the sort
Nat being a subsort OkNat (resp. ErrNat) of Nat. Since the work of Goguen in
[Gog78b], order sorted algebras have been advocated to be a solution for exception
handling (see also [FGJM85][GM89]). Unfortunately, in this framework, the defini-
tion domain of each operation of the signature must be explicitly specified. Even
if this approach is workable for several simple erroneous cases, such as the division
by 0, it fails with re.spect to clarity and terseness for operations with a definition
domain that is not reduced to a simple Cartesian product, such as the subtraction.
(See also Example 1.)

In [Poi87], the domains of subtypes can be specified by means of axioms. Un-
fortunately, as pointe.d out in [Poi87], the form of the axioms does not allow the
specifier to treat bounded data structures; moreover, the saane limitation holds for
definition domains that are not cartesian products.

The terseness criterion is better fulfilled when the semantics are based on a dec-
laration of the "Ok-eodomaiu" of the operations rather than on their "Ok-domain."
The reason is simple: in general, all the operations of a data type share the same
Ok-codomain, while each of them has its own Ok-domain. In [GDLE84], the signa-
ture ~ is partitioned into "safe" and "unsafe" operations. For example, 0, succ and
4- are safe operations because when they are applied to Ok-arguments, they always
return Ok-results; on the contrary, pred is unsafe. Such a simple syntactic classifica-

424

tion of functions is sufficient to describe the Ok-codomain; the Ok-values are those
generated by the safe operations. As pointed out in [Ber86][BBC86], bounded data
structures cannot be specified in this framework. For example, succ and + are not
safe for bounded natural numbers; consequently the Ok-part of the sort Nat would
be reduced to 0.

This problem is solved in [BBC86] where exception names are reflected by la-
bels, a special label Ok being reserved for Ok-values. The labels are carried by
values: the predicate v e TooLarge means that the value v is labelled by TooLarge.
This approach allows us to specify bounded data structures; unfortunately~ certain
recoveries lead to write inconsistent specifications:

E x a m p l e 1 Let us assume that every value of the form succi(O) (i > 9) is labelled
by TooLarge. 1 Let us consider an exception handler that recovers every TooLarge-
value on succS(O). A possible way of expressing this recovery is "if the operation
succ raises the exception TooLarge, then do not perform it." It is formally specified
as:

succ(n) , TooLarge ==~ succ(n) = n

As the term succg(O) is recovered on succS(O), they have the same value; thus both
of them are labelled by TooLarge. By applying the axiom with the assignment
n = succT(O) we get then the inconsistency 2 succa(O) = sucC(O). The point here
is that, even if the terms succg(O) and succS(O) have the same value, they should
not carry the same labels. Notice that subsorting [FGJM85] gives rise to a similar
paradox because sorts are attached to values. Two terms having the same value must
share the same subsorts; consequently succs (0) and succ 9 (0) cannot be distinguished,
and this example would lead to the same inconsistency.

This is indeed the case for all existing algebraic framework for exception handling,
because exception names (if provided) are always carried by values.

Example 1 reveals the difference between "exception handling" and "error han-
dling." The term succg(O) is not erroneous but it is exceptional; even if the term
succg(O) is recovered on succS(O), the exception name Toonarge should not be prop-
agated to succS(O). Exception names should be carried by terms, not by values.
Roughly speaking, exception handling requires a special "typing" of terms (ac-
cording to our terminology distinguishing exception handling from error handling).
We shall call labels these special "types." Labels will form a third component of
the signature. From this point of view, label algebras are an extension of more
standard algebraic approaches with "multityping" such as order sorted algebras
[Gog78b][FGJM85]. Some other extensions of order sorted algebras are: Equational
Type Logic [MSS90], unified algebras [Mos89] or G-algebras [Meg90]. All of them
attach types (or subtypes) to values while, in our approach, labels are attached to
terms (see also [BL91a]). In [Ber86][BBC86], only the label Ok is carried by terms,
and in a restricted manner. This leads to complicated semantics and Example 1
cannot be treated.

I ~uce~(O) s tands for succ(s~r (~ucc(0))..)), the operation sv.cc being applied i t imes.
2Indeed, this inconsistency propagates in the same way, and all values are equal to O.

425

The rest of this paper is devoted to label algebras, label specifications and their
applications to exception handling.

4 Label algebras

4.1 I n t r o d u c t i o n

Usually, algebras are {',heterogeneous) sets of values [GTW78][EM85]. Let us remem-
ber that a signature is usually a couple < S, Z > where S is a finite set of sorts (or
type names) and Y. is a finite set of operation names with arity in S*; an object (al-
gebra) of the category' AIg(Z) is a heterogeneous set A, partitioned as A = {A,},es,
and with, for each operation name " f : s l . . . sn ~ s" in ~ (0 < n), a total function
fA : As, x . . . x As, -~ As ; the morphisms of Alg(~) (Y.-morphisms) being obviously
the sort preserving, operation preserving applications.

As a consequence of our approach, (labelled) terms must also be considered as
"first class citizen objects." Given an algebra A, the satisfaction relation must
be defined using tetras (the usual definition only involves values). A simple idea
could be to consider both A and T~. (the ground term algebra). Unfortunately,
finitely generated algebras (i.e. such that the initial Z-morphism from T~ to A is
surjective) are not powerful enough to cope with enrichment, parametrization or
abstract implementations. How is one to deal with both terms and unreachable
values ? This question is solved by the free ~-term algebra Tp.(A).

N o t a t i o n 1 Given a heterogeneous "set of variables" V = {Vs}ses, the free Y~-term
algebra with variables in V is the least Z-algebra T~ (V) (with respect to the preorder
induced by Z-morphi~,~ms) such that V C T~(V).

Since V is not necessarily finite or enumerable, we can consider in particular
T~.(A) for every algebra A. An element of T~(A) is a Z-term such that each leaf
can contain either a constant of the signature, or a value of A.

The main technical point underlying our framework is to systematically use
T~.(A). Intuitively, a term reflects the "history" of a value; it is a "sequence of
calculations" which results in a value. Several histories can provide the same value.
This is the reason why labelling is more powerful than typing: it allows us to "di-
agnose" the history in order to apply a specific treatment or not. The canonical
evaluation morphism evalA : T~.(A) ~ A, deduced from the ~-algebra structure
of A, relates each term to its final value. Of course, in the end, the satisfaction of
an equality must be checked on values; thus, evalA is a crucial tool. However, the
considered assignments can be precisely restricted to certain kinds of terms/histories
before checking equalities on values, and consequently, all the inconsistencies men-
tioned before can be solved via label algebras.

N o t a t i o n 2 We note A = Tv(A), and for every Z-morphism ~ : A --, B, -fi :
A ~ B denotes the canonical ~-morphism which extends # to the corresponding free
algebras.

426

4 .2 D e f i n i t i o n s a n d r e s u l t s

For lack of space, the results are not proved here. Complete proofs can be found
in [BL91b][LcG93].

Def in i t ion 1 A label signature is a triplet EL -=< S ,P . ,L > where < S , E > is a
(usual) signature and L is a (finite) set of labels.

A V.L-algebra is a couple A = (A, {lA)leL) where A is a E-algebra, and {IA}/eL
is a L-indexed family such that, for each l in L, IA is a subset of A.

There are no conditions about the subsets IA: they can intersect several sorts, they

are not necessarily disjoint and their union (U la) does not necessarily cover A.
IEL

Def in i t ion 2 Let A = (A, {IA}teL) and B = (B, {lB}leL) be two EL-algebras. A
EL-morphism h : A ---* B is a E-morphism from A to B such that: Vl e L, ~t(la) C
IB. The category of all EL-algebras is denoted by AlgLbt(~L).

When there is no ambiguity about the signature under consideration, EL-algebras
and EL-morphisms will be called label algebras and label morphisms, or even algebras
and morphisms.

Not surprisingly, a "label specification" will be defined by a label signature and
a set of well formed formulae (axioms):

Def in i t ion 3 Given a label signature EL, a EL-axiom is a well formed formula built
on:

* atoms: atoms are either equalities (u =- v) such that u and v are ~- terms with
variables, u and v belonging to the same sort, or labelling atoms (w e l) such
that w is a E- term with variables and I is a label belonging to L,

�9 connectives belonging to {-1, A, V, ~ } .

(Every variable is implicitly universally quantified.) 3
A ~L-ax iom is called positive conditional if and only if it is of the form aa A

. . . A n n ~ a where the al and a are positive atoms (i f n = 0 then the axiom is
reduced to a).

The predicate " e " should be read "is labelled by".

Def in i t ion 4 A label specification is a couple SiP =< EL, Ax > where EL is a
label signature and A x is a set of EL-axioms. SP is called positive conditional iff
all its axioms are positive conditional.

The satisfaction relation is indeed the crucial definition. It is of first importance
to consider assignments with range in A = T~.(A) (terms) instead of A (values):

Def in i t ion 5 Let .A = (A, {IA}leL) be a EL-algebra.

�9 r satisfies (u = v), where u and v are two terms in A, means that evalA(u) =
evaIA(V) [the symbol "=" being the set-theoretic equality in the carrier of A].

3Allowing existential quantifiers is not difficult [LeG93], but this extension is not required for
defining exception algebras.

427

�9 A satisfies (w e l), where w E -A and l E L, means that w E lA [the symbol
"E" being the set-theoretic membership].

�9 Given a ~L-axiom ~o, A satisfies ~o means that for all assignments a : V .-o A
(V covering all ~he variables of ~o), .,4 satisfies a(~o) according to the "atomic
satisfaction" defined above and the truth tables of the connectives.

A label algebra satisfies a label specification SP if and only if it satisfies all its
axioms. The full subc~;tego~ of Algzbt(~L) containing all the algebras satisfying SP
is denoted by Algzbl(6T).

The classical resu]its of [GTW78] can be extended to the framework of label
algebras:

T h e o r e m 1 Let SP be a positive conditional ~L-specification. Let X be a ~L-
algebra. Let R be a binary relation over X compatible with the sorts of the signature
(i.e. R is a subset of U X , x X ,) . There is a least ~L-algebra y in AlgLbt(SP)

8ES

such that there exists a label morphism hr : X ~ y and (31, hy) is compatible with
a (i.e. Vx, y e X , x n y h (x) =

Coro l l a ry 1 / f SP is positive conditional, then Algzbl(SP) has an initial object Tap.

Coro l l a ry 2 Let SP1 and SPa be two positive conditional label specifications such
that SPI C_ SP2 (i.e. "~1 C_ $2, ~1 C_ ~ , etc.).

The forgetful functor U : Atgzbl(SPy.) --* Algzbl(SP1) exists and has a left adjoint
funetor F : Algzbl(SP:t) ~ AlgLbI(SP2).

As usual, the adjunction unit I.~ : .4 --, U(F(.4)) can be used to define hierarchi-
cal consistency (i.e. the "no-collapse" property) and sufficient completeness (i.e. the
"no-junk" property) for structured specifications. In addition, pushouts and colimits
exist (from Theorem 1), thus parameterization can be handled without difficulty.

5 Exception signatures and exception algebras
The framework of exception algebras is a specialization of the one of label algebras,
where the labels are used for exception handling purposes.

5 .1 L a b e l a l g e b r a s a n d e x c e p t i o n a l g e b r a s

The particular label Ok will be distinguished to characterize the normal cases; ex-
ception names and error messages will be reflected by the other labels. This allows
us to take exception names into account in the axioms; thus, an extremely wide spec-
trum of exception handling and error recovery cases can be specified. Intuitively, in
an exception algebra .4, t E IA with l~Oh will mean that the calculation defined by
t leads to the exception name l; and t E OkA will mean that the calculation defined
by t is a "normal" calculation (i.e. it does not need an exceptional treatment and
the calculation is successful).

428

As shown in Section 3, when specifying a data structure with exception handling
features, the specifier has first to declare the desired Ok-part. Let us assume for
example that all the terms succi(O) with i <_ 8 are labelled by Ok and that the
specification contains also the following "normal axiom:" pred(suee(n)) = n. Then,
for instance, the term pred(succ(O)) should also belong to tile Ok-domain because
its calculus does not require any exceptional treatment and leads to the Ok-term
0 via the previous normal axiom. By the terseness principle, labelling by Ok must
be implicitly propagated through the axioms kept for normal cases. These axioms
will be called Ok-axioms, and this implicit propagation rule will be an important
component of their semantics, as described in Section 6. Since label algebras have no
implicit aspects, the semantics of exception specifications must be more elaborated
than the semantics of label specifications.

Another important implicit aspect is the "common future" property. Let us
consider ~4 reflecting the natural numbers bounded by 8, the terms succi(O) with
i _< 8 being labelled by Ok. Let us assume that succg(O) is recovered on succS(O).
Once this recovering is done, we want everything to happen as if the exception
succ9(O) were never raised; this is the very meaning of the word recovery. The same
succession of operations applied to succa(O) or to succg(O) should return the same
value and raise the same exception names. If succg(O) is labelled by TooLarge,
then the term t = succl~ should also be labelled by TooLarge, since succg(O) =
t[sueeg(0) 8uecg(0)]. 4

In a label algebra ~4, evaIA(u) = evaIA(V) implies that, for every term t contain-
ing u as strict subterm, t and t[u *-- v] have the same value, but it does not imply
that they have the same labels. On the contrary, such a property will be required
for exception names in exception algebras.

5 .2 E x c e p t i o n s i g n a t u r e a n d e x c e p t i o n a l g e b r a s

Def in i t ion 6 An exception signature ~ E x c is a label signature < S, ~, L > such
that Ok does not belong to L. The elements of L are called exception labels or
exception names. In the sequel, L will denote L U {Ok}, and ~ L will be the label
signature < S, ~, L >.

E x a m p l e 2 N a t E x c = < {Nat} , {succ_,pred_}, {Negative,TooLarge} > is a possi-
ble exception signature for an exception specification of bounded natural numbers.

Def in i t ion 7 Let .A be a label algebra and I a label. A satisfies the common future
property .for l if and only if, .for all terms u and v of A such that evalA(u) =
evaIA(v), we have .for all terms t with u as a strict subterm:

t e l A r t [u ~ v] e l A
("strict" means that u is a subterm of t distinct from t; in this case, t is called a
future of u.)

Defin i t ion 8 An exception algebra over the exception signature ~ E x e is a label

4The term t[u e- v] is the term of A obtained by replacing the occurrence of u in t by v.

429

algebra A over the signature EL that satisfies the common future property for all
exception labels l E L.

We have carefully excluded the term u from the set of all the futures of u by
considering only strict subterms. If we accept t = u as a future of u then everything
happens exactly as if labelling were attached to values. We have shown in Example 1
that this is not suitable. The common future property is a weaker constraint than
the labelling of values. For instance Example 1 does not lead to inconsistencies with
our formalism (see Section 7.1).

R e m a r k 1 The label Ok is not concerned with the common future property. Oth-
erwise, if pred(O) is recovered on 0 and if succCPred(x)) = x is an Ok-axiom, we
would have: suec(pred(O)) is an Ok-term. This would lead to the inconsistency
suce(O) = 0. Clearly, the term succ(pred(O)) is recovered but it must remain excep-
tional because an exceptional t reatment has been required in its history (see also
Section 6).

E x a m p l e 3 According to the exception signature NatExc defined above, we can
consider the exceptioa algebra .A = (A, {IA}teL) defined by:

A = { . . . , - 2 , - 1 , 0 , 1 , 2 , . . . ,8}

succA and predA being defined as usual on integers with the restriction succA (8) = 8;
NegativeA is given by the set:

. . . , . . . , r~ed(r~ed(0)), p~ed(0), succ(pred(0)), . . . , }
, -3, -2, - i , succ(-1), succ(s~c(-i)) ,
, . . . , , ,u~(-3), s ~ (- 2) , succ(su~c(-2)), . . . ,

NegativeA contains i~ere at the same time negative values and terms. All these
terms have a negative value by classical evaluation in the set of integers or else have
at least a subterm which would have a negative value by evaluation.

TooL,~rgeA = {su~cg(0), s ~ (S) , s~c~(succ(S)),...}

. . . , succ(o), succ(1), ...,}
OkA = O, 1 2, 3

pred(1), pred(2), pred(3), . . . ,

Def in i t i on 9 Given an exception signature EExc, an exception morphism g : ,4 - ,
13 is a EL-morphism from A to t3. The category of all EExc-algebras is denoted by
Alg~c(ZExc) .

T h e o r e m 2 Let ~Exc be an exception signature. Let SP~. L be the positive condi-
tional label specification which contains all the EL-axioms of the form:

x l = y l A . . . A x n = y n A f (~ l , . . . , X n) E I ===~ f (Y l , . . . , Y n) E I

430

where f is any (non-constant) operation of Z, xi and Yi are variables of sorts given
by the arity of f , and l is any exception label of L.

The label specification SP~L specifies the EExc-algebras, i.e. AlgE~e(~Exc) =
Al gLb~(S PvL).

Consequently, AlgExc(~Exe) has an initial object, denoted TsExe.

6 Exception specifications and semantics

Following the arguments given in Section 2, the axioms of an exception specification
will be separated in two parts in order to preserve clarity and terseness.

The first part, called GenAx, is mainly devoted to exception handling. Its first
purpose concerns labelling of terms. The axioms with a conclusion of the form t e Ok
(resp. t e l with I 6 L) mean that t is a normal term (resp. the heading function of
the term t raises the exception name l). The second purpose of GenAx is to handle
the exceptional cases, in particular to specify recoveries, according to the previous
labelling of terms. The corresponding axioms will have a conclusion of the form
u~-v .

As the axioms of GenAx concern all terms, exceptional or not, the satisfaction
of such axioms will simply be the same as for label axioms.

The second part, called OkAx, is entirely devoted to the normal cases, and
will only concern terms labelled by Ok. The semantics of OkAx must be carefully
restricted to Ok-assignments, in order to avoid inconsistencies. It will both treat
equalities between Ok-terms and carefully propagate labelling by Ok through these
equalities (following the arguments given in Section 5.1).

Two examples of exception specifications are given in Section 7.

Definition 10 Let ~Exc be an exception signature. A set of generalized axioms is
a set GeuAx of positive conditional label axioms with respect to the label signature
EL.

An exception algebra ,4 satisfies GenAx if and only if its underlying label algebra
satisfies GenAx, regarded as a net of label axioms.

Definition 11 Let ZExc be an exception signature. A set of Ok-axioms is a set
OkAx of positive conditional ~L-axioms with a conclusion of the form: v---w.

Defin i t ion 12 Let ZExc be an exception signature. An exception algebra `4 satisfies
an Ok-axiom of the form P ~ v = w, where P is the premise, 5 if and only if for
all assignments o" with range in "A (covering all the variables of the axiom) which
sati.sfy the premise (i.e. `4 as ZL-algebra satisfies cy(P) as "ground" label axiom),
the two following properties hold:

I. Ok-propagation: if at least one of the terms a(v) or a(w) belongs to Oka and
the other one is of the form f (ta , . . . , t p) with all the ti belonging to OkA (p
may be equal to 0), then both ~(v) and ~(w) belong to OkA.

5p may be empty.

431

Ok-equality: if (v) and belong to OkA then =

,4 satisfies OkAx if and only if A satisfies all the Ok-axioms of OkAx.

The first property ,of the definition reflects a propagation of the label Ok (which
starts from the Ok-terms declared in GenAx); a term can be labelled by Ok through
an Ok-axiom only if Ml the arguments of its heading function are already labelled
by Ok. This rule allows us to carefully propagate the label Ok. Intuitively, such
an innermost evaluation reflects an implicit propagation of exceptions: if t is not
an Ok-term then f (.... t . . .) cannot be turned into an Ok-term via the Ok-axioms.
(However f is not necessarily a strict function; lazyness can be specified via the
generalized axioms, where f (. . . t...)" can be recovered.)

The second properl~y specifies the equalities that must hold for the normal cases.
Two terms can get the same evaluation through an Ok-axiom only if they are both
labelled by Ok.

Defini t ions 13 An exception specification is a triplet S P E C =< EExc, GenAx,
OkA~ > where •Exc is an exception signature, GenAx a set of generalized axioms
and OkAx a set of Ok-axioms.

A EExc-algebra A satisfies S P E C if and only if it satisfies GenAx and OkAx,
as sets of generalized axioms and Ok-axioms respectively.

We denote by A lg~r the full subeategory of AlgE~e(~Exc) containing
all the algebras satisfying SPEC.

L e m m a 1 Let ~Exc be an exception signature. Let ~ be an Ok-axiom. There is a
set of positive conditional F~L-axioms, Tr(~), such that for every ~Exc-algebra .it,
,4 satisfies the Ok-axiom a if and only if the underlying EL-algebra of ,4 satisfies
Tr(a).

Tr(~) is obtained from a by adding certain premises reflecting Definition 12;
T r ~) may thus contain a great number of label axioms (related to the number of
operations of ~L).

T h e o r e m 3 Let SP,~C =< ~Exc, GenAx, OkAx > be an exception specifica-
tion. Let T r (SP EC) be the label specification defined by the label signature ZL
and the set of label axioms containing: the axioms of SP~s (defined in Theorem 2),
GenAx and all the Tr(c~) for a E Okax (mentioned in Lemma i above). We
have Alg~,~(SPEC) = AlgLbt(Tr(SPEC)). Tr (SPEC) is called the translation of
S P E C into a label specification.

Tr (SPEC) only contains positive conditional axioms. Thus, from Corollary 1
we have:

T h e o r e m 4 Let S P E C be a ~Exc-specifieation. AIgE~c(SPEC) has an initial
object Tap Ec.

R e m a r k 2 Given two exception specifications SPEC1 and SPECz such that
SPEC~ C_ SPEC~., the forgetful functor U : Atge~r --, AlgE~,(SI"EC~)
exists and has a left adjoint functor F.

432

7 E x a m p l e s

Section 7.1 contains an example with "intrinsic" exceptional cases and bounds. Sec-
tion 7.2 contains an example with bounds and "dynamic" exceptional cases. Thus,
all the classes of exceptional cases, as classified in Section 1, are covered.

7 .1 A s h o r t e x a m p l e

Let NatExc = < {Nat},(suee_,pred_},{Tooiarge, Negative} > be the excep-
tion signature given in Section 5.2. An exception specification of natural numbers
bounded by 8 is given below:

G e n A x : succS(O) e Ok
suet(n) e Ok ==~ n e Ok
succg(O) e TooLarge
pred(O) e Negative
suee() TooLarge suee() =

O k A x : p ed(s ee()) =
W h e r e : n : Nat

The first two axioms of GenAx specify the Ok part of Nat. It is not necessary
to declare all the Ok-terms (the label Ok will be automatically propagated to terms
such as pred(succ(O)) via the Ok-axiom). It is only desirable to declare at least
one term for each intended Ok-value. The meaning of the third and fourth gener-
alized axioms is that the operation succ (resp. pred) raises the exception TooLarge
(resp. Negative) when applied to succS(O) (resp. 0). Tile last generalized axiom
recovers succg(O) on succS(O) (as well as all its successors, from the common future
property). The inconsistency described in Example 1 does not occur any more, as
sueca(O) is not labelled by TooLarge. Then, OkAx only has to specify the operation
pred in all normal cases; it is actually terse and clear.

Let us note that we operate in a total framework; however this does not force to
always define a recovery condition. For example, the previous specification does not
imply for pred(0) to be equal to an Ok-term; consequently, in the initial model, it
denotes an exceptional value that can be understood as an error exit.

Moreover, tile instance pred(succS(O)) = pred(succ~(O)) = succS(O) is no longer
an instance of the Ok-axiom because succ~(O), and therefore pred(succg(O)), is
not required to be an Ok-term in our framework (even though evalA(succg(O)) =
evaIA(succS(O))). Thus, pred(succg(O)) = succS(O) is not a consequence of OkAz.
This is a good example of our restricted propagation of the label Ok through the
Ok-axioms; it shows how the semantics of Ok-axioms reflect an implicit propagation
of exceptions.

Let us note that the exception algebra described in the Section 5.2 satisfies this
specification.

433

7 . 2 A m o r e e l a b o r a t e d e x a m p l e

We give a specification of bounded arrays of naturM numbers, 6 where a new array
is not initialized. The specifications of natural numbers and booleans are not given
in this example; it is not difficult, for instance, to complete the specification of
Section 7.1 with the operations eq and <.

S : Array
: create__ : Na t N a t --, Array

store___ : Nat Array Na t --, Array
fe tch__ : Array Na t ..4 N a t
lower_ : Array ---, Na t
upper_ : Array ---* Na t

L : BadRange, OutOfRange , Non ln i t i a l i z ed

G e n A x :
low e Ok A up e Ok A
a e O k A i n d e O k A

low < up = fa lse =:~
ind < lower(a) = true
upper(a) < ind = true
ind < lower(a) = true
upper(a) < ind = true
lower(a) <_ ind = true

eq(indl , ind2) = fa lse

OkAx :

ilow < up = true ==r create(low, up) e Ok
z e Ok A tower(a) <_ ind = true A ind <_ upper(a) = true

store(x, a, ind) ~ Ok
r up) e BadRange
:=:~ store(x, a, iud) e OutOf Range

store(x, a, ind) e OutOf Range
:=~ fetch(a, ind) e OutOfRange

fetch(a, ind) e OutOf Range
A ind < upper(a) = true :=~

fetch(create(low, up), ind)) e N onlni t ia l i zed
A fetch(a, iudl) e Nou ln i t i a l l z ed ==~

fe tch(s tore(z , a, ind2), indl) e N onlni t ial ized

lower(create(low, up)) = low
upper(create(low, up)) --: up
lower(store(x, a, ind)) = lower(a)
~,pper(store(z, a, i,,d)) : upper(a)
store(z, store(y, a, i .d) , i .d) = store(~, a, i . d)
eq(indl , ind2) = fa lse

store(z, store(y, a, indl), ind2) = store(y, s tore(z, a, ind2), indD
fe tch(s tore(z , a, ind), ind) = z

Where : low, up, ind, indl , ind2, z, y : N a t ; a : Array

The term create(tow, ~,p) creates a new array of range [low, up]. Notice that if low or
up is exceptional, then create(low, up) is exceptional too (exception propagation).
The operations lower and upper retrieve tile acceptable range of an array. 'File
exception name O u t O f R a n g e is raised when a s tore or a f e t c h is performed outside
of the acceptable range. Thus, tile label O u t O f R a n g e intersect several sorts (A r r a y
and N a t) .

~ simplicity, both indexes and elements of arrays are of sort Nat.

434

8 C o n c l u s i o n

We have introduced a distinction between what we call "exception handling" and
"error handling." We have shown that exception handling requires a refined notion
of the satisfaction relation for algebraic specifications. The scope of an axiom should
be restricted to carefully chosen patterns, because a satisfaction relation based on
assignments with range in values often raises inconsistencies. A more elaborated
notion of assignment is considered: assignment with range in terms. This allows
us to restrict the scope of an axiom to certain suitable patterns, and solves the
inconsistencies raised by exception handling.

We have also shown that exception names, or error messages, should be carried
by terms, and that they are advantageously reflected by labels. Labels must not go
through equational atoms; thus, two terms having the same value do not necessarily
carry the same labels. We have first defined the framework of label algebras, that
defines suitable semantics for labels. The scope of a label axiom is carefully delimited
by labels which serve as special marks on terms.

Then, we have proposed a new algebraic framework for exception handling, based
on label algebras~ which: is powerful enough to cope with all suitable exception han-
dling features such as implicit propagation of exceptions, possible recoveries, decla-
ration of exception names, etc. All the usual exceptional cases can easily be specified
("intrinsic" exceptions of an abstract data type, "dynamic" exceptional cases and
bounded data structures). This approach solves some weaknesses of existing frame-
works (see Section 3) and succeeds with respect to clarity and terseness, that are
two crucial criteria for formal specifications with exception handling.

Although we have introduced the theory of label algebras as a general frame for
exception handling purpose, the application domain of label algebras seems to be
much more general than exception handling. Indeed, labels provide a great tool to
express several other features developed in the field of (first order) algebraic specifi-
cations. We have mentioned in Section 3 that label algebras can be shown as an ex-
tension of more standard algebraic approaches based on "multityping." Similarly to
exception handling, partial functions [BW82] or observability issues [Hen89][BB91]
can also be described in the same way by some well chosen forms of label specifica-
tions. However, all the specific applications of label algebras require certain implicit
label axioms in order to preserve clarity and terseness. Thus, the framework of label
algebras provides us with "low level" algebraic specifications: in a generic way, the
specific semantical aspects of a given approach (e.g. observational specifications or
exception specifications) can be specified by a well chosen set of label axioms.

Intuitively, labels are unary predicates on terms. In order to facilitate certain
applications of label algebras, we plane to generalize labels to "labels of strictly
positive arity." Several other extensions, such as higher order label specifications,
may be dealt with in future works.

Acknowledgemen t s : We would like to thank Pierre Dauchy and Anne Deo-
Blanchard for a careful reading of the draft version of this paper. This work has
been partially supported by CNRS GRECO de Programmation and EEC Working
Group COMPASS.

435

R e f e r e n c e s

[BB91]

[BBC86]

[Bet86]

[BL91a]

[BL91b]

[Bid84]

[BW82]

[EM85]

[FGJM85]

[GDLE84]

[GM89]

[Gog78a]

Bernot G., Bidoit M. Proving the correctness of algebraically specified
software: Modularity and Observability issues. Proc. of AMAST-2, Sec-
ond Conference of Algebraic Methodology and Software Technology~ Iowa
City, Iowa, USA, May 1991.

Bernot G., Bidoit M., Choppy C. Abstract data types with exception han-
dling : an initial approach based on a distinction between exceptions and
errors. Theoretical Computer Science, Vol.46, n.1, pp.13-45, Elsevier Sci-
ence Pub. B.V. (North-Holland), November 1986. (Also LRI Report 251,
Orsay, Dec. 1985.)

Bernot G. Une sgmantique algdbrique pour une spdeification diffdrenci~e
des exceptions et des erreurs : application d l'impldmentation et aux pri-
mitives de strueturation des spdcifications formelles. Th~se de troisi~me
cycle, Universit~ de Paris-Sud, Orsay, February 1986.

Bernot G., Le Gall P. Label aOebras : a systematic use of terms. "Sth In-
ternational Workshop on Abstract Data Types", Dourdan, August 1991.
LNCS 655 p 144-163. (also LRI Report 719, Orsay, Dec. 1991.)

Bernot G., Le Gall P. Label algebras and exception handling. Draft Ver-
sion (also in Habilitation Thesis of Bernot G., University of Orsay, Paris
XI, Feb. 1992.)

Bidoit M. Algebraic specification of exception handling by means of dec-
larations and equations. Proc. l l th ICALP, Springer-Verlag LNCS 172,
July 1984.

Broy M., Wirsing M. Partial abstract data types. Acta Informatica,
Vol.18-1, Nov. 1982.

Ehrig H., Mahr B. Fundamentals of Algebraic Specification 1. Equations
and initial aemautics. EATCS Monographs on Theoretical Computer Sci-
ence, Vol.6, Springer-Verlag, 1985.

Futatsugi K., Goguen J., Jouannaud J-P., Meseguer J. Principles of
OBJ2. Proc. 12th ACM Syrup. on Principle of Programming Languages,
New Orleans, january 1985.

Gogolla M., Drosten K, Lipeck U., Ehrich H.D. Algebraic and operational
semantics of specifications allowing exceptions and errors. Theoretical
Computer Science 34, North Holland, 1984, pp.289-313.

Goguen J.A., Meseguer J. Order-sorted algebra & equational deduction
for multiple inheritance, overloading, exceptions and partial operations.
Technical Report SRI-CSL-89-10, SRI, July 1989.

Goguen J.A. Abstract errors for abstract data types. Formal Description
of Programming Concepts, E.J. NEUHOLD Ed., North Holland, pp.491-
522, 1978.

[Gog78b]

[GTW78]

[Gut75]

[HenS9]

[LeG93]

[LZ75]

[McLTI]

[Meg90]

[MosS9]

[MSS9ol

[Poi871

[Sch91]

436

Goguen J.A. Order sorted algebras: exceptions and error sorts, coercion
and overloading operators. Univ. California Los Angeles, Semantics The-
ory of Computation Report n.14, Dec. 1978.

Goguen J.A., Thatcher J.W., Wagner E.G. An Initial Algebra Approach
to the Specification, Correctness, and Implementation of Abstract Data
Types. Current Trends in Programming Methodology, ed. R.T. Yeh,
Printice-Hall, Vol.IV, pp.80-149, 1978. (Also IBM Report RC 6487, Oc-
tober 1976.)

Guttag J.V. The specification and application to programming. Ph.D.
Thesis, University of Toronto, 1975

Hennicker R. Implementation of Parameterized Observational Specifica-
tions. TapSoft, Barcelona, LNCS 351, vol.1, pp.290-305~ 1989.

Le Gall P. Les algdbres dtiquetdes : use sdmantique fondde sur use utili-
sation systdmatique des termes. Application au test de logiciel avec traite-
ment d'exceptions, forthcoming thesis, University of Orsay, 1993.

Liskov B., Zilles S. Specification techniques for data abstractions. IEEE
Transactions on Software Engineering, VoI.SE-1 n.1, March 1975.

Mac Lane S. Categories for the working mathematician. Graduate texts
in mathematics, 5, Springer-Verlag, 1971

M6grelis A. Alg~bre galactique - Un procddd de calcul formel, relatif aux
semi-fonctions, h l'inelusion et h l'dgalitd. Ph.D. Thesis, University of
Nancy I, Sept. 1990.

Mosses P. Unified algebras and Institutions. Proc. of IEEE LICS'89,
Fourth Annual Symposium on Logic in Computer Science, June 1989~
Asilomar, California.

Manca V., Salibra A. and Scollo G. Equational Type Logic. Conference
on Algebraic Methodology and Software Technology, Iowa City, IA, May
1989, TCS 77, p 131-159.

Poign6 A. Partial algebras, subsorting, and dependent types Recent
Trends in Data Type Specification, 5th Workshop on Specification of
Abstract Data Types, Gullane, Scotland, September 1987. LNCS 332, p
208-234.

Schobbens P.Y. Clean algebraic exceptions with implicit propagation.
Proe. of AMAST-2, Second Conference of Algebraic Methodology and
Software Technology, Iowa City, Iowa, USA, May 1991.

