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Abst rac t :  We propose a new algebraic framework for exception handling which 
is powerful enough to cope with many exception handling features such that recovery, 
implicit propagation of exceptions, et.c. This formalism is capable of treating all the 
exceptional cases, including the following ones: "intrinsic" exceptions which are 
related to tile underlying data structure (for instance, popping an emptstack or 
applying predecessor on zero for natural numbers), exceptions which are relied on 
"dynamic" properties (as an acces to a non-initialized array cell) or else exceptions 
which are due to certain limitations (mainly bounded data structures). We show 
that within the already existing frameworks, the case of bounded data structures 
with certain recoveries of exceptional values remains unsolved. 

First, we justify the usefulness of "labelling" some terms in order to easily specify 
exceptions without inconsistency, and we then define a general framework of label 
algebras which allow.,; us to "type" terms instead of values. Ezception algebras and 
exception specifications are defined as a direct application of label algebras. Indeed, 
the usual inconsistency problems raised by exception handling are avoided by the 
possibility of labelling terms. 

As a conclusion, we also sketch out how far the application domain of label 
algebras seems to be much more general than exception handling. 

Key-words :  Algebraic specifications of abstract data types, Error and exception 
handling, Exception recovery, Bounded data structures, Structured specifications. 

1 I n t r o d u c t i o n  

Exception handling is often neglected in software engineering, especially at the spec- 
ification stage. This results in incomplete specifications and the various choices of 
"how to treat exceptional cases" are then often made at the programming stage. 
As usual when spec:ifications are incomplete, this decreases the overall quality of 
the software. When the exceptional cases are not well specified, the corresponding 
bugs are very difficult to identify, as they do not cope with the standard verification 
and validation methods (proving or testing methods). Nevertheless, most of these 
exceptional cases are fairly easy to classify. An important class of exceptional cases 
is related to "intrinsic" properties of the underlying abstract data types: access to 
an empty data structure (e.g. popping an empty stack) or functions which are in- 
trinsically not defined for certain values (e.g. predecessor for 0 in natural numbers). 
Another important class of exceptional cases relates to on "dynamic" properties of 
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the data structure (e.g. access to a non-initialized array cell). In addition, it is very 
important not to neglect certain limitations, due to the system itself or required by 
the specifier (mainly bounded data structures), ff bounded data structures are not 
taken into account at the specification level, then almost all the specified properties 
are actually false; and precisely, in practice, softwares requires a strong verification 
and validation effort near the bounds of the underlying data structures. 

Over the last fifteen years [LZ75][Gut75][GTW78], algebraic specifications have 
been widely advocated as one of the most fruitful formal specification methods. In 
this paper, a new framework for exception handling within algebraic specifications, 
covering all the classes of exceptional cases, is proposed. First of all, we will jus- 
tify the introduction of a new algebraic framework by studying different exception 
handling cases. Then, before defining exception algebras, we will introduce a new 
general framework, the label algebras. Exception specifications will be defined as a 
direct application of label Specifications. 

We assume that the reader is familiar with the elementary concepts of category 
theory [McL71] and algebraic specifications [GTW78][EM85]. 

2 Crucial aspects of exception handling 

Obviously, a good exception handling framework must cover all kinds of exceptional 
cases. Two additional crucial aspects are often neglected, namely clarity and terse- 
ness. For programming languages exception handling is actually not only used for 
error handling; it is also a great tool for clarity and terseness. The "rare cases" are 
extracted from the main program text; they are treated in the exception handler. 
Thus, the exception handler, as well as the main program text, goes straight to the 
point; exception handling improves both clarity and terseness of programs. For for- 
mal specifications~ clarity and terseness are a fortiori an important aim of exception 
handling. A formal framework only treating error handling is not sufficient; speci- 
fication and abstraction require exception handling. An exception is not necessarily 
an error; it simply requires a special treatment which has to be clearly distinguished 
from the main properties. 

Regarding clarity, it is necessary to separate the "exceptional properties" from 
the "normal behaviour." When this partition is not available, it is necessary to 
write complex axioms where additional predicates appear in order to restrict the 
scope of the ~ o m s  to normal (resp. exceptional) cases (see also Section 3). Thus, 
the semantics should implicitly restrict the scope of the axioms. 

Regarding terseness, the specialized semantics for each part o f  the syntax (ex- 
ceptional/normal properties) should be powerful enough to handle obvious general 
properties of exceptions. For instance, an error propagation rule by default should 
not have to be explicitly specified. 

In addition, the following principles have been widely recognized as crucial for 
abstract specifications with exception handling [Gog78a] [GDLE84] [Bid84] [Ber86] 
[BBC86] [Sch91]: each exceptional (or erroneous) case should be declared with s o m e  

exception name (or error message) which provides enough information to treat it eas- 
ily; various recoveries of the exceptional cases must be possible (related to their ex- 
ception names); more generally, all the relevant properties of exceptional behaviours 
should be formally specified. 
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3 Algebraic specifications and exception handling 
The main difficulty is that all the "simple" semantics that  we can imagine lead to 
inconsistencies. To illustrate this fact, let us simply consider natural numbers with 
exception handling. 

A simple idea would be to use the classical ADJ semantics [GTW?8], adding a 
new constant error of sort Nat and the axiom: pred(O) = error .  We have to face 
error propagation: wi~at is the value of succ(error) ? A natural idea is to add, for 
each operation / of the signature, axioms of the form: f ( . . .  e r r o r . . . )  = error .  But 
the specification also contains the axiom: x • 0 = 0; thus we get error  = 0 (with 
f = x, via the assignment x = error).  This inconsistency has already been shown in 
[GTW78], where the explicit introduction of a predicate Ok (checking if a value is not 
erroneous) is proposed in order to restrict the scope of the axioms. Unfortunately, 
as pointed out by the authors in [GTW7S]: "the resulting total specification ( . . . )  is 
unbelievably complicated" because Ok is very difficult to specify properly. 

Clearly, these difficulties result from the explicit introduction of an erroneous 
value in the signature. A simple idea could be to introduce partial functions [BW82] 
(e.g. pred(O) being undefined). Unfortunately, specifying exceptions via partial func- 
tions is not powerful enough for a full exception handling. Exceptional eases can 
give rise to ulterior recoveries: even if pred(O) is not defined, we can require for 
succ(pred(O)) to be recovered (e.g. on 0). This is not possible if pred(O) has no 
semantical meaning. 

Another idea is to use subsorting; the Ok-part (resp. the error-part) of the sort 
Nat being a subsort OkNat (resp. ErrNat) of Nat. Since the work of Goguen in 
[Gog78b], order sorted algebras have been advocated to be a solution for exception 
handling (see also [FGJM85][GM89]). Unfortunately, in this framework, the defini- 
tion domain of each operation of the signature must be explicitly specified. Even 
if this approach is workable for several simple erroneous cases, such as the division 
by 0, it fails with re.spect to clarity and terseness for operations with a definition 
domain that  is not reduced to a simple Cartesian product, such as the subtraction. 
(See also Example 1.) 

In [Poi87], the domains of subtypes can be specified by means of axioms. Un- 
fortunately, as pointe.d out in [Poi87], the form of the axioms does not allow the 
specifier to treat  bounded data structures; moreover, the saane limitation holds for 
definition domains that  are not cartesian products. 

The terseness criterion is better fulfilled when the semantics are based on a dec- 
laration of the "Ok-eodomaiu" of the operations rather than on their "Ok-domain." 
The reason is simple: in general, all the operations of a data type share the same 
Ok-codomain, while each of them has its own Ok-domain. In [GDLE84], the signa- 
ture ~ is partitioned into "safe" and "unsafe" operations. For example, 0, succ and 
4- are safe operations because when they are applied to Ok-arguments, they always 
return Ok-results; on the contrary, pred is unsafe. Such a simple syntactic classifica- 
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tion of functions is sufficient to describe the Ok-codomain; the Ok-values are those 
generated by the safe operations. As pointed out in [Ber86][BBC86], bounded data 
structures cannot be specified in this framework. For example, succ and + are not 
safe for bounded natural numbers; consequently the Ok-part of the sort Nat would 
be reduced to 0. 

This problem is solved in [BBC86] where exception names are reflected by la- 
bels, a special label Ok being reserved for Ok-values. The labels are carried by 
values: the predicate v e TooLarge means that the value v is labelled by TooLarge. 
This approach allows us to specify bounded data structures; unfortunately~ certain 
recoveries lead to write inconsistent specifications: 

E x a m p l e  1 Let us assume that every value of the form succi(O) (i > 9) is labelled 
by TooLarge. 1 Let us consider an exception handler that recovers every TooLarge- 
value on succS(O). A possible way of expressing this recovery is "if the operation 
succ raises the exception TooLarge, then do not perform it." It is formally specified 
as: 

succ(n) , TooLarge ==~ succ(n) = n 

As the term succg(O) is recovered on succS(O), they have the same value; thus both 
of them are labelled by TooLarge. By applying the axiom with the assignment 
n = succT(O) we get then the inconsistency 2 succa(O) = sucC(O). The point here 
is that,  even if the terms succg(O) and succS(O) have the same value, they should 
not carry the same labels. Notice that subsorting [FGJM85] gives rise to a similar 
paradox because sorts are attached to values. Two terms having the same value must 
share the same subsorts; consequently succs (0) and succ 9 (0) cannot be distinguished, 
and this example would lead to the same inconsistency. 

This is indeed the case for all existing algebraic framework for exception handling, 
because exception names (if provided) are always carried by values. 

Example 1 reveals the difference between "exception handling" and "error han- 
dling." The term succg(O) is not erroneous but it is exceptional; even if the term 
succg(O) is recovered on succS(O), the exception name Toonarge should not be prop- 
agated to succS(O). Exception names should be carried by terms, not by values. 
Roughly speaking, exception handling requires a special "typing" of terms (ac- 
cording to our terminology distinguishing exception handling from error handling). 
We shall call labels these special "types." Labels will form a third component of 
the signature. From this point of view, label algebras are an extension of more 
standard algebraic approaches with "multityping" such as order sorted algebras 
[Gog78b][FGJM85]. Some other extensions of order sorted algebras are: Equational 
Type Logic [MSS90], unified algebras [Mos89] or G-algebras [Meg90]. All of them 
attach types (or subtypes) to values while, in our approach, labels are attached to 
terms (see also [BL91a]). In [Ber86][BBC86], only the label Ok is carried by terms, 
and in a restricted manner. This leads to complicated semantics and Example 1 
cannot be treated. 

I ~uce~(O) s tands  for succ(s~r (~ucc(0))..)), the operation sv.cc being applied i t imes. 
2Indeed, this inconsistency propagates in the same way, and all values are equal to O. 
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The rest of this paper is devoted to label algebras, label specifications and their 
applications to exception handling. 

4 Label algebras 

4.1  I n t r o d u c t i o n  

Usually, algebras are {',heterogeneous) sets of values [GTW78][EM85]. Let us remem- 
ber that a signature is usually a couple < S, Z > where S is a finite set of sorts (or 
type names) and Y. is a finite set of operation names with arity in S*; an object (al- 
gebra) of the category' AIg(Z) is a heterogeneous set A, partitioned as A = {A,},es,  
and with, for each operation name " f  : s l . . .  sn ~ s" in ~ (0 < n), a total function 
fA : As, x . . .  x As, -~ As ; the morphisms of Alg(~) (Y.-morphisms) being obviously 
the sort preserving, operation preserving applications. 

As a consequence of our approach, (labelled) terms must also be considered as 
"first class citizen objects." Given an algebra A, the satisfaction relation must 
be defined using tetras (the usual definition only involves values). A simple idea 
could be to consider both A and T~. (the ground term algebra). Unfortunately, 
finitely generated algebras (i.e. such that the initial Z-morphism from T~ to A is 
surjective) are not powerful enough to cope with enrichment, parametrization or 
abstract implementations. How is one to deal with both terms and unreachable 
values ? This question is solved by the free ~-term algebra Tp.(A). 

N o t a t i o n  1 Given a heterogeneous "set of variables" V = {Vs}ses, the free Y~-term 
algebra with variables in V is the least Z-algebra T~ (V) (with respect to the preorder 
induced by Z-morphi~,~ms) such that V C T~(V).  

Since V is not necessarily finite or enumerable, we can consider in particular 
T~.(A) for every algebra A. An element of T~(A) is a Z-term such that each leaf 
can contain either a constant of the signature, or a value of A. 

The main technical point underlying our framework is to systematically use 
T~.(A). Intuitively, a term reflects the "history" of a value; it is a "sequence of 
calculations" which results in a value. Several histories can provide the same value. 
This is the reason why labelling is more powerful than typing: it allows us to "di- 
agnose" the history in order to apply a specific treatment or not. The canonical 
evaluation morphism evalA : T~.(A) ~ A, deduced from the ~-algebra structure 
of A, relates each term to its final value. Of course, in the end, the satisfaction of 
an equality must be checked on values; thus, evalA is a crucial tool. However, the 
considered assignments can be precisely restricted to certain kinds of terms/histories 
before checking equalities on values, and consequently, all the inconsistencies men- 
tioned before can be solved via label algebras. 

N o t a t i o n  2 We note A = Tv(A),  and for every Z-morphism ~ : A --, B,  -fi : 
A ~ B denotes the canonical ~-morphism which extends # to the corresponding free 
algebras. 
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4 .2  D e f i n i t i o n s  a n d  r e s u l t s  

For lack of space, the results are not proved here. Complete proofs can be found 
in [BL91b][LcG93]. 

Def in i t ion  1 A label signature is a triplet EL  -=< S ,P . ,L  > where < S , E  > is a 
(usual) signature and L is a (finite) set of labels. 

A V.L-algebra is a couple A = (A, {lA)leL) where A is a E-algebra, and {IA}/eL 
is a L-indexed family such that, for  each l in L, IA is a subset of A. 

There are no conditions about the subsets IA: they can intersect several sorts, they 

are not necessarily disjoint and their union ( U  la) does not necessarily cover A. 
IEL 

Def in i t ion  2 Let A = (A, {IA}teL) and B = (B, {lB}leL) be two EL-algebras. A 
EL-morphism h : A ---* B is a E-morphism from A to B such that: Vl e L, ~t(la) C 
IB. The category of all EL-algebras is denoted by AlgLbt(~L). 

When there is no ambiguity about the signature under consideration, EL-algebras 
and EL-morphisms will be called label algebras and label morphisms, or even algebras 
and morphisms. 

Not surprisingly, a "label specification" will be defined by a label signature and 
a set of well formed formulae (axioms): 

Def in i t ion  3 Given a label signature EL,  a EL-axiom is a well formed formula built 
on: 

* atoms: atoms are either equalities (u =- v) such that u and v are ~- terms with 
variables, u and v belonging to the same sort, or labelling atoms (w e l) such 
that w is a E- term with variables and I is a label belonging to L, 

�9 connectives belonging to {-1, A, V, ~ } .  

(Every variable is implicitly universally quantified.) 3 
A ~L-ax iom is called positive conditional if and only if it is of the form aa A 

. . . A n n  ~ a where the al and a are positive atoms (i f  n = 0 then the axiom is 
reduced to a). 

The predicate " e " should be read "is labelled by". 

Def in i t ion  4 A label specification is a couple SiP =< EL, Ax  > where EL  is a 
label signature and A x  is a set of EL-axioms. SP is called positive conditional iff 
all its axioms are positive conditional. 

The satisfaction relation is indeed the crucial definition. It  is of first importance 
to consider assignments with range in A = T~.(A) (terms) instead of A (values): 

Def in i t ion  5 Let .A = (A, {IA}leL)  be a EL-algebra. 

�9 r satisfies (u = v), where u and v are two terms in A, means that evalA(u) = 
evaIA(V) [the symbol "="  being the set-theoretic equality in the carrier of A]. 

3Allowing existential quantifiers is not difficult [LeG93], but this extension is not required for 
defining exception algebras. 
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�9 A satisfies (w e l), where w E -A and l E L, means that w E lA [the symbol 
"E" being the set-theoretic membership]. 

�9 Given a ~L-axiom ~o, A satisfies ~o means that for all assignments a : V .-o A 
(V covering all ~he variables of ~o), .,4 satisfies a(~o) according to the "atomic 
satisfaction" defined above and the truth tables of the connectives. 

A label algebra satisfies a label specification SP if and only if it satisfies all its 
axioms. The full subc~;tego~ of Algzbt(~L ) containing all the algebras satisfying SP 
is denoted by Algzbl(6T). 

The classical resu]its of [GTW78] can be extended to the framework of label 
algebras: 

T h e o r e m  1 Let SP be a positive conditional ~L-specification. Let X be a ~L- 
algebra. Let R be a binary relation over X compatible with the sorts of the signature 
(i.e. R is a subset of U X ,  x X , ) .  There is a least ~L-algebra y in AlgLbt(SP) 

8ES 

such that there exists a label morphism hr : X ~ y and (31, hy) is compatible with 
a (i.e. Vx, y e X , x  n y h (x) = 

Coro l l a ry  1 / f  SP is positive conditional, then Algzbl(SP) has an initial object Tap. 

Coro l l a ry  2 Let SP1 and SPa be two positive conditional label specifications such 
that SPI C_ SP2 (i.e. "~1 C_ $2, ~1 C_ ~ ,  etc.). 

The forgetful functor U : Atgzbl(SPy.) --* Algzbl(SP1) exists and has a left adjoint 
funetor F : Algzbl(SP:t) ~ AlgLbI(SP2). 

As usual, the adjunction unit I.~ : .4 --, U(F(.4)) can be used to define hierarchi- 
cal consistency (i.e. the "no-collapse" property) and sufficient completeness (i.e. the 
"no-junk" property) for structured specifications. In addition, pushouts and colimits 
exist (from Theorem 1), thus parameterization can be handled without difficulty. 

5 Exception signatures and exception algebras 
The framework of exception algebras is a specialization of the one of label algebras, 
where the labels are used for exception handling purposes. 

5 .1  L a b e l  a l g e b r a s  a n d  e x c e p t i o n  a l g e b r a s  

The particular label Ok will be distinguished to characterize the normal cases; ex- 
ception names and error messages will be reflected by the other labels. This allows 
us to take exception names into account in the axioms; thus, an extremely wide spec- 
trum of exception handling and error recovery cases can be specified. Intuitively, in 
an exception algebra .4, t E IA with l~Oh will mean that the calculation defined by 
t leads to the exception name l; and t E OkA will mean that the calculation defined 
by t is a "normal" calculation (i.e. it does not need an exceptional treatment and 
the calculation is successful). 
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As shown in Section 3, when specifying a data structure with exception handling 
features, the specifier has first to declare the desired Ok-part. Let us assume for 
example that  all the terms succi(O) with i <_ 8 are labelled by Ok and that the 
specification contains also the following "normal axiom:" pred(suee(n)) = n. Then, 
for instance, the term pred(succ(O)) should also belong to tile Ok-domain because 
its calculus does not require any exceptional treatment and leads to the Ok-term 
0 via the previous normal axiom. By the terseness principle, labelling by Ok must 
be implicitly propagated through the axioms kept for normal cases. These axioms 
will be called Ok-axioms, and this implicit propagation rule will be an important 
component of their semantics, as described in Section 6. Since label algebras have no 
implicit aspects, the semantics of exception specifications must be more elaborated 
than the semantics of label specifications. 

Another important implicit aspect is the "common future" property. Let us 
consider ~4 reflecting the natural numbers bounded by 8, the terms succi(O) with 
i _< 8 being labelled by Ok. Let us assume that  succg(O) is recovered on succS(O). 
Once this recovering is done, we want everything to happen as if the exception 
succ9(O) were never raised; this is the very meaning of the word recovery. The same 
succession of operations applied to succa(O) or to succg(O) should return the same 
value and raise the same exception names. If succg(O) is labelled by TooLarge, 
then the term t = succl~ should also be labelled by TooLarge, since succg(O) = 
t[sueeg(0) 8uecg(0)]. 4 

In a label algebra ~4, evaIA(u) = evaIA(V) implies that, for every term t contain- 
ing u as strict subterm, t and t[u *-- v] have the same value, but it does not imply 
that they have the same labels. On the contrary, such a property will be required 
for exception names in exception algebras. 

5 .2  E x c e p t i o n  s i g n a t u r e  a n d  e x c e p t i o n  a l g e b r a s  

Def in i t ion  6 An exception signature ~ E x c  is a label signature < S, ~, L > such 
that Ok does not belong to L. The elements of L are called exception labels or 
exception names. In the sequel, L will denote L U {Ok},  and ~ L  will be the label 
signature < S, ~, L >. 

E x a m p l e  2 N a t E x c  = <  {Nat} ,  {succ_,pred_}, {Negative,TooLarge} > is a possi- 
ble exception signature for an exception specification of bounded natural numbers. 

Def in i t ion  7 Let .A be a label algebra and I a label. A satisfies the common future 
property .for l if and only if, .for all terms u and v of A such that evalA(u) = 
evaIA(v), we have .for all terms t with u as a strict subterm: 

t e l A  r t [ u ~ v ] e l A  
("strict" means that u is a subterm of t distinct from t; in this case, t is called a 
future of u.)  

Defin i t ion  8 An exception algebra over the exception signature ~ E x e  is a label 

4The term t[u e- v] is the term of A obtained by replacing the occurrence of u in t by v. 
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algebra A over the signature EL that satisfies the common future property for all 
exception labels l E L. 

We have carefully excluded the term u from the set of all the futures of u by 
considering only strict subterms. If we accept t = u as a future of u then everything 
happens exactly as if labelling were attached to values. We have shown in Example 1 
that  this is not suitable. The common future property is a weaker constraint than 
the labelling of values. For instance Example 1 does not lead to inconsistencies with 
our formalism (see Section 7.1). 

R e m a r k  1 The label Ok is not concerned with the common future property. Oth- 
erwise, if pred(O) is recovered on 0 and if succCPred(x)) = x is an Ok-axiom, we 
would have: suec(pred(O)) is an Ok-term. This would lead to the inconsistency 
suce(O) = 0. Clearly, the term succ(pred(O)) is recovered but  it must remain excep- 
tional because an exceptional t reatment has been required in its history (see also 
Section 6). 

E x a m p l e  3 According to the exception signature NatExc  defined above, we can 
consider the exceptioa algebra .A = (A, {IA}teL) defined by: 

A = { . . . , - 2 , - 1 , 0 , 1 , 2 , . . .  ,8} 

succA and predA being defined as usual on integers with the restriction succA (8) = 8; 
NegativeA is given by the set: 

. . . ,  . . . ,  r~ed(r~ed(0)), p~ed(0), succ(pred(0)), . . . ,  } 
, -3,  -2,  - i ,  succ(-1), succ(s~c(-i)) ,  
, . . . ,  , ,u~(-3), s ~ ( - 2 ) ,  succ(su~c(-2)), . . . ,  

NegativeA contains i~ere at the same time negative values and terms. All these 
terms have a negative value by classical evaluation in the set of integers or else have 
at least a subterm which would have a negative value by evaluation. 

TooL,~rgeA = {su~cg(0), s ~ ( S ) ,  s~c~(succ(S)),...} 

. . . ,  succ(o), succ(1), ...,} 
OkA = O, 1 2, 3 

pred(1), pred(2), pred(3), . . . ,  

Def in i t i on  9 Given an exception signature EExc, an exception morphism g : ,4 - ,  
13 is a EL-morphism from A to t3. The category of all EExc-algebras is denoted by 
Alg~c(ZExc) .  

T h e o r e m  2 Let ~Exc  be an exception signature. Let SP~. L be the positive condi- 
tional label specification which contains all the EL-axioms of the form: 

x l  = y l  A . . . A  x n = y n  A f ( ~ l , . . . , X n )  E I ===~ f ( Y l , . . . , Y n )  E I 
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where f is any (non-constant) operation of Z, xi and Yi are variables of sorts given 
by the arity of f ,  and l is any exception label of L. 

The label specification SP~L specifies the EExc-algebras, i.e. AlgE~e(~Exc) = 
Al gLb~( S PvL ). 

Consequently, AlgExc(~Exe) has an initial object, denoted TsExe. 

6 Exception specifications and semantics 

Following the arguments given in Section 2, the axioms of an exception specification 
will be separated in two parts in order to preserve clarity and terseness. 

The first part,  called GenAx, is mainly devoted to exception handling. Its first 
purpose concerns labelling of terms. The axioms with a conclusion of the form t e Ok 
(resp. t e l with I 6 L) mean that t is a normal term (resp. the heading function of 
the term t raises the exception name l). The second purpose of GenAx is to handle 
the exceptional cases, in particular to specify recoveries, according to the previous 
labelling of terms. The corresponding axioms will have a conclusion of the form 
u~-v .  

As the axioms of GenAx concern all terms, exceptional or not, the satisfaction 
of such axioms will simply be the same as for label axioms. 

The second part,  called OkAx, is entirely devoted to the normal cases, and 
will only concern terms labelled by Ok. The semantics of OkAx must be carefully 
restricted to Ok-assignments, in order to avoid inconsistencies. It  will both treat 
equalities between Ok-terms and carefully propagate labelling by Ok through these 
equalities (following the arguments given in Section 5.1). 

Two examples of exception specifications are given in Section 7. 

Definition 10 Let ~Exc  be an exception signature. A set of generalized axioms is 
a set GeuAx of positive conditional label axioms with respect to the label signature 
EL. 

An exception algebra ,4 satisfies GenAx if and only if its underlying label algebra 
satisfies GenAx, regarded as a net of label axioms. 

Definition 11 Let ZExc  be an exception signature. A set of Ok-axioms is a set 
OkAx of positive conditional ~L-axioms with a conclusion of the form: v---w. 

Defin i t ion  12 Let ZExc  be an exception signature. An exception algebra `4 satisfies 
an Ok-axiom of the form P ~ v = w, where P is the premise, 5 if and only if for 
all assignments o" with range in "A (covering all the variables of the axiom) which 
sati.sfy the premise (i.e. `4 as ZL-algebra satisfies cy(P) as "ground" label axiom), 
the two following properties hold: 

I. Ok-propagation: if at least one of the terms a(v) or a(w) belongs to Oka and 
the other one is of the form f ( ta , . . . , t p )  with all the ti belonging to OkA (p 
may be equal to 0), then both ~(v) and ~(w) belong to OkA. 

5p may be empty. 
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Ok-equality: if (v) and belong to OkA then = 

,4 satisfies OkAx if and only if A satisfies all the Ok-axioms of OkAx. 

The first property ,of the definition reflects a propagation of the label Ok (which 
starts from the Ok-terms declared in GenAx); a term can be labelled by Ok through 
an Ok-axiom only if Ml the arguments of its heading function are already labelled 
by Ok. This rule allows us to carefully propagate the label Ok. Intuitively, such 
an innermost evaluation reflects an implicit propagation of exceptions: if t is not 
an Ok-term then f (  .... t . . . )  cannot be turned into an Ok-term via the Ok-axioms. 
(However f is not necessarily a strict function; lazyness can be specified via the 
generalized axioms, where f ( . . .  t...)" can be recovered.) 

The second properl~y specifies the equalities that must hold for the normal cases. 
Two terms can get the same evaluation through an Ok-axiom only if they are both 
labelled by Ok. 

Defini t ions 13 An exception specification is a triplet S P E C  =< EExc, GenAx, 
OkA~ > where •Exc is an exception signature, GenAx a set of generalized axioms 
and OkAx a set of Ok-axioms. 

A EExc-algebra A satisfies S P E C  if and only if it satisfies GenAx and OkAx, 
as sets of generalized axioms and Ok-axioms respectively. 

We denote by A lg~r  the full subeategory of AlgE~e(~Exc) containing 
all the algebras satisfying SPEC.  

L e m m a  1 Let ~Exc  be an exception signature. Let ~ be an Ok-axiom. There is a 
set of positive conditional F~L-axioms, Tr(~),  such that for every ~Exc-algebra .it, 
,4 satisfies the Ok-axiom a if and only if the underlying EL-algebra of ,4 satisfies 
Tr(a). 

Tr(~)  is obtained from a by adding certain premises reflecting Definition 12; 
T r ~ )  may thus contain a great number of label axioms (related to the number of 
operations of ~L). 

T h e o r e m  3 Let SP,~C =< ~Exc, GenAx, OkAx > be an exception specifica- 
tion. Let T r ( SP EC)  be the label specification defined by the label signature ZL 
and the set of label axioms containing: the axioms of SP~s (defined in Theorem 2), 
GenAx and all the Tr(c~) for a E Okax  (mentioned in Lemma i above). We 
have Alg~,~(SPEC) = AlgLbt(Tr(SPEC)). Tr (SPEC)  is called the translation of 
S P E C  into a label specification. 

Tr (SPEC)  only contains positive conditional axioms. Thus, from Corollary 1 
we have: 

T h e o r e m  4 Let S P E C  be a ~Exc-specifieation. AIgE~c(SPEC) has an initial 
object Tap Ec. 

R e m a r k  2 Given two exception specifications SPEC1 and SPECz such that 
SPEC~ C_ SPEC~., the forgetful functor U : Atge~r --, AlgE~,(SI"EC~) 
exists and has a left adjoint functor F.  
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7 E x a m p l e s  

Section 7.1 contains an example with "intrinsic" exceptional cases and bounds. Sec- 
tion 7.2 contains an example with bounds and "dynamic" exceptional cases. Thus, 
all the classes of exceptional cases, as classified in Section 1, are covered. 

7 .1  A s h o r t  e x a m p l e  

Let NatExc = < {Nat},(suee_,pred_},{Tooiarge, Negative} > be the excep- 
tion signature given in Section 5.2. An exception specification of natural numbers 
bounded by 8 is given below: 

G e n A x  : succS(O) e Ok 
suet(n) e Ok ==~ n e Ok 
succg(O) e TooLarge 
pred(O) e Negative 
suee( ) TooLarge suee( ) = 

O k A x  : p ed(s ee( )) = 
W h e r e :  n : Nat 

The first two axioms of GenAx specify the Ok part of Nat. It  is not necessary 
to declare all the Ok-terms (the label Ok will be automatically propagated to terms 
such as pred(succ(O)) via the Ok-axiom). It is only desirable to declare at least 
one term for each intended Ok-value. The meaning of the third and fourth gener- 
alized axioms is that the operation succ (resp. pred) raises the exception TooLarge 
(resp. Negative) when applied to succS(O) (resp. 0). Tile last generalized axiom 
recovers succg(O) on succS(O) (as well as all its successors, from the common future 
property). The inconsistency described in Example 1 does not occur any more, as 
sueca(O) is not labelled by TooLarge. Then, OkAx only has to specify the operation 
pred in all normal cases; it is actually terse and clear. 

Let us note that  we operate in a total framework; however this does not force to 
always define a recovery condition. For example, the previous specification does not 
imply for pred(0) to be equal to an Ok-term; consequently, in the initial model, it 
denotes an exceptional value that can be understood as an error exit. 

Moreover, tile instance pred(succS(O)) = pred(succ~(O)) = succS(O) is no longer 
an instance of the Ok-axiom because succ~(O), and therefore pred(succg(O)), is 
not required to be an Ok-term in our framework (even though evalA(succg(O)) = 
evaIA(succS(O))). Thus, pred(succg(O)) = succS(O) is not a consequence of OkAz. 
This is a good example of our restricted propagation of the label Ok through the 
Ok-axioms; it shows how the semantics of Ok-axioms reflect an implicit propagation 
of exceptions. 

Let us note that the exception algebra described in the Section 5.2 satisfies this 
specification. 
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7 . 2  A m o r e  e l a b o r a t e d  e x a m p l e  

We give a specification of bounded arrays of  naturM numbers, 6 where a new array 
is not initialized. The specifications of natural numbers and booleans are not given 
in this example; it is not difficult, for instance, to complete the specification of 
Section 7.1 with the operations eq and <. 

S : Array 
: create__ : Na t  N a t  --, Array  

store___ : Nat  Array Na t  --, Array  
fe tch__ : Array Na t  ..4 N a t  
lower_ : Array  ---, Na t  
upper_ : Array  ---* Na t  

L : BadRange,  OutOfRange ,  Non ln i t i a l i z ed  

G e n A x  : 
low e Ok A up e Ok A 
a e O k  A i n d e O k  A 

low < up = fa lse  =:~ 
ind < lower(a) = true 
upper(a) < ind = true 
ind < lower(a) = true 
upper(a) < ind = true 
lower(a) <_ ind = true 

eq(indl , ind2) = fa lse  

OkAx : 

ilow < up = true ==r create(low, up) e Ok 
z e Ok A tower(a) <_ ind = true A ind <_ upper(a) = true 

store(x, a, ind) ~ Ok 
r up) e BadRange 
:=:~ store(x, a, iud) e OutOf  Range 

store(x, a, ind) e OutOf  Range 
:=~ fetch(a,  ind) e OutOfRange  

fetch(a,  ind) e OutOf  Range 
A ind < upper(a) = true :=~ 

fetch(create(low, up), ind) ) e N onlni t ia l i zed 
A fetch(a,  iudl)  e Nou ln i t i a l l z ed  ==~ 

fe tch(s tore(z ,  a, ind2 ), indl  ) e N onlni t ial ized 

lower(create(low, up)) = low 
upper(create(low, up)) --: up 
lower(store(x,  a, ind) ) = lower(a) 
~,pper( store(z,  a, i,,d) ) : upper(a) 
store(z,  store(y, a, i .d ) ,  i .d)  = store(~, a, i . d )  
eq(indl , ind2) = fa lse  

store(z,  store(y, a, indl  ), ind2 ) = store(y, s tore(z,  a, ind2 ), indD 
fe tch(s tore(z ,  a, ind), ind) = z 

Where  : low, up, ind, indl ,  ind2, z,  y : N a t ;  a : Array  

The term create( tow,  ~,p) creates a new array of range [low, up]. Notice that  if low or 
up  is exceptional, then create( low,  up) is exceptional too (exception propagation).  
The operations lower  and upper retrieve tile acceptable range of an array. 'File 
exception name O u t O f R a n g e  is raised when a s tore  or a f e t c h  is performed outside 
of the acceptable range. Thus, tile label O u t O f R a n g e  intersect several sorts ( A r r a y  
and N a t ) .  

~ simplicity, both indexes and elements of arrays are of sort Nat. 
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8 C o n c l u s i o n  

We have introduced a distinction between what we call "exception handling" and 
"error handling." We have shown that exception handling requires a refined notion 
of the satisfaction relation for algebraic specifications. The scope of an axiom should 
be restricted to carefully chosen patterns, because a satisfaction relation based on 
assignments with range in values often raises inconsistencies. A more elaborated 
notion of assignment is considered: assignment with range in terms. This allows 
us to restrict the scope of an axiom to certain suitable patterns, and solves the 
inconsistencies raised by exception handling. 

We have also shown that exception names, or error messages, should be carried 
by terms, and that they are advantageously reflected by labels. Labels must not go 
through equational atoms; thus, two terms having the same value do not necessarily 
carry the same labels. We have first defined the framework of label algebras, that 
defines suitable semantics for labels. The scope of a label axiom is carefully delimited 
by labels which serve as special marks on terms. 

Then, we have proposed a new algebraic framework for exception handling, based 
on label algebras~ which: is powerful enough to cope with all suitable exception han- 
dling features such as implicit propagation of exceptions, possible recoveries, decla- 
ration of exception names, etc. All the usual exceptional cases can easily be specified 
("intrinsic" exceptions of an abstract data type, "dynamic" exceptional cases and 
bounded data structures). This approach solves some weaknesses of existing frame- 
works (see Section 3) and succeeds with respect to clarity and terseness, that  are 
two crucial criteria for formal specifications with exception handling. 

Although we have introduced the theory of label algebras as a general frame for 
exception handling purpose, the application domain of label algebras seems to be 
much more general than exception handling. Indeed, labels provide a great tool to 
express several other features developed in the field of (first order) algebraic specifi- 
cations. We have mentioned in Section 3 that  label algebras can be shown as an ex- 
tension of more standard algebraic approaches based on "multityping." Similarly to 
exception handling, partial functions [BW82] or observability issues [Hen89][BB91] 
can also be described in the same way by some well chosen forms of label specifica- 
tions. However, all the specific applications of label algebras require certain implicit 
label axioms in order to preserve clarity and terseness. Thus, the framework of label 
algebras provides us with "low level" algebraic specifications: in a generic way, the 
specific semantical aspects of a given approach (e.g. observational specifications or 
exception specifications) can be specified by a well chosen set of label axioms. 

Intuitively, labels are unary predicates on terms. In order to facilitate certain 
applications of label algebras, we plane to generalize labels to "labels of strictly 
positive arity." Several other extensions, such as higher order label specifications, 
may be dealt with in future works. 
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