Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Diagnosis and monitoring of ulnar nerve lesions

  • Diagnostic Problem Solving
  • Conference paper
  • First Online:
Artificial Intelligence in Medicine (AIME 1997)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 1211))

Included in the following conference series:

  • 131 Accesses

Abstract

In this paper we introduce a novel approach for diagnosis and monitoring of ulnar nerve lesions, affecting the coordination of movement of the ring and little finger of the human hand. Based on data generated by ultrasound measurements, we developed suitable preprocessing methods for automatic extraction of relevant features from the movement pattern to be examined. The partial absence of class information even for the pattern in the training set requires the use of unsupervised methods for the learning and class assignment procedures. For that reason, we use a new dynamic and hierarchic neural network for the analysis of the generated pattern vectors. The dynamically structured architecture of the network satisfies the special needs of this medical task, such as providing variable levels of generalization and efficient retrieval of similar cases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L. Breiman, J.H. Friedman, R.A. Olsen, and C.J. Stone. Classification and Regression Trees. Belmont, CA, Wadsworth, 1984.

    Google Scholar 

  2. P.W. Brandt and A. Hollister. Clinical Mechanics of the Hand. Mosby Year Book, 1993.

    Google Scholar 

  3. R.O. Duda and P.E. Hart. Pattern Classification and Scene Analysis. Wiley, 1973.

    Google Scholar 

  4. L. Fang, A. Jennings, W. X. Wen, K. Li, and T. Li. Unsupervised learning for neural trees. In Proceedings of the IJCNN, 1991.

    Google Scholar 

  5. B. Fritzke. Growing cell structures — a self-organizing network for unsupervised and supervised learning. Technical Report TR-93-026, ICSI, 1993.

    Google Scholar 

  6. U. Guggenbühl and H. Krüger. Bewegungsanalyse an verschiedenen industriellen Arbeitsplätzen. Sozial-und Präventivmedizin, 32:266–268, 1987.

    Google Scholar 

  7. P. Hahn, H. Krimmer, A. Hradetzky, and U. Lanz. Quantitative analysis of the linkage between the interphalangeal joints of the index finger. in vivo study. Journal of Hand Surgery, 20B:696–699, 1995.

    Google Scholar 

  8. T. Kohonen. The self-organizing map. Proceedings of the IEEE, 78(9):1464–1480, 1990.

    Google Scholar 

  9. T. Li, L. Fang, and A. Jennings. Structurally adaptive self-organizing neural trees. In Proc. of the ICNN, 1992.

    Google Scholar 

  10. J. W. Littler and J. S. Thompson. Surgical and functional anatomy. In W.H. Bowers, editor, The interphalangeal joints, pages 14–20. Churchill Livingstone, Edinburgh, 1987.

    Google Scholar 

  11. Thomas Martinetz and Klaus Schulten. Topology representing networks. Neural Networks, 7(2), 1994.

    Google Scholar 

  12. J.R. Quinlan. C4-5: Programs for Machine Learning. Morgan Kaufman, 1993.

    Google Scholar 

  13. J. Rahmel. On the Role of Topology for Neural Network Interpretation. In W. Wahlster, editor, Proc. of the ECAI, 1996.

    Google Scholar 

  14. J. Rahmel. SplitNet: Learning of Hierarchical Kohonen Chains. In Proc. of the ICNN '96, Washington, 1996.

    Google Scholar 

  15. J. Rahmel and T. Villmann. Interpreting Topology Preserving Networks. Technical Report LSA-96-01E, University of Kaiserslautern, 1996.

    Google Scholar 

  16. H. Srinivasan. Universe of finger postures and finger dynamography. Handchir. Mikrochir. Plastische Chirugie, 15:3–6, 1983.

    Google Scholar 

  17. P. Utgoff. Perceptron trees: A case study in hybrid concept representations. In Proc. of the Nat. Conf. on AI, pages 601–606, St. Paul, MN, 1988.

    Google Scholar 

  18. Th. Villmann, R. Der, M. Herrmann, and Th. Martinetz. Topology preservation in self-organizing feature maps: Exact definition and measurement. IEEE Transactions on Neural Networks, 1996. To appear.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Elpida Keravnou Catherine Garbay Robert Baud Jeremy Wyatt

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Rahmel, J., Blum, C., Hahn, P., Krapohl, B. (1997). Diagnosis and monitoring of ulnar nerve lesions. In: Keravnou, E., Garbay, C., Baud, R., Wyatt, J. (eds) Artificial Intelligence in Medicine. AIME 1997. Lecture Notes in Computer Science, vol 1211. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0029453

Download citation

  • DOI: https://doi.org/10.1007/BFb0029453

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-62709-8

  • Online ISBN: 978-3-540-68448-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics