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Abstract

Learning universal time series representations applicable to
various types of downstream tasks is challenging but valuable
in real applications. Recently, researchers have attempted to
leverage the success of self-supervised contrastive learning
(SSCL) in Computer Vision(CV) and Natural Language Pro-
cessing(NLP) to tackle time series representation. Neverthe-
less, due to the special temporal characteristics, relying solely
on empirical guidance from other domains may be ineffec-
tive for time series and difficult to adapt to multiple down-
stream tasks. To this end, we review three parts involved in
SSCL including 1) designing augmentation methods for pos-
itive pairs, 2) constructing (hard) negative pairs, and 3) de-
signing SSCL loss. For 1) and 2), we find that unsuitable
positive and negative pair construction may introduce inap-
propriate inductive biases, which neither preserve temporal
properties nor provide sufficient discriminative features. For
3), just exploring segment- or instance-level semantics infor-
mation is not enough for learning universal representation. To
remedy the above issues, we propose a novel self-supervised
framework named TimesURL. Specifically, we first introduce
a frequency-temporal-based augmentation to keep the tempo-
ral property unchanged. And then, we construct double Uni-
versums as a special kind of hard negative to guide better con-
trastive learning. Additionally, we introduce time reconstruc-
tion as a joint optimization objective with contrastive learn-
ing to capture both segment-level and instance-level informa-
tion. As a result, TimesURL can learn high-quality universal
representations and achieve state-of-the-art performance in 6
different downstream tasks, including short- and long-term
forecasting, imputation, classification, anomaly detection and
transfer learning.

Introduction
Time series data is ubiquitous in reality ranging from
weather and economics to transportation (Wu et al. 2021;
Liu et al. 2022b; Shi et al. 2015). Learning information-
rich and universal time series representations for multi-
type downstream tasks is a fundamental but unsolved prob-
lem. While self-supervised contrastive learning has exhib-
ited great success in computer vision (CV), natural language
processing (NLP), and recently, other types of modalities

*Corresponding Author
Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

(Denton et al. 2017; Gutmann and Hyvärinen 2012; Wang
and Gupta 2015; Pagliardini, Gupta, and Jaggi 2017; Chen
et al. 2020), its application to time series requires tailored
solutions. This is due to the high dimensionality and special
temporal characteristics of time series data, as well as the
need for diverse semantics information for different tasks.

To this end, we review the four main parts involved in
SSCL including 1) augmentation method for positive sam-
ples designing, 2) backbone encoder, 3) (hard) negative
pairs, and 4) SSCL loss for pretext tasks, and try to invest
efforts to explore more effective solutions for time series fea-
ture capturing in universal representation learning. Since the
backbone encoder has been extensively studied in time se-
ries encoder learning (Liu and Chen 2019; Zhou et al. 2021;
Wu et al. 2023; Liu et al. 2022a), our attention is primarily
directed toward the remaining three components.

First, most augmentation methods, when applied to time
series data, may introduce inappropriate inductive biases as
they directly borrow ideas from the fields of CV and NLP.
For example, Flipping (Luo et al. 2023) flip the sign of the
original time series that assumes the time series has sym-
metry between up and down directions. Nevertheless, this
may ruin the temporal variations, such as trend, and peak
valley, that are inherently present in the original time se-
ries. While permutation (Um et al. 2017) rearranges the or-
der of segments in a time series to generate a new series,
under the assumption that the underlying semantic informa-
tion remains unchanged by the different orders. However,
this disturbs the temporal dependencies, thereby impacting
the relationships between past and future timestamp infor-
mation. Consequently, since valuable semantic information
of time series primarily resides in temporal variations and
dependencies, such augmentations are unable to capture the
appropriate features necessary for effective universal repre-
sentation learning.

Then, the importance of hard negative sample selection
has been proved in other domains (Kalantidis et al. 2020;
Robinson et al. 2020), but is still underexplored in time
series literature. Due to the local smoothness and Markov
property, most time series segments can be considered as
easy negative samples. These segments tend to exhibit se-
mantic dissimilarity with the anchor and contribute only mi-
nor gradients, thus failing to provide useful discriminative
information (Cai et al. 2020). Although the inclusion of a
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Figure 1: Overview of TimesURL approach, shown in (A), consisting of FTAug, DualCon, and Recon three components. A
time series xi is transformed into two augmented series xi and x′

i by cropping and frequency mix. Then, the corresponding
representation ri and r′i, the colorful pieces in the rectangular box marked by Repr., are extracted by the Encoder. Within each
pooling, shown in light purple rectangular boxes, the learned representations are fed into the DualCon component to synthesize
the temporal- and instance-wise Universums, thereby injecting them into contrastive learning. The light blue rectangular boxes
represent the reconstruction data flow. Subfigures (B) and (C) denote the specific process of FTAug and Universum synthetic.

small number of hard negative samples, which have simi-
lar but not identical semantics to the anchor, has shown to
facilitate improved and expedited learning (Xu et al. 2022;
Cai et al. 2020), their effectiveness is overshadowed by the
abundance of easy negative samples.

Last but not least, only using information at segment-
or instance-level alone is not enough for learning a uni-
versal representation. Prior research has generally classi-
fied the aforementioned tasks into two categories (Yue et al.
2022). The first category includes forecasting, anomaly de-
tection, and imputation that rely more on fine-grained infor-
mation captured in segment level (Yue et al. 2022; Woo et al.
2022; Luo et al. 2023) as these tasks require inferring spe-
cific timestamps or sub-sequences. While the second cate-
gory consists of classification and clustering that prioritize
instance-level information, i.e. coarse-grained information
(Eldele et al. 2021, 2022; Liu and wei Liu 2022), aiming
to infer the target across the entire series. Therefore, when
confronted with a task-agnostic pre-training model that lacks
prior knowledge or awareness of specific tasks during the
pre-training phase, both segment- and instance-level infor-
mation become indispensable for achieving effective univer-
sal time series representation learning.

To address these challenges, in this paper, we propose
a novel self-supervised framework termed TimesURL to

learn universal representations capable of effectively sup-
porting various downstream tasks. We first conduct instance-
wise and temporal contrastive learning to incorporate tem-
poral variations and sample diversity. Specifically, to main-
tain the temporal variations and dependencies, we design a
new frequency-temporal-based augmentation method called
FTAug which is a combination of cropping in the time do-
main and frequency mixing in the frequency domain. More-
over, inspired by the concept of learning through contradic-
tion, we elaborately design double Universums as hard nega-
tive samples. It is a kind of anchor-specific mixup in the em-
bedding space that mixup the specific positive sample (an-
chor) each time with a negative sample. Our designed double
Universums are generated on instance-wise and temporal di-
mensions respectively, serving as special high-quality hard
negative samples that boost the performance of contrastive
learning. Additionally, we observe that contrastive learn-
ing alone is limited to capturing only one level of informa-
tion. Therefore, in our paper, we jointly optimize contrastive
learning and time reconstruction to capture and leverage in-
formation at both segment- and instance levels.

Benefitting from the aforementioned designs, TimesURL
consistently achieves state-of-the-art (SOTA) results across
a broad range of downstream tasks, thereby demonstrating
its ability to learn universal and high-quality representations
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for time series data. The contributions of this work can be
summarized as follows:

• We revisit the existing contrastive learning framework
for time series representation and propose TimesURL,
a novel framework that can capture both segment- and
instance-level information for universal representation
with an additional time reconstruction module.

• We introduce a new frequency-temporal-based augmen-
tation method and inject novel double Universums into
contrastive learning to remedy the positive and negative
pairs construction problems.

• We evaluate the performance of representation learned by
TimesURL via 6 benchmark time series tasks with about
15 baselines. The consistent SOTA performance proves
the universality of representation.

Related Work
Unsupervised Representation Learning for Time Se-
ries. Representation learning for time series has been well-
studied for years (Chung et al. 2015; Krishnan, Shalit, and
Sontag 2017; Bayer et al. 2020). However, there is still a
dearth of research focusing on the more challenging as-
pect of unsupervised representation learning. SPIRAL (Lei
et al. 2019) bridges the gap between time series data and
static clustering algorithms by learning a feature represen-
tation that effectively preserves the pairwise similarities in-
herent in the raw time series data. TimeNet (Malhotra et al.
2017) is a recurrent neural network that trains the encoder-
decoder pair to minimize the reconstruction error from its
learned representations. DTCR (Ma et al. 2019) integrates
the temporal reconstruction and K-means objective into the
seq2seq model to learn cluster-specific temporal representa-
tions. ROCKET (Dempster, Petitjean, and Webb 2020) is a
classification method with small computational expense and
fast speed that transforms time series using random convolu-
tional kernels and uses the transformed features to train a lin-
ear classifier. Therefore, numerous previous studies concen-
trate on developing encoder-decoder architectures to mini-
mize reconstruction errors for unsupervised time series rep-
resentation learning. Some (Lei et al. 2019; Ma et al. 2019)
have attempted to leverage the inherent correlations present
in time series data, but have fallen short of fully realizing
time series data potential.

Time-Series Contrastive Learning. Self-supervised con-
trastive learning intends to learn invariant representations
from different augmented views of data. It is another type
of representation learning method for unannotated data over
designed pretext tasks. TS-TCC (Eldele et al. 2021) focuses
on designing a challenging pretext task for robust represen-
tation learning from time series data. It tackles this by de-
signing a tough cross-view prediction task against pertur-
bations introduced by different timestamps and augmenta-
tions. TNC (Tonekaboni, Eytan, and Goldenberg 2021) dis-
cusses the choice of positive and negative pair construc-
tion by a novel neighborhood-based method for nonstation-
ary multivariate time series with sample weight adjustment.
InfoTS (Luo et al. 2023) highlights the importance of se-

lecting appropriate augmentations and designs an automati-
cally selecting augmentation method with meta-learning to
prevent introducing prefabricated knowledge. TS2Vec(Yue
et al. 2022) is a unified framework that learns contextual rep-
resentations for arbitrary sub-series at various semantic lev-
els. CoST(Woo et al. 2022) contributes to pretext task design
by leveraging inductive biases in the model architecture. It
specifically focuses on learning disentangled seasonal and
trend representations and incorporates a novel frequency do-
main contrastive loss to encourage discriminative seasonal
representations. However, they are prone to be affected by
improper prior assumptions, an overabundance of easy neg-
ative samples, and a lack of sufficient information for down-
stream tasks. These limitations arise from inappropriate aug-
mentation methods, the lack of hard negative samples, and
the neglect of leveraging both segment- and instance-level
information. In this paper, we address all these problems in
a unified framework for universal representation learning for
time series.

Proposed TimesURL Framework
In this section, we make an elaborate description of the
newly designed frame, TimesURL. We first formulate the
representation learning problem and subsequently delve into
the implementation of the key components including con-
trastive learning and time reconstruction. Particularly, within
the contrastive learning component, we emphasize our de-
signed augmentation and double Universum synthesizing
methods.

Problem Formulation. Similar to most time series repre-
sentation learning methods, our goal is to learn a nonlinear
embedding function fθ, such that each instance xi in time
series set X = {x1, x2, . . . , xN} can map to the best de-
scribed representation ri. Each input time series instance is
xi ∈ RT×F , where T is the time series length and F is
the feature dimension. The representation for the i-th time
series is ri = {ri,1, ri,2, . . . , ri,T }, in which ri,t ∈ RK is
the representation vector at time t, where K is the dimen-
sion of representation vector. Since our model is a two-step
progress, we then use the learned representation to accom-
plish the downstream tasks.

Method Introduction. As shown in Figure 1, we first gen-
erate augmentation sets X ′ and X ′

M through FTAug for orig-
inal series X and masked series XM , respectively. Then we
get two pairs of original and augmentation series sets, the
first pair (X ,X ′) is for contrastive learning, while the sec-
ond pair (XM ,X ′

M ) is for time reconstruction. After that, we
map the above sets with fθ to achieve corresponding repre-
sentations. We encourage R and R′ to have transformation
consistency and design a reconstruction method to precisely
recover the original dataset X using both RM and R′

M .
The effectiveness of the model above is guaranteed by 1)

using a suitable augmentation method for positive pair con-
struction, 2) having a certain amount of hard negative sam-
ples for model generalization, and 3) optimizing the encoder
fθ by contrastive learning and time reconstruction losses
jointly for capturing both levels of information. We will then
discuss the three parts in the following subsections.
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FTAug Method
A key component of contrastive learning is to choose appro-
priate augmentations that can impose some priors to con-
struct feasible positive samples so that encoders can be
trained to learn robust and discriminative representations
(Chen et al. 2020; Grill et al. 2020; Yue et al. 2022). Most
augmentation strategies are task-dependent (Luo et al. 2023)
and may introduce strong assumptions of data distribution.
More seriously, they may perturb the temporal relationship
and semantic consistency that is crucial for tasks like fore-
casting. Therefore, we choose the contextual consistency
strategy (Yue et al. 2022), which treats the representations
at the same timestamp in two augmented contexts as posi-
tive pairs. Our FTAug combines the advantages in both fre-
quency and temporal domains that generate the augmented
contexts by frequency mixing and random cropping.

Frequency mixing. Frequency mixing is used to produce
a new context view by replacing a certain rate of the fre-
quency components in one training instance xi calculated
by Fast Fourier Transform (FFT) operation with the same
frequency components of another random training instance
xk in the same batch (Chen et al. 2023). Then we use the
inverse FFT to convert back to get a new time domain time
series. Exchanging frequency components between samples
will not introduce unexpected noise or artificial periodicities
and can offer more reliable augmentations for preserving the
semantic characteristics of the data.

Random cropping. Random cropping is the key step for
contextual consistency strategy. For each instance xi, we
randomly sample two overlapping time segments [a1, b1],
[a2, b2] such that 0 < a1 ≤ a2 ≤ b1 ≤ b2 ≤ T . The con-
trastive learning and time reconstruction further optimize the
representation in the overlapping segment [a2, b1].

Ultimately, the proposed FTAug is helpful for various
kinds of tasks since it can keep the important temporal re-
lationship and semantic consistency for time series. Here,
the FTAug is only applied in the training process.

Double Universum Learning
As revealed by recent studies (Kalantidis et al. 2020; Robin-
son et al. 2020; Cai et al. 2020), hard negative samples play
an important role in contrastive learning but have never been
explored in the time series domain. Moreover, due to the lo-
cal smoothness and the Markov property in time series, most
negative samples are easy that are insufficient for capturing
temporal-wise information since they fundamentally lack
the learning signals required to drive contrastive learning.
As a real example of ERing dataset in UEA archive (Bag-
nall et al. 2018) in Figure 2, for each positive anchor (red
square), the corresponding negative samples (gray marks)
contain many easy negatives and few hard ones, i.e. many of
the negatives are too far to contribute to the contrastive loss.

Our double Universums are Mixup Induced Universums
(Han and Chen 2023; Vapnik 2006; Chapelle et al. 2007) in
both instance- and temporal-wise, which is anchor-specific
mixing in the embedding space that mixes the specific pos-
itive feature (anchor) with the negative features for unanno-
tated datasets.

Figure 2: Properties of Universums on ERing dataset in
UEA archive

Let i be the index of the input time series sample and t
be the timestamp. ri,t and r′i,t denote the representations for
the same timestamp t but from two augmentation of xi. The
synthetic temporal-wise Universums for the i-th time series
at timestamp t can be formulated as

rtemp
i,t = λ1 · ri,t + (1− λ1) · ri,t′ ,

r′temp
i,t = λ1 · r′i,t + (1− λ1) · r′i,t′ ,

(1)

in which t′ is randomly chosen from Ω, the set of timestamps
within the overlap of the two subseries, and t′ ̸= t. While the
instance-wise Universums indexed with (i, t) are similar be
formulated as

rinst
i,t = λ2 · ri,t + (1− λ2) · rj,t,

r′inst
i,t = λ2 · r′i,t + (1− λ2) · r′j,t,

(2)

where j indicates any other instance except i in batch B.
Here, λ1, λ2 ∈ (0, 0.5] are randomly chosen mixing coeffi-
cients for the anchor, and λ1, λ2 ≤ 0.5 guarantees that the
anchor’s contribution is always smaller than negative sam-
ples.

As in Figure 2(a), most Universum (blue triangles) are
much closer to the anchor and thus can be seen as hard
negative samples. Moreover, we utilize a proxy task to indi-
cate the difficulty of hard negatives (Kalantidis et al. 2020),
i.e. Universums. The proxy task performance is shown in
Figure 2(b), i.e. the percentage of anchors where the posi-
tive sample is ranked overall negatives across training our
TimesURL with and without Universums on ERing dataset.
Despite the drop in proxy task performance of TimesURL,
however, further performance gains are observed for lin-
ear classification from 0.896 (without Universums) to 0.985
(with Universums), which means that the additional Univer-
sum makes the proxy task harder to solve but can further im-
prove the model performance in the downstream task. There-
fore, Univerums in TimesURL can be seen as high-quality
negatives. To sum up, our Universums can be treated as a
kind of high-quality hard negative samples.

By mixing with the anchor sample, the possibility of the
universum data falling into target regions in the data space is
minimized, thereby ensuring the hard negativity of Univer-
sum. Moreover, the double Universum set contains all other
negative samples that are beneficial to learning discrimina-
tive sample information to increase model capability.
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Contrastive Learning for Segment-level
Information
We use a straightforward way to inject the double Univer-
sums into contrastive learning as additional hard negative
samples in temporal- and instance-wise contrastive loss, re-
spectively. The two losses for the i-th time series at times-
tamp t can be formulated as

ℓ
(i,t)
temp = − log

exp(ri,t · r′i,t)
exp

(
ri,t · r′i,t

)
+

∑
zi,t′∈Ni

exp (ri,t · zi,t′)

(3)

ℓ
(i,t)
inst = − log

exp(ri,t · r′i,t)
exp(ri,t · r′i,t) +

∑
zj,t∈Nj

exp (ri,t · zj,t)
(4)

where in Eq.(3) and (4), Ni ≜ Zi ∪ Z′
i ∪Ui ∪U′

i, and Nj ≜
Zj ∪Z′

j ∪Uj ∪U′
j , in which Zi∪Z′

i = {ri,t′ , r′i,t′ |t′ ∈ Ω\t}
and Zj ∪ Z′

j = {rj,t, r′j,t|j ∈ {1, . . . , |B|}\i} are original
negative samples, while Ui∪U′

i = {rtemp
i,t′ , r

′temp
i,t′ |t′ ∈ Ω} and

Uj∪U′
j = {rinst

j,t , r
′inst
j,t |j ∈ {1, . . . , |B|} are proposed double

Universums as Eq.(1),(2), where |B| denotes the batch size.
The two losses are complementary to each other to cap-

ture both instance-specific characteristics and the temporal
variation. We use hierarchical contrastive loss (Yue et al.
2022) for multi-scale information learning by using max
pooling on the learned representations along the time axis in
Eq.(3) and (4). Here, we have to mention that important tem-
poral variation information, such as trend and seasonal are
lost after several max pooling operations, therefore contrast-
ing at top levels cannot actually capture sufficient instance-
level information for downstream tasks.

Ldual =
1

|B|T
∑
i

∑
t

(
ℓ
(i,t)
temp + ℓ

(i,t)
inst

)
(5)

Time Reconstruction for Instance-level
Information
The masked autoencoding technique in self-supervised
learning has been proven to perform well in various do-
mains, such as BERT-based pre-training model(Kenton and
Toutanova 2019) in NLP as well as MAE (He et al. 2022)
in CV. The main idea of such methods is to reconstruct the
original signal given its partial observation.

Motivated by the masked autoencoding technique, we de-
sign a reconstruction module to preserve important tempo-
ral variation information. Our approach uses the above men-
tioned embedding function fθ as an encoder that maps the
masked instance into latent representation and then recon-
structs the full instance from the latent representation. Here,
we use the random masking strategy. Our loss function com-
putes the Mean Squared Error (MSE) between the recon-
structed and the original value at each timestamp. Further,
similar to BERT and MAE, we compute the MSE loss only
on the masked timestamps in Eq.(6).

Lrecon =
1

2|B|
∑
i

∥mi ⊙ (x̃i − xi)∥22 + ∥m′
i ⊙ (x̃′

i − x′
i)∥22

(6)

Here, we denote mi ∈ {0, 1}T×F as the observation mask
for the i-th instance where mi,t = 0 if xi,t is missing, and
mi,t = 1 if xi,t is observed, while x̃i is the generated re-
construction instance. Similar to the above notations, m′

i, x̃
′
i

and x′
i have the same meaning.

The overall loss is defined as

L = Ldual + αLrecon (7)

where α is a hyper-parameter to balance the two losses.

Experiments
In this section, to evaluate the generality and the down-
stream tasks performance of the representation learned by
our TimesURL, we extensively experiment on 6 downstream
tasks, including short- and long-term forecasting, imputa-
tion, classification, anomaly detection and transfer learning.
The best results are highlighted in bold. More detailed exper-
imental setups and other additional experiment results will
be presented in the Appendix.

Implementation The summary of the benchmarks is in
the Appendix. For TimesURL, we use Temporal Convolu-
tion Network (TCN) as the backbone encoder, which is sim-
ilar to TS2Vec (Yue et al. 2022). More detailed information
about the dataset and other experiment implementation in-
formation is in the Appendix.

Baselines Following the self-supervised learning setting,
we extensively compare TimesURL with recent advanced
models under a similar experimental setup. Since most exist-
ing self-supervised learning methods cannot learn universal
representations for all kinds of tasks, we utilize each method
only for tasks it is specifically designed for. Moreover, we
also compare the SOTA models for each specific task as
follows, where SSL, E2EL, USL are abbreviations for self-
supervised, end-to-end, and unsupervised learning: Fore-
casting: 1) SSL: CoST (Woo et al. 2022), TS2Vec (Yue et al.
2022), TNC (Tonekaboni, Eytan, and Goldenberg 2021),
2) E2EL: Informer (Zhou et al. 2021), LogTrans (Li et al.
2019), N-BEATS (Oreshkin et al. 2019); Classification: 1)
SSL: InfoTS (Luo et al. 2023), TS2Vec, TS-TCC (Eldele
et al. 2021), TST (Zerveas et al. 2021),2) USL: DTW; Impu-
tation: SSL: TS2Vec, InfoTS; Anomaly detection: 1) SSL:
TS2Vec, 2) USL: SPOT(Siffer et al. 2017), DSPOT(Siffer
et al. 2017), DONUT(Xu et al. 2018), SR(Ren et al. 2019).

Overall, about 15 baselines are included for a comprehen-
sive comparison.

Classification
Setups Time series classification has practical significance
in medical diagnosis, action recognition, etc. Our experi-
ments are under the setting that class labels are on the in-
stance. So instance-level classification is adopted to verify
the model capacity in presentation learning. We select com-
monly used UEA (Bagnall et al. 2018) and UCR (Dau et al.
2019) Classification Archive. The representation dimensions
of all classification methods except DTW are set to 320 and
we then follow the same protocol as TS2Vec which uses an
SVM classifier with RBF kernel to train on top of represen-
tations for classification.
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Method TimesURL InfoTS TS2Vec T-Loss TNC TS-TCC TST DTW

30 UEA datasets
Avg. ACC 0.752 (+3.8%) 0.714 0.704 0.658 0.670 0.668 0.617 0.629
Avg. Rank 1.367 3.200 3.567 4.567 5.333 5.000 5.900 5.207

128 UCR datasets
Avg. ACC 0.845 (+0.7%) 0.838 0.836 0.806 0.761 0.757 0.639 0.729
Avg. Rank 1.844 2.047 2.625 4.248 5.128 5.032 6.961 6.008

Table 1: Time series classification results.

Results The evaluation results are shown in Table 1.
TimesURL achieves the best performance with an average
accuracy of 75.2% for 30 univariate datasets in UEA and
84.5% for 128 multivariate datasets in UCR, surpassing
the previous SOTA self-supervised method InfoTS (71.4%).
Moreover, the best average rank also validates the signifi-
cant outperformance of TimesURL. As mentioned before,
it is easy to understand the failure of other methods, since
TS2Vec lacks sufficient instance-level information, while
some augmentations in InfoTS may introduce inappropriate
inductive biases that damage the temporal properties, such
as the trend for classification. Since TimesURL uses general
FTAug, contains appropriate hard negatives and can capture
both segment- and instance-level information, thus achieves
better performance.

Imputation
Setups Under a realistic scenario, irregular and asynchro-
nized sampling often happens, which may lead to miss-
ingness resulting in difficulty in downstream tasks. Impu-
tation is a straightforward and widely used method to re-
lieve this problem. We complete the task with ETT dataset
(Zhou et al. 2021) under the electricity scenario, where
the data-missing problem happens commonly. To compare
the model capacity under different proportions of missing
data, we randomly mask the time points in the ratio of
{12.5%, 25%, 37.5%, 50%}. We then follow the same set-
ting as TimesNet which uses a MLP network for the down-
stream tasks.

TimesURL InfoTS TS2Vec

Metrics MSE MAE MSE MAE MSE MAE

E
T

T
h1

0.125 0.659 0.640 0.717 0.666 0.690 0.658
0.250 0.679 0.648 0.726 0.674 0.710 0.668
0.375 0.702 0.656 0.726 0.676 0.728 0.676
0.500 0.712 0.693 0.783 0.695 0.751 0.682

E
T

T
h2

0.125 2.455 1.215 2.491 1.199 2.866 1.288
0.250 2.560 1.239 2.644 1.244 2.792 1.271
0.375 2.673 1.269 2.757 1.266 2.793 1.271
0.500 2.701 1.281 2.844 1.283 2.769 1.267

E
T

T
m

1 0.125 0.644 0.650 0.702 0.651 0.726 0.663
0.250 0.699 0.668 0.732 0.664 0.719 0.664
0.375 0.718 0.686 0.753 0.674 0.728 0.670
0.500 0.716 0.680 0.759 0.677 0.739 0.669

Avg. 1.326 0.860 1.386 0.864 1.418 0.871

Table 2: Multivarite time series imputation results.

Results Since TimesURL contains a time construction mod-
ule to capture underlying temporal patterns, we naturally ex-
tend it to a downstream task. As shown in Table 2, our pro-
posed TimesNet still achieves SOTA performance on three
datasets and proves to have the ability to capture temporal
variation from complicated time series.

Short- and Long-Term Forecasting
Setups Time series forecasting is ubiquitous in our every-
day life. For both short- and long-term forecasting we use
ETT, Electricity and Weather datasets from various reality
scenarios and the results of the two latter datasets are in the
Appendix. For short-term forecasting, the horizon is 24 and
48, while for long-term forecasting the horizon ranges from
96 to 720. Here, we learn the representations once for each
dataset and can be directly applied to various horizons with
linear regressions. This helps demonstrate the universality of
the learned representation.
Results We compare TimesURL with not only representa-
tion learning as well as end-to-end forecasting methods in 3
and indicate that TimesURL has established a new SOTA in
most cases for both short- and long-term forecasting.

Anomaly Detection
Setups Detecting anomalies from monitoring data is essen-
tial for industrial maintenance. We follow the setting of a
streaming evaluation protocol (Ren et al. 2019) in time se-
ries anomaly detection that determines whether the last point
xt in time series slice x1, . . . , xt is an anomaly or not.
During training, each time series sample is split into two
halves according to the time order, where the first half is for
training and the second is for evaluation. In this task, We
compare models on two benchmark datasets, including KPI
(Ren et al. 2019) a competition dataset that includes mul-
tiple minutely sampled real KPI curves and Yahoo (Niko-
lay Laptev 2015) including 367 hourly sampled time series.
Results Table 4 shows the performance of anomaly detec-
tion tasks with different methods on F1 score, precision and
recall. In the normal setting, TimesURL has consistently
good performance on both KPI and Yahoo datasets.

Transfer Learning
We complete the transfer learning task to demonstrate that
the representation learned by TimesURL has good trans-
ferability that can achieve good performance when train-
ing on one condition (i.e., source domain) and testing it
on other multiple conditions (i.e., target domains). Here,
we present the transfer learning results achieved by train-
ing the model on two separate source domains, namely
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Methods
Representation Learning End-to-end Forecasting

TimesURL CoST TS2Vec TNC Informer LogTrans N-BEATS

Metrics MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
T

T
h1

24 0.036 0.142 0.040 0.152 0.039 0.151 0.057 0.184 0.098 0.247 0.103 0.259 0.094 0.238
48 0.056 0.146 0.060 0.186 0.062 0.189 0.094 0.239 0.158 0.319 0.167 0.328 0.210 0.367

168 0.096 0.233 0.097 0.236 0.142 0.291 0.171 0.329 0.183 0.346 0.207 0.375 0.232 0.391
336 0.121 0.267 0.112 0.258 0.160 0.316 0.192 0.357 0.222 0.387 0.230 0.398 0.232 0.388
720 0.145 0.3068 0.148 0.306 0.179 0.345 0.235 0.408 0.269 0.435 0.273 0.463 0.322 0.490

E
T

T
h2

24 0.083 0.219 0.0790 0.207 0.091 0.230 0.097 0.238 0.093 0.240 0.102 0.255 0.198 0.345
48 0.116 0.219 0.1180 0.259 0.124 0.274 0.131 0.281 0.155 0.314 0.169 0.348 0.234 0.386

168 0.175 0.332 0.1890 0.339 0.198 0.355 0.197 0.354 0.232 0.389 0.246 0.422 0.331 0.453
336 0.188 0.347 0.2060 0.360 0.205 0.364 0.207 0.366 0.263 0.417 0.267 0.437 0.431 0.508
720 0.186 0.352 0.2140 0.371 0.208 0.371 0.207 0.370 0.277 0.431 0.303 0.493 0.437 0.517

E
T

T
m

1

24 0.013 0.084 0.015 0.088 0.016 0.093 0.019 0.103 0.030 0.137 0.065 0.202 0.054 0.184
48 0.024 0.1765 0.025 0.117 0.028 0.126 0.036 0.142 0.069 0.203 0.078 0.220 0.190 0.361
96 0.037 0.145 0.038 0.147 0.045 0.162 0.054 0.178 0.194 0.372 0.199 0.386 0.183 0.353

288 0.080 0.214 0.077 0.209 0.095 0.235 0.098 0.244 0.401 0.554 0.411 0.572 0.186 0.362
672 0.114 0.255 0.113 0.257 0.142 0.290 0.136 0.290 0.512 0.644 0.598 0.702 0.197 0.368

Avg. 0.098 0.229 0.102 0.233 0.116 0.253 0.129 0.272 0.210 0.362 0.228 0.391 0.235 0.381

Table 3: Short- and Long-Term Forecasting Univariate forecasting results.

Yahoo KPI

F1 Prec. Rec. F1 Prec. Rec.

SPOT 0.338 0.269 0.454 0.217 0.786 0.126
DSPOT 0.316 0.241 0.458 0.521 0.623 0.447
DONUT 0.026 0.013 0.825 0.347 0.371 0.326
SR 0.563 0.451 0.747 0.622 0.647 0.598
TS2Vec 0.745 0.729 0.762 0.677 0.929 0.533
TimesURL 0.749 0.748 0.750 0.688 0.925 0.546

Table 4: Univariate time series anomaly detection results.

CBF and CinCECGTorso in the UCR archive and evaluate
performance on the downstream classification task across
other 9 target domains in the first 10 datasets in the UCR
archive. The average results are 0.864 for CBF and 0.895 for
CinCECGTorso for the transfer scenario. The transforma-
tion results show competitive performance with no transfer
scenario. More transfer learning results are in the Appendix.

Ablation Study
We emphasize the importance of FTAug, Double Univer-
sums and joint optimization strategies for learning univer-
sal representations, respectively. To verify the effectiveness
of the above three modules in TimesURL, a comparison be-
tween full TimesURL and its five variants on 30 datasets
in the UEA archive is shown in Table 5, where 1) w/o fre-
quency mixing, 2) w/o instance Universum, 3) w/o tempo-
ral Universum, 4) w/o double Universum, 5) w/o time re-
construction. Results show that all the above components
of TimesURL are indispensable. We have to mention that
constructing either temporal- or instance-wise Universums
cannot achieve optimal performance, while double Univer-
sums achieve better performance by providing sufficient and

Avg. Accuracy

TimesURL 0.752
w/o Frequency Mixing 0.709 (-4.3%)

w/o Instance Universum 0.720 (-3.2%)
w/o Temporal Universum 0.717 (-3.5%)
w/o Double Universum 0.716 (-3.6%)

w/o Time Reconstruction 0.735 (-1.8%)

Table 5: Ablation results on 30 UEA datasets.

discriminative information for both temporal- and instance-
wise contrastive learning.

Conclusion

In this paper, we propose a novel self-supervised frame-
work termed TimesURL that can learn universal time se-
ries representations for various types of downstream tasks.
We introduce a new augmentation method called FTAug to
keep contextual consistency and temporal characteristics un-
changed, which is suitable for various downstream tasks.
Moreover, we inject double Universums into contrastive
learning to enhance negative sample quantity and quality
to boost the performance of contrastive learning. Last but
not least, TimesURL jointly optimizes contrastive learning
and time reconstruction for capturing both segment- and
instance-levels of information for universal representation
learning. Experimental results demonstrate the effectiveness
of the above strategies and show that with suitable augmen-
tation methods, enough hard negative samples and proper
levels of information, TimesURL shows great performance
on six downstream tasks.
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