Exploring the Complexity of the Human Respiratory Virome through an In Silico Analysis of Shotgun Metagenomic Data Retrieved from Public Repositories
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bibliographic Search and Data Collection
2.2. Curation of Study Information
2.3. Retrieving Raw FASTQ Files
2.4. Bioinformatic Analysis
2.5. Statistical Analysis
3. Results
3.1. Study and Data Demographics
3.2. Viral Contig Classification
3.3. Assessment of Viral and Proviral Genomes
3.4. Metanalysis of Viral Communities in the Respiratory Tract
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gilbert, J.A.; Blaser, M.J.; Caporaso, J.G.; Jansson, J.K.; Lynch, S.V.; Knight, R. Current understanding of the human microbiome. Nat. Med. 2018, 24, 392–400. [Google Scholar] [CrossRef] [PubMed]
- Hou, K.; Wu, Z.X.; Chen, X.Y.; Wang, J.Q.; Zhang, D.; Xiao, C.; Zhu, D.; Koya, J.B.; Wei, L.; Li, J.; et al. Microbiota in health and diseases. Signal Transduct. Target. Ther. 2022, 7, 135. [Google Scholar] [CrossRef] [PubMed]
- Thomas, A.M.; Segata, N. Multiple levels of the unknown in microbiome research. BMC Biol. 2019, 17, 48. [Google Scholar] [CrossRef] [PubMed]
- Liang, G.; Bushman, F.D. The human virome: Assembly, composition and host interactions. Nat. Rev. Microbiol. 2021, 19, 514–527. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, A.B.; Oliver, B.G.G.; Glanville, A.R. Translational Aspects of the Human Respiratory Virome. Am. J. Respir. Crit. Care Med. 2016, 194, 1458–1464. [Google Scholar] [CrossRef] [PubMed]
- Tan, S.K.; Relman, D.A.; Pinsky, B.A. The Human Virome: Implications for Clinical Practice in Transplantation Medicine. J. Clin. Microbiol. 2017, 55, 2884–2893. [Google Scholar] [CrossRef] [PubMed]
- Zou, S.; Caler, L.; Colombini-Hatch, S.; Glynn, S.; Srinivas, P. Research on the human virome: Where are we and what is next. Microbiome 2016, 4, 32. [Google Scholar] [CrossRef] [PubMed]
- Jones, K.E.; Patel, N.G.; Levy, M.A.; Storeygard, A.; Balk, D.; Gittleman, J.L.; Daszak, P. Global trends in emerging infectious diseases. Nature 2008, 451, 990–993. [Google Scholar] [CrossRef] [PubMed]
- Dickson, R.P.; Erb-Downward, J.R.; Martinez, F.J.; Huffnagle, G.B. The Microbiome and the Respiratory Tract. Annu. Rev. Physiol. 2016, 78, 481–504. [Google Scholar] [CrossRef]
- Dickson, R.P.; Erb-Downward, J.R.; Freeman, C.M.; McCloskey, L.; Falkowski, N.R.; Huffnagle, G.B.; Curtis, J.L. Bacterial Topography of the Healthy Human Lower Respiratory Tract. mBio 2017, 8, e02287. [Google Scholar] [CrossRef]
- Mitchell, A.B.; Glanville, A.R. Introduction to Techniques and Methodologies for Characterizing the Human Respiratory Virome. Methods Mol. Biol. 2018, 1838, 111–123. [Google Scholar] [PubMed]
- Klumpp, J.; Fouts, D.E.; Sozhamannan, S. Next generation sequencing technologies and the changing landscape of phage genomics. Bacteriophage 2012, 2, 190–199. [Google Scholar] [CrossRef] [PubMed]
- Pfeifer, E.; Bonnin, R.A.; Rocha, E.P.C. Phage-Plasmids Spread Antibiotic Resistance Genes through Infection and Lysogenic Conversion. mBio 2022, 13, e0185122. [Google Scholar] [CrossRef] [PubMed]
- Abbas, A.A.; Young, J.C.; Clarke, E.L.; Diamond, J.M.; Imai, I.; Haas, A.R.; Cantu, E.; Lederer, D.J.; Meyer, K.; Milewski, R.K.; et al. Bidirectional transfer of anelloviridae lineages between graft and host during lung transplantation. Am. J. Transplant. 2019, 19, 1086–1097. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Zhu, Y.; Ren, L.; Xu, B.; Liu, C.; Xie, Z.; Shen, K. Characterization of the nasopharyngeal viral microbiome from children with community-acquired pneumonia but negative for Luminex xTAG respiratory viral panel assay detection. J. Med. Virol. 2017, 89, 2098–2107. [Google Scholar] [CrossRef] [PubMed]
- Willner, D.; Furlan, M.; Haynes, M.; Schmieder, R.; Angly, F.E.; Silva, J.; Tammadoni, S.; Nosrat, B.; Conrad, D.; Rohwer, F. Metagenomic analysis of respiratory tract DNA viral communities in cystic fibrosis and non-cystic fibrosis individuals. PLoS ONE 2009, 4, e7370. [Google Scholar] [CrossRef] [PubMed]
- Rose, R.; Constantinides, B.; Tapinos, A.; Robertson, D.L.; Prosperi, M. Challenges in the analysis of viral metagenomes. Virus Evol. 2016, 2, vew022. [Google Scholar] [CrossRef]
- Kieft, K.; Anantharaman, K. Virus genomics: What is being overlooked? Curr. Opin. Virol. 2022, 53, 101200. [Google Scholar] [CrossRef] [PubMed]
- Camarillo-Guerrero, L.F.; Almeida, A.; Rangel-Pineros, G.; Finn, R.D.; Lawley, T.D. Massive expansion of human gut bacteriophage diversity. Cell 2021, 184, 1098–1109.e9. [Google Scholar] [CrossRef]
- Modha, S.; Robertson, D.L.; Hughes, J.; Orton, R.J. Quantifying and Cataloguing Unknown Sequences within Human Microbiomes. mSystems 2022, 7, e0146821. [Google Scholar] [CrossRef]
- Elbehery, A.H.A.; Feichtmayer, J.; Singh, D.; Griebler, C.; Deng, L. The human virome protein cluster database (HVPC): A human viral metagenomic database for diversity and function annotation. Front. Microbiol. 2018, 9, 1110. [Google Scholar] [CrossRef] [PubMed]
- Goolam Mahomed, T.; Peters, R.P.H.; Allam, M.; Ismail, A.; Mtshali, S.; Goolam Mahomed, A.; Ueckermann, V.; Kock, M.M.; Ehlers, M.M. Lung microbiome of stable and exacerbated COPD patients in Tshwane, South Africa. Sci. Rep. 2021, 11, 19758. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhu, N.; Li, Y.; Lu, R.; Wang, H.; Liu, G.; Zou, X.; Xie, Z.; Tan, W. Metagenomic analysis of viral genetic diversity in respiratory samples from children with severe acute respiratory infection in China. Clin. Microbiol. Infect. 2016, 22, 458.e1–458.e9. [Google Scholar] [CrossRef] [PubMed]
- Einarsson, G.G.; Vanaudenaerde, B.M.; Spence, C.D.; Lee, A.J.; Boon, M.; Verleden, G.M.; Elborn, J.S.; Dupont, L.J.; Van Raemdonck, D.; Gilpin, D.F.; et al. Microbial Community Composition in Explanted Cystic Fibrosis and Control Donor Lungs. Front. Cell Infect. Microbiol. 2022, 11, 764585. [Google Scholar] [CrossRef]
- Dinsdale, E.A.; Edwards, R.A.; Hall, D.; Angly, F.; Breitbart, M.; Brulc, J.M.; Furlan, M.; Desnues, C.; Haynes, M.; Li, L.; et al. Functional metagenomic profiling of nine biomes. Nature 2008, 452, 629–632. [Google Scholar] [CrossRef]
- Andrews, S.; Krueger, F.; Segonds-Pichon, A.; Biggins, F.; Fastqc, W.S. A Quality Control Tool for High Throughput Sequence Data; Babraham Bioinformatics, Babraham Institute: Cambridge, UK, 2015; Available online: http://www.bioinformatics.babraham.ac.uk/projects/fastqc/ (accessed on 23 September 2022).
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef]
- Li, H. Minimap2: Pairwise alignment for nucleotide sequences. Bioinformatics 2018, 34, 3094–3100. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Handsaker, B.; Wysoker, A.; Fennel, T.; Ruan, J.; Homer, N.; Marth, G.; Abecasis, G.; Durbin, R.; 1000 Genome Project Data Processing Subgroup. The sequence alignment/map format and SAMtools. Bioinformatics 2009, 25, 2078–2079. [Google Scholar] [CrossRef] [PubMed]
- Bushnel, I.B. BBMAP: Short-Read Aligner, and Other Bioinformatics Tools. 2016. Available online: http://sourceforge.net/projects/bbmap/ (accessed on 23 September 2022).
- Prjibelski, A.; Antipov, D.; Meleshko, D.; Lapidus, A.; Korobeynikov, A. Using SPAdes De Novo assembler. Curr. Protoc. Bioinforma 2020, 70, e102. [Google Scholar] [CrossRef]
- Mirdita, M.; Steinegger, M.; Breitwieser, F.; Soding, J.; Levy Karin, E. Fast and sensitive taxonomic assignment to metagenomic contigs. Bioinformatics 2021, 37, 3029–3031. [Google Scholar] [CrossRef]
- Guo, J.; Bolduc, B.; Zayed, A.A.; Varsani, A.; Dominguez-Huerta, G.; Delmont, T.O.; Pratama, A.A.; Gazitua, M.C.; Vik, D.; Sullivan, M.B.; et al. VirSorter2: A multi-classifier, expert-guided approach to detect diverse DNA and RNA viruses. Microbiome 2021, 9, 37. [Google Scholar] [CrossRef] [PubMed]
- Nayfach, S.; Camargo, A.P.; Schulz, F.; Eloe-Fadrosh, E.; Roux, S.; Kyrpides, N.C. CheckV assesses the quality and completeness of metagenome-assembled viral genomes. Nat. Biotechnol. 2021, 39, 578–585. [Google Scholar] [CrossRef] [PubMed]
- Agudelo-Romero, P.; Sharma, A.; Conradie, T.; Kicic, A.; Caparros-Martin, J.A.; Stick, S.M. Database for EVEREST (Pipeline for Viral Assembly and chaRactEriSaTion) (0.03) [Data set]. Zenodo. Available online: https://zenodo.org/records/8404860 (accessed on 23 September 2022).
- Rohart, F.; Gautier, B.; Singh, A.; Lê Cao, K.A. mixOmics: An R package for ‘omics feature selection and multiple data integration. PLoS Comput. Biol. 2017, 13, e1005752. [Google Scholar] [CrossRef] [PubMed]
- Dmitrijeva, M.; Kahlert, C.R.; Feigelman, R.; Kleiner, R.L.; Nolte, O.; Albrich, W.C.; Baty, F.; von Mering, C. Strain-Resolved Dynamics of the Lung Microbiome in Patients with Cystic Fibrosis. mBio 2021, 12, e02863. [Google Scholar] [CrossRef] [PubMed]
- Kay, G.L.; Sergeant, M.J.; Zhou, Z.; Chan, J.Z.M.; Millard, A.; Quick, J.; Szikossy, I.; Pap, I.; Spigelman, M.; Loman, N.J.; et al. Eighteenth-century genomes show that mixed infections were common at time of peak tuberculosis in Europe. Nat. Commun. 2015, 6, 6717. [Google Scholar] [CrossRef] [PubMed]
- Feigelman, R.; Kahlert, C.R.; Baty, F.; Rassouli, F.; Kleiner, R.L.; Kohler, P.; Brutsche, M.H.; von Mering, C. Sputum DNA sequencing in cystic fibrosis: Non-invasive access to the lung microbiome and to pathogen details. Microbiome 2017, 5, 20. [Google Scholar] [CrossRef] [PubMed]
- Young, J.C.; Chehoud, C.; Bittinger, K.; Bailey, A.; Diamond, J.M.; Cantu, E.; Haas, A.R.; Abbas, A.; Frye, L.; Christie, J.D.; et al. Viral metagenomics reveal blooms of anelloviruses in the respiratory tract of lung transplant recipients. Am. J. Transplant. 2015, 15, 200–209. [Google Scholar] [CrossRef]
- Clarke, E.L.; Lauder, A.P.; Hofstaedter, C.E.; Hwang, Y.; Fitzgerald, A.S.; Imai, I.; Biernat, W.; Rekawiecki, B.; Majewska, H.; Dubaniewicz, A.; et al. Microbial Lineages in Sarcoidosis. A Metagenomic Analysis Tailored for Low–Microbial Content Samples. Am. J. Respir. Crit. Care Med. 2018, 197, 225–234. [Google Scholar] [CrossRef] [PubMed]
- Mayday, M.Y.; Khan, L.M.; Chow, E.D.; Zinter, M.S.; Derisi, J.L. Miniaturization and optimization of 384-well compatible RNA sequencing library preparation. PLoS ONE 2019, 14, e0206194. [Google Scholar] [CrossRef]
- Bal, A.; Pichon, M.; Picard, C.; Casalegno, J.S.; Valette, M.; Schuffenecker, I.; Billard, L.; Vallet, S.; Vilchez, G.; Cheynet, V.; et al. Quality control implementation for universal characterization of DNA and RNA viruses in clinical respiratory samples using single metagenomic next-generation sequencing workflow. BMC Infect. Dis. 2018, 18, 537. [Google Scholar] [CrossRef]
- Hoque, M.N.; Rahman, M.S.; Ahmed, R.; Hossain, M.S.; Islam, M.S.; Islam, T.; Hossain, M.A.; Siddiki, A.Z. Diversity and genomic determinants of the microbiomes associated with COVID-19 and non-COVID respiratory diseases. Gene Rep. 2021, 23, 101200. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Liu, W.; Zhang, Q.; Xu, K.; Ye, G.; Wu, W.; Sun, Z.; Liu, F.; Wu, K.; Zhong, B.; et al. RNA based mNGS approach identifies a novel human coronavirus from two individual pneumonia cases in 2019 Wuhan outbreak. Emerg. Microbes Infect. 2020, 9, 313–319. [Google Scholar] [CrossRef] [PubMed]
- Manning, J.E.; Bohl, J.A.; Lay, S.; Chea, S.; Sovann, L.; Sengdoeurn, Y.; Heng, S.; Vuthy, C.; Kalantar, K.; Ahyong, V.; et al. Rapid metagenomic characterization of a case of imported COVID-19 in Cambodia. bioRxiv 2020, 5, 2020.03.02.968818. [Google Scholar]
- Mitchell, A.B.; Li, C.X.; Oliver, B.G.G.; Holmes, E.C.; Glanville, A.R. High-resolution Metatranscriptomic Characterization of the Pulmonary RNA Virome After Lung Transplantation. Transplantation 2021, 105, 2546–2553. [Google Scholar] [CrossRef] [PubMed]
- Cai, H.Z.; Zhang, H.; Yang, J.; Zeng, J.; Wang, H. Preliminary assessment of viral metagenome from cancer tissue and blood from patients with lung adenocarcinoma. J. Med. Virol. 2021, 93, 5126–5133. [Google Scholar] [CrossRef] [PubMed]
- Mao, Q.; Sun, G.; Qian, Y.; Qian, Y.; Li, W.; Wang, X.; Shen, Q.; Yang, S.; Zhou, C.; Wang, H.; et al. Viral metagenomics of pharyngeal secretions from children with acute respiratory diseases with unknown etiology revealed diverse viruses. Virus Res. 2022, 321, 198912. [Google Scholar] [CrossRef] [PubMed]
- Chan, J.Z.M.; Sergeant, M.J.; Lee, O.Y.C.; Minnikin, D.E.; Besra, G.S.; Pap, I.; Spigelman, M.; Donoghue, H.; Pallen, M.J. Metagenomic Analysis of Tuberculosis in a Mummy. N. Engl. J. Med. 2013, 369, 289–290. [Google Scholar] [CrossRef]
- Thi Kha Tu, N.; Thi Thu Hong, N.; Thi Han Ny, N.; My Phuc, T.; Thi Thanh Tam, P.; Doorn, H.R.V.; Dang Trung Nghia, H.; Thao Huong, D.; An Han, D.; Thi Thu Ha, L.; et al. The Virome of Acute Respiratory Diseases in Individuals at Risk of Zoonotic Infections. Viruses 2020, 12, 960. [Google Scholar] [CrossRef] [PubMed]
- Baltimore, D. Expression of animal virus genomes. Bacteriol. Rev. 1971, 35, 235. [Google Scholar] [CrossRef]
- Dutilh, B.E.; Cassman, N.; McNair, K.; Sanchez, S.E.; Silva, G.G.Z.; Boling, L.; Barr, J.J.; Speth, D.R.; Seguritan, V.; Aziz, R.K.; et al. A highly abundant bacteriophage discovered in the unknown sequences of human faecal metagenomes. Nat. Commun. 2014, 5, 4498. [Google Scholar] [CrossRef]
- Cao, Z.; Sugimura, N.; Burgermeister, E.; Ebert, M.P.; Zuo, T.; Lan, P. The gut virome: A new microbiome component in health and disease. EBioMedicine 2022, 81, 104113. [Google Scholar] [CrossRef] [PubMed]
- Gregory, A.C.; Sullivan, M.B.; Segal, L.N.; Keller, B.C. Smoking is associated with quantifiable differences in the human lung DNA virome and metabolome. Respir. Res. 2018, 19, 174. [Google Scholar] [CrossRef]
- Lee, A.S.; Lee, J.S.; He, Z.; Ryu, J.H. Reflux-Aspiration in Chronic Lung Disease. Ann. Am. Thorac. Soc. 2020, 17, 155–164. [Google Scholar] [CrossRef] [PubMed]
- Parras-Moltó, M.; Rodríguez-Galet, A.; Suárez-Rodríguez, P.; López-Bueno, A. Evaluation of bias induced by viral enrichment and random amplification protocols in metagenomic surveys of saliva DNA viruses. Microbiome 2018, 6, 119. [Google Scholar] [CrossRef] [PubMed]
- Man, W.H.; De Steenhuijsen Piters, W.A.A.; Bogaert, D. The microbiota of the respiratory tract: Gatekeeper to respiratory health. Nat. Rev. Microbiol. 2017, 15, 259–270. [Google Scholar] [CrossRef]
- Pereira-Marques, J.; Hout, A.; Ferreira, R.M.; Weber, M.; Pinto-Ribeiro, I.; Van Doorn, L.J.; Knetsch, C.W.; Figueiredo, C. Impact of host DNA and sequencing depth on the taxonomic resolution of whole metagenome sequencing for microbiome analysis. Front. Microbiol. 2019, 10, 1277. [Google Scholar] [CrossRef]
- Kumpitsch, C.; Koskinen, K.; Schöpf, V.; Moissl-Eichinger, C. The microbiome of the upper respiratory tract in health and disease. BMC Biol. 2019, 17, 87. [Google Scholar] [CrossRef] [PubMed]
- Takayama, I.; Nguyen, B.G.; Dao, C.X.; Pham, T.T.; Dang, T.Q.; Truong, P.T.; Do, T.V.; Pham, T.T.P.; Fujisaki, S.; Odagiri, T.; et al. Next-generation sequencing analysis of the within-host genetic diversity of influenza A(H1N1)pdm09 viruses in the upper and lower respiratory tracts of patients with severe influenza. mSphere 2021, 6, e01043. [Google Scholar] [CrossRef] [PubMed]
- de Castilhos, J.; Zamir, E.; Hippchen, T.; Rohrbach, R.; Schmidt, S.; Hengler, S.; Schumacher, H.; Neubauer, M.; Kunz, S.; Müller-Esch, T.; et al. COVID-19 severity and complications associated with low diversity, dysbiosis and predictive metagenome features of the oropharyngeal microbiome. Res. Sq. 2021. [Google Scholar] [CrossRef]
- Saito, T.; Miyagawa, K.; Chen, S.Y.; Tamosiuniene, R.; Wang, L.; Sharpe, O.; Samayoa, E.; Harada, D.; Moonen, J.R.A.J.; Cao, A.; et al. Upregulation of human endogenous retrovirus-K is linked to immunity and inflammation in pulmonary arterial hypertension. Circulation 2017, 136, 1920–1935. [Google Scholar] [CrossRef]
- Bacci, G.; Mengoni, A.; Fiscarelli, E.; Segata, N.; Taccetti, G.; Dolce, D.; Paganin, P.; Morelli, P.; Tuccio, V.; De Alessandri, A.; et al. A different microbiome gene repertoire in the airways of Cystic Fibrosis patients with severe lung disease. Int. J. Mol. Sci. 2017, 18, 1654. [Google Scholar] [CrossRef] [PubMed]
- Haswell, L.E.; Baxter, A.; Banerjee, A.; Verrastro, I.; Mushonganono, J.; Adamson, J.; Thorne, D.; Gaça, M.; Minet, E. Reduced biological effect of e-cigarette aerosol compared to cigarette smoke evaluated in vitro using normalized nicotine dose and RNA-seq-based toxicogenomics. Sci. Rep. 2017, 7, 888. [Google Scholar] [CrossRef] [PubMed]
- Abbas, A.A.; Diamond, J.M.; Chehoud, C.; Chang, B.; Kotzin, J.J.; Young, J.C.; Imai, I.; Haas, A.R.; Cantu, E.; Lederer, D.J.; et al. The perioperative lung transplant virome: Torque Teno viruses are elevated in donor lungs and show divergent dynamics in primary graft dysfunction. Am. J. Transplant. 2017, 17, 1313–1324. [Google Scholar] [CrossRef]
- Jaffe, D.; Muenzer, J.; Storch, G.; Weinstock, G.; Sodergren, E.; Wylie, K.; Arens, M.; Buller, R. The human virome in children and its relationship to febrile illness. Nat. Preced. 2010. [Google Scholar] [CrossRef]
- Bacci, G.; Taccetti, G.; Dolce, D.; Armanini, F.; Segata, N.; Di Cesare, F.; Lucidi, V.; Fiscarelli, E.; Morelli, P.; Casciaro, R.; et al. Untargeted metagenomic investigation of the airway microbiome of Cystic Fibrosis patients with moderate-severe lung disease. Microorganisms 2020, 8, 1003. [Google Scholar] [CrossRef]
- Altan, E.; Dib, J.C.; Gulloso, A.R.; Juandigua, D.E.; Deng, X.; Bruhn, R.; Hildebrand, K.; Freiden, P.; Yamamoto, J.; Schultz-Cherry, S.; et al. Effect of geographic isolation on the nasal virome of indigenous children. J. Virol. 2019, 93, e00681-19. [Google Scholar] [CrossRef] [PubMed]
- Tsitsiklis, A.; Osborne, C.M.; Kamm, J.; Williamson, K.; Kalantar, K.; Dudas, G.; Caldera, S.; Lyden, A.; Tan, M.; Neff, N.; et al. Lower respiratory tract infections in children requiring mechanical ventilation: A multicentre prospective surveillance study incorporating airway metagenomics. Lancet Microbe. 2022, 3, e284–e293. [Google Scholar] [CrossRef]
- Van Rijn, A.L.; Van Boheemen, S.; Sidorov, I.; Carbo, E.C.; Pappas, N.; Mei, H.; Feltkamp, M.; Aanerud, M.; Bakke, P.; Claas, E.C.J.; et al. The respiratory virome and exacerbations in patients with chronic obstructive pulmonary disease. PLoS ONE 2019, 14, e0223952. [Google Scholar] [CrossRef]
- Babiker, A.; Bradley, H.L.; Stittleburg, V.D.; Ingersoll, J.M.; Key, A.; Kraft, C.S.; Waggoner, J.J.; Piantadosi, A. Metagenomic sequencing to detect respiratory viruses in persons under investigation for COVID-19. J. Clin. Microbiol. 2020, 59, e02142-20. [Google Scholar] [CrossRef] [PubMed]
- Pratas, D.; Toppinen, M.; Pyoria, L.; Hedman, K.; Sajantila, A.; Perdomo, M.F. A hybrid pipeline for reconstruction and analysis of viral genomes at multi-organ level. Gigascience 2020, 9, giaa086. [Google Scholar] [CrossRef] [PubMed]
- Rajagopala, S.V.; Bakhoum, N.G.; Pakala, S.B.; Shilts, M.H.; Rosas-Salazar, C.; Mai, A.; Boone, H.H.; McHenry, R.; Yooseph, S.; Halasa, N.; et al. Metatranscriptomics to characterize respiratory virome, microbiome, and host response directly from clinical samples. Cell Rep. Methods 2021, 1, 100091. [Google Scholar] [CrossRef] [PubMed]
- Welch, N.L.; Zhu, M.; Hua, C.; Weller, J.; Mirhashemi, M.E.; Nguyen, T.G.; Mantena, S.; Bauer, M.R.; Shaw, B.M.; Ackerman, C.M.; et al. Multiplexed CRISPR-based microfluidic platform for clinical testing of respiratory viruses and identification of SARS-CoV-2 variants. Nat. Med. 2022, 28, 1083–1094. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Li, H.; Chen, H.; Li, Z.; Ding, W.; Wang, J.; Yin, Y.; Jin, L.; Sun, S.; Jing, C.; et al. Metagenomic next-generation sequencing to identify pathogens and cancer in lung biopsy tissue. EBioMedicine 2021, 73, 103639. [Google Scholar] [CrossRef] [PubMed]
- Segura-Wang, M.; Görzer, I.; Jaksch, P.; Puchhammer-Stöckl, E. Temporal dynamics of the lung and plasma viromes in lung transplant recipients. PLoS ONE 2018, 13, e0200428. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Nuñez, M.; Gallego, M.; Monton, C.; Capilla, S.; Millares, L.; Pomares, X.; Espasa, M.; Ferrari, R.; Moya, A.; Monsó, E.; et al. The respiratory virome in chronic obstructive pulmonary disease. Future Virol. 2018, 13, 457–466. [Google Scholar] [CrossRef]
- Xiao, Y.L.; Kash, J.C.; Beres, S.B.; Sheng, Z.M.; Musser, J.M.; Taubenberger, J.K. High-throughput RNA sequencing of a formalin-fixed, paraffin-embedded autopsy lung tissue sample from the 1918 influenza pandemic. J. Pathol. 2013, 229, 535–545. [Google Scholar] [CrossRef] [PubMed]
- Hilton, S.K.; Castro-Nallar, E.; Pérez-Losada, M.; Toma, I.; McCaffrey, T.A.; Hoffman, E.P.; Siegel, M.O.; Simon, G.L.; Johnson, W.E.; Crandall, K.A. Metataxonomic and metagenomic approaches vs. culture-based techniques for clinical pathology. Front. Microbiol. 2016, 7, 484. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.W.; Kuan, C.S.; Wu, L.S.H.; Weng, J.T.Y. Metagenome and metatranscriptome profiling of moderate and severe COPD sputum in Taiwanese Han males. PLoS ONE 2016, 11, e0159066. [Google Scholar] [CrossRef] [PubMed]
- Güemes, A.G.C.; Lim, Y.W.; Quinn, R.A.; Conrad, D.J.; Benler, S.; Maughan, H.; Edwards, R.; Brettin, T.; Cantú, V.A.; Cuevas, D.; et al. Cystic Fibrosis rapid response: Translating multi-omics data into clinically relevant information. mBio 2019, 10, e00431-19. [Google Scholar] [CrossRef]
- Sabin, S.; Herbig, A.; Vågene, Å.J.; Ahlström, T.; Bozovic, G.; Arcini, C.; Kühnert, D.; Bos, K.I. A seventeenth-century Mycobacterium tuberculosis genome supports a Neolithic emergence of the Mycobacterium tuberculosis complex. Genome Biol. 2020, 21, 201. [Google Scholar] [CrossRef]
- Lim, Y.W.; Schmieder, R.; Haynes, M.; Willner, D.; Furlan, M.; Youle, M.; Abbott, K.; Edwards, R.; Evangelista, J.; Conrad, D.; et al. Metagenomics and metatranscriptomics: Windows on CF-associated viral and microbial communities. J. Cyst. Fibros. 2013, 12, 154–164. [Google Scholar] [CrossRef] [PubMed]
- Mokili, J.L.; Dutilh, B.E.; Lim, Y.W.; Schneider, B.S.; Taylor, T.; Haynes, M.R.; Metzgar, D.; Myers, C.A.; Blair, P.J.; Nosrat, B.; et al. Identification of a novel human papillomavirus by metagenomic analysis of samples from patients with febrile respiratory illness. PLoS ONE 2013, 8, e58404. [Google Scholar] [CrossRef] [PubMed]
Bioproject | Clinical Group | Library Preparation | Sample Location | Total FASTQ Files | Successful FASTQ Files |
---|---|---|---|---|---|
PRJEB32062 [37] | CF | DNA | Sputum | 25 | 18 |
PRJEB7454 [38] | TB | DNA | Mummified lung tissue | 9 | 6 |
PRJNA316588 [39] | CF, COPD, Healthy smokers | DNA | Sputum | 18 | 11 |
PRJNA369654 [40] | LTR, HIV | RNA and DNA | BAL | 22 | 14 |
PRJNA392272 [41] | Sarcoidosis | RNA and DNA | BAL | 98 | 25 |
PRJNA419524 [14] | LTR | RNA and DNA | BAL | 63 | 40 |
PRJNA493096 [42] | Respiratory failure | RNA | BAL | 4 | 2 |
PRJNA494633 [43] | ARI | RNA and DNA | NPS, NPA, Sputum | 39 | 32 |
PRJNA573045 [44] | URTI | RNA | NPS | 4 | 4 |
PRJNA601736 [45] | COVID-19 | RNA | BAL | 2 | 2 |
PRJNA623895 [46] | COVID-19 | RNA | NPS | 1 | 1 |
PRJNA629087 [47] | LTR | RNA | BAL | 21 | 1 |
PRJNA671740 [48] | Lung adenocarcinoma | RNA and DNA | LT | 5 | 1 |
PRJNA779483 [49] | ARI | RNA and DNA | Throat swabs | 37 | 33 |
PRJNA189842 [50] | TB | DNA | Mummified lung tissue | 1 | 1 |
PRJNA639353 [51] | Healthy | RNA | NTS | 91 | 3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Conradie, T.; Caparros-Martin, J.A.; Egan, S.; Kicic, A.; Koks, S.; Stick, S.M.; Agudelo-Romero, P. Exploring the Complexity of the Human Respiratory Virome through an In Silico Analysis of Shotgun Metagenomic Data Retrieved from Public Repositories. Viruses 2024, 16, 953. https://doi.org/10.3390/v16060953
Conradie T, Caparros-Martin JA, Egan S, Kicic A, Koks S, Stick SM, Agudelo-Romero P. Exploring the Complexity of the Human Respiratory Virome through an In Silico Analysis of Shotgun Metagenomic Data Retrieved from Public Repositories. Viruses. 2024; 16(6):953. https://doi.org/10.3390/v16060953
Chicago/Turabian StyleConradie, Talya, Jose A. Caparros-Martin, Siobhon Egan, Anthony Kicic, Sulev Koks, Stephen M. Stick, and Patricia Agudelo-Romero. 2024. "Exploring the Complexity of the Human Respiratory Virome through an In Silico Analysis of Shotgun Metagenomic Data Retrieved from Public Repositories" Viruses 16, no. 6: 953. https://doi.org/10.3390/v16060953