Inverse Design for Silicon Photonics: From Iterative Optimization Algorithms to Deep Neural Networks
Abstract
:1. Introduction
2. Inverse Design of Silicon Photonics with Iterative Optimization Algorithms
2.1. Inverse Design Schemes for Silicon Photonics
2.2. Optimization of Empirical Structures
2.3. Optimization of QR-Code like Structures
2.4. Optimization of Irregular Structures
2.5. Comparison of Iterative Optimization Algorithms for Silicon Photonics Design
Device | Structure | Algorithms | Footprint (μm2) | DOF | Response (dB) | Comments |
---|---|---|---|---|---|---|
PR [22] | Taper | PSO | 15.3 × 1.5 | 29 | S: 0.2 E: N/A | Easy to fabricate Good performance Low DOF Not compact |
PBS [24] | DC | PSO | 5 × 1.5 | 10 | S: 0.1, E: 0.5 | |
Convertor [79] | Taper | PSO | 18.6 × 2.8 | 12 | S: 0.06, E: | |
Crossing [32] | SWG | GA | 12.5 × 12.5 | 3 | S: 0.64, E: 1.6 | |
PR [44] | QR-code | GA | 4.2 × 0.96 | 280 | S: 0.7, E: 2.5 | High DOF Compact Not-hard to fabricate Not very high performance |
PBS [40] | QR-code | DBS | 2.4 × 2.4 | 400 | S: N/A E: 0.9 | |
Bend [37] | QR-code | DBS | 3 × 3 | 900 | S: 0.9, E: 1.5 | |
Diodes [43] | QR-code | DBS | 3 × 3 | 900 | S: 1.5, E: 2.1 | |
MDM [34] | QR-code | DBS | 2.4 × 3 | 500 | S: 0.91, E:1 | |
PS [38] | QR-code | DBS | 2.72 × 2.72 | 400 | S: 0.4, E: 0.7 | |
Convertor [39] | QR-code | DBS | 4 × 1.6 | 320 | S: 1.4, E: 2 | |
PR [33] | QR-code | DBS | 5 × 1.2 | 600 | S: 3, E: 4.3 | |
PBS [54] | Irregular | TO | 1.4 × 1.4 | 1225 | S: 0.6, E:0.82 | Very high DOF Ultra-compact Very high performance Hard to fabricate |
MDM [48] | Irregular | TO | 2.6 × 4.22 | 11,429 | S: 1, E:1.2 | |
Matrix [80] | Irregular | TO | 4 × 4 | 6400 | MSE: 0.0001 | |
Convertor [51] | Irregular | TO | 4 × 1.5 | 4382 | S: 0.08 | |
WDM [56] | Irregular | OF | 2.8 × 2.8 | N/A | S: 2, E: 2.4 |
3. Deep Neural Networks Assisted Nanophotonics Design for Silicon Platform
3.1. Training Discriminative Neural Networks as Forward Models
3.1.1. Multi-Layer Perceptron
3.1.2. Convolutional Neural Network
3.2. Training Generative Deep Neural Networks as Inverse Models
3.2.1. Conditional Variational Autoencoder
3.2.2. Conditional Generative Adversarial Network
3.2.3. Unsupervised Generative Neural Network
3.3. Comparision of DNNs for the Design of Nanophotonics on Silicon Platform
4. Prospective
4.1. Challenges of Existing Optimization Methodologies
4.1.1. Simulation Time Budget
4.1.2. Local Optimum and Minimal Features
4.1.3. Data Sample Issue
4.2. Application of Inverse Design in Optical Neural Networks
4.2.1. Layered ONNs
4.2.2. “Black-Box” ONNs
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jalali, B.; Fathpour, S. Silicon Photonics. J. Lightwave Technol. 2006, 24, 4600–4615. [Google Scholar] [CrossRef]
- Thomson, D.; Zilkie, A.; Bowers, J.E.; Komljenovic, T.; Reed, G.T.; Vivien, L.; Marris-Morini, D.; Cassan, E.; Virot, L.; Fédéli, J.-M.; et al. Roadmap on silicon photonics. J. Opt. 2016, 18. [Google Scholar] [CrossRef]
- Ferreira de Lima, T.; Shastri, B.J.; Tait, A.N.; Nahmias, M.A.; Prucnal, P.R. Progress in neuromorphic photonics. Nanophotonics 2017, 6, 577–599. [Google Scholar] [CrossRef]
- Hu, T.; Dong, B.; Luo, X.; Liow, T.-Y.; Song, J.; Lee, C.; Lo, G.-Q. Silicon photonic platforms for mid-infrared applications [Invited]. Photonics Res. 2017, 5. [Google Scholar] [CrossRef] [Green Version]
- Xie, W.; Komljenovic, T.; Huang, J.; Tran, M.; Davenport, M.; Torres, A.; Pintus, P.; Bowers, J. Heterogeneous silicon photonics sensing for autonomous cars. Opt. Express 2019, 27, 3642–3663. [Google Scholar] [CrossRef]
- Jiang, J.; Chen, M.; Fan, J.A. Deep neural networks for the evaluation and design of photonic devices. Nat. Rev. Mater. 2020. [Google Scholar] [CrossRef]
- Molesky, S.; Lin, Z.; Piggott, A.Y.; Jin, W.; Vucković, J.; Rodriguez, A.W. Inverse design in nanophotonics. Nat. Photonics 2018, 12, 659–670. [Google Scholar] [CrossRef] [Green Version]
- So, S.; Badloe, T.; Noh, J.; Bravo-Abad, J.; Rho, J. Deep learning enabled inverse design in nanophotonics. Nanophotonics 2020, 9, 1041–1057. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Meng, F.; Chen, Y.; Li, Y.f.; Huang, X. Topology Optimization of Photonic and Phononic Crystals and Metamaterials: A Review. Adv. Theory Simul. 2019, 2. [Google Scholar] [CrossRef]
- Elsawy, M.M.R.; Lanteri, S.; Duvigneau, R.; Fan, J.A.; Genevet, P. Numerical Optimization Methods for Metasurfaces. Laser Photonics Rev. 2020, 14. [Google Scholar] [CrossRef]
- Hegde, R.S. Deep learning: A new tool for photonic nanostructure design. Nanoscale Adv. 2020, 2, 1007–1023. [Google Scholar] [CrossRef]
- Yao, K.; Unni, R.; Zheng, Y. Intelligent nanophotonics: Merging photonics and artificial intelligence at the nanoscale. Nanophotonics 2019, 8, 339–366. [Google Scholar] [CrossRef]
- Paz, A.; Moran, S. Non deterministic polynomial optimization problems and their approximations. Theor. Comput. Sci. 1981, 15, 251–277. [Google Scholar] [CrossRef] [Green Version]
- Ma, L.; Li, J.; Liu, Z.; Zhang, Y.; Zhang, N.; Zheng, S.; Lu, C. Intelligent algorithms: New avenues for designing nanophotonic devices. Chin. Opt. Lett. 2021, 19, 011301. [Google Scholar]
- Jensen, J.S.; Sigmund, O. Topology optimization for nano-photonics. Laser Photonics Rev. 2011, 5, 308–321. [Google Scholar] [CrossRef]
- Tu, X.; Xie, W.; Chen, Z.; Ge, M.-F.; Huang, T.; Song, C.; Fu, H.Y. Analysis of Deep Neural Network Models for Inverse Design of Silicon Photonic Grating Coupler. J. Lightwave Technol. 2021. [Google Scholar] [CrossRef]
- Otto, A.; Marais, N.; Lezar, E.; Davidson, D. Using the FEniCS package for FEM solutions in electromagnetics. IEEE Antennas Propag. Mag. 2012, 54, 206–223. [Google Scholar] [CrossRef]
- Gedney, S.D. Introduction to the finite-difference time-domain (FDTD) method for electromagnetics. Synth. Lect. Comput. Electromagn. 2011, 6, 1–250. [Google Scholar] [CrossRef]
- Bienstman, P. Rigorous and efficient modelling of wavelenght scale photonic components. Ph.D. Thesis, Ghent University, Ghent, Belgium, 2001. [Google Scholar]
- Moharam, M.; Grann, E.B.; Pommet, D.A.; Gaylord, T. Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings. JOSA a 1995, 12, 1068–1076. [Google Scholar] [CrossRef]
- Luo, L.W.; Ophir, N.; Chen, C.P.; Gabrielli, L.H.; Poitras, C.B.; Bergmen, K.; Lipson, M. WDM-compatible mode-division multiplexing on a silicon chip. Nat. Commun 2014, 5, 3069. [Google Scholar] [CrossRef] [Green Version]
- Guan, H.; Ma, Y.; Shi, R.; Novack, A.; Tao, J.; Fang, Q.; Lim, A.E.; Lo, G.Q.; Baehr-Jones, T.; Hochberg, M. Ultracompact silicon-on-insulator polarization rotator for polarization-diversified circuits. Opt. Lett. 2014, 39, 4703–4706. [Google Scholar] [CrossRef]
- Wang, Q.; Ho, S.T. Ultracompact Multimode Interference Coupler Designed by Parallel Particle Swarm Optimization With Parallel Finite-Difference Time-Domain. J. Lightwave Technol. 2010, 28, 1298–1304. [Google Scholar] [CrossRef]
- Chen, W.; Zhang, B.; Wang, P.; Dai, S.; Liang, W.; Li, H.; Fu, Q.; Li, J.; Li, Y.; Dai, T.; et al. Ultra-compact and low-loss silicon polarization beam splitter using a particle-swarm-optimized counter-tapered coupler. Opt. Express 2020, 28, 30701–30709. [Google Scholar] [CrossRef]
- Mao, S.; Cheng, L.; Mu, X.; Wu, S.; Fu, H. Ultra-Broadband Compact Polarization Beam Splitter Based on Asymmetric Etched Directional Coupler. In Proceedings of the Conference on Lasers and Electro-Optics/Pacific Rim, Sydney, Australia, 3 August 2020; p. C12H_11. [Google Scholar]
- Zhu, L.; Sun, J. Silicon-based wavelength division multiplexer by exploiting mode conversion in asymmetric directional couplers. OSA Contin. 2018, 1. [Google Scholar] [CrossRef]
- Bogaerts, W.; De Heyn, P.; Van Vaerenbergh, T.; De Vos, K.; Kumar Selvaraja, S.; Claes, T.; Dumon, P.; Bienstman, P.; Van Thourhout, D.; Baets, R. Silicon microring resonators. Laser Photonics Rev. 2012, 6, 47–73. [Google Scholar] [CrossRef]
- Fu, P.-H.; Huang, T.-Y.; Fan, K.-W.; Huang, D.-W. Optimization for Ultrabroadband Polarization Beam Splitters Using a Genetic Algorithm. IEEE Photonics J. 2019, 11, 1–11. [Google Scholar] [CrossRef]
- Dai, D.; Bowers, J.E. Novel ultra-short and ultra-broadband polarization beam splitter based on a bent directional coupler. Opt. Express 2011, 19, 18614–18620. [Google Scholar] [CrossRef] [PubMed]
- AlTaha, M.W.; Jayatilleka, H.; Lu, Z.; Chung, J.F.; Celo, D.; Goodwill, D.; Bernier, E.; Mirabbasi, S.; Chrostowski, L.; Shekhar, S. Monitoring and automatic tuning and stabilization of a 2 × 2 MZI optical switch for large-scale WDM switch networks. Opt. Express 2019, 27, 24747–24764. [Google Scholar] [CrossRef] [PubMed]
- Mao, S.; Cheng, L.; Wu, S.; Mu, X.; Tu, X.; Li, Q.; Fu, H. Compact Five-mode De-multiplexer based on Grating Assisted Asymmetric Directional Couplers. In Proceedings of the Asia Communications and Photonics Conference, Beijing, China, 24–27 October 2020; p. M4A-128. [Google Scholar]
- Wu, S.; Mao, S.; Zhou, L.; Liu, L.; Chen, Y.; Mu, X.; Cheng, L.; Chen, Z.; Tu, X.; Fu, H.Y. A compact and polarization-insensitive silicon waveguide crossing based on subwavelength grating MMI couplers. Opt. Express 2020, 28, 27268–27276. [Google Scholar] [CrossRef]
- Majumder, A.; Shen, B.; Polson, R.; Menon, R. Ultra-compact polarization rotation in integrated silicon photonics using digital metamaterials. Opt. Express 2017, 25, 19721–19731. [Google Scholar] [CrossRef]
- Chang, W.; Lu, L.; Ren, X.; Li, D.; Pan, Z.; Cheng, M.; Liu, D.; Zhang, M. Ultra-compact mode (de) multiplexer based on subwavelength asymmetric Y-junction. Opt. Express 2018, 26, 8162–8170. [Google Scholar] [CrossRef]
- Xu, P.; Zhang, Y.; Zhang, S.; Chen, Y.; Yu, S. Scaling and cascading compact metamaterial photonic waveguide filter blocks. Opt. Lett. 2020, 45, 4072–4075. [Google Scholar] [CrossRef] [PubMed]
- Lu, C.; Liu, Z.; Wu, Y.; Xiao, Z.; Yu, D.; Zhang, H.; Wang, C.; Hu, X.; Liu, Y.C.; Liu, X.; et al. Nanophotonic Polarization Routers Based on an Intelligent Algorithm. Adv. Opt. Mater. 2020, 8. [Google Scholar] [CrossRef]
- Shen, B.; Polson, R.; Menon, R. Metamaterial-waveguide bends with effective bend radius < λ0/2. Opt. Lett. 2015, 40, 5750–5753. [Google Scholar] [CrossRef] [PubMed]
- Lu, L.; Liu, D.; Zhou, F.; Li, D.; Cheng, M.; Deng, L.; Fu, S.; Xia, J.; Zhang, M. Inverse-designed single-step-etched colorless 3 dB couplers based on RIE-lag-insensitive PhC-like subwavelength structures. Opt. Lett. 2016, 41, 5051–5054. [Google Scholar] [CrossRef]
- Jia, H.; Zhou, T.; Fu, X.; Ding, J.; Yang, L. Inverse-Design and Demonstration of Ultracompact Silicon Meta-Structure Mode Exchange Device. ACS Photonics 2018, 5, 1833–1838. [Google Scholar] [CrossRef]
- Shen, B.; Wang, P.; Polson, R.; Menon, R. An integrated-nanophotonics polarization beamsplitter with 2.4 × 2.4 μm2 footprint. Nat. Photonics 2015, 9, 378–382. [Google Scholar] [CrossRef]
- Xu, K.; Liu, L.; Wen, X.; Sun, W.; Zhang, N.; Yi, N.; Sun, S.; Xiao, S.; Song, Q. Integrated photonic power divider with arbitrary power ratios. Opt. Lett. 2017, 42, 855–858. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.; Liu, X.; Xiao, Z.; Lu, C.; Wang, H.-Q.; Wu, Y.; Hu, X.; Liu, Y.-C.; Zhang, H.; Zhang, X. Integrated nanophotonic wavelength router based on an intelligent algorithm. Optica 2019, 6. [Google Scholar] [CrossRef]
- Shen, B.; Polson, R.; Menon, R. Integrated digital metamaterials enables ultra-compact optical diodes. Opt. Express 2015, 23, 10847–10855. [Google Scholar] [CrossRef]
- Yu, Z.; Cui, H.; Sun, X. Genetic-algorithm-optimized wideband on-chip polarization rotator with an ultrasmall footprint. Opt. Lett. 2017, 42, 3093–3096. [Google Scholar] [CrossRef]
- Mak, J.C.; Sideris, C.; Jeong, J.; Hajimiri, A.; Poon, J.K. Binary particle swarm optimized 2 × 2 power splitters in a standard foundry silicon photonic platform. Opt. Lett. 2016, 41, 3868–3871. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frandsen, L.H.; Elesin, Y.; Sigmund, O.; Jensen, J.S.; Yvind, K. Wavelength selective 3D topology optimized photonic crystal devices. In Proceedings of the CLEO, San Jose, CA, USA, 9–14 June 2013; pp. 1–2. [Google Scholar]
- Sell, D.; Yang, J.; Wang, E.W.; Phan, T.; Doshay, S.; Fan, J.A. Ultra-High-Efficiency Anomalous Refraction with Dielectric Metasurfaces. ACS Photonics 2018, 5, 2402–2407. [Google Scholar] [CrossRef]
- Frellsen, L.F.; Ding, Y.; Sigmund, O.; Frandsen, L.H. Topology optimized mode multiplexing in silicon-on-insulator photonic wire waveguides. Opt. Express 2016, 24, 16866–16873. [Google Scholar] [CrossRef] [PubMed]
- Frandsen, L.H.; Elesin, Y.; Frellsen, L.F.; Mitrovic, M.; Ding, Y.; Sigmund, O.; Yvind, K. Topology optimized mode conversion in a photonic crystal waveguide fabricated in silicon-on-insulator material. Opt. Express 2014, 22, 8525–8532. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jensen, J.S.; Sigmund, O. Topology optimization of photonic crystal structures: A high-bandwidth low-loss T-junction waveguide. JOSA B 2005, 22, 1191–1198. [Google Scholar] [CrossRef]
- Lu, J.; Vučković, J. Objective-first design of high-efficiency, small-footprint couplers between arbitrary nanophotonic waveguide modes. Opt. Express 2012, 20, 7221–7236. [Google Scholar] [CrossRef]
- Su, L.; Vercruysse, D.; Skarda, J.; Sapra, N.V.; Petykiewicz, J.A.; Vučković, J. Nanophotonic inverse design with SPINS: Software architecture and practical considerations. Appl. Phys. Rev. 2020, 7. [Google Scholar] [CrossRef] [Green Version]
- Sell, D.; Yang, J.; Doshay, S.; Yang, R.; Fan, J.A. Large-Angle, Multifunctional Metagratings Based on Freeform Multimode Geometries. Nano Lett. 2017, 17, 3752–3757. [Google Scholar] [CrossRef]
- Adibi, A.; Lin, S.-Y.; Scherer, A.; Frandsen, L.H.; Sigmund, O. Inverse design engineering of all-silicon polarization beam splitters. In Proceedings of the Photonic and Phononic Properties of Engineered Nanostructures VI, San Francisco, CA, USA, 15–18 February 2016. [Google Scholar]
- Su, L.; Piggott, A.Y.; Sapra, N.V.; Petykiewicz, J.; Vučković, J. Inverse Design and Demonstration of a Compact on-Chip Narrowband Three-Channel Wavelength Demultiplexer. ACS Photonics 2017, 5, 301–305. [Google Scholar] [CrossRef] [Green Version]
- Piggott, A.Y.; Lu, J.; Lagoudakis, K.G.; Petykiewicz, J.; Babinec, T.M.; Vučković, J. Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer. Nat. Photonics 2015, 9, 374–377. [Google Scholar] [CrossRef] [Green Version]
- Borel, P.I.; Bilenberg, B.; Frandsen, L.H.; Nielsen, T.; Fage-Pedersen, J.; Lavrinenko, A.V.; Jensen, J.S.; Sigmund, O.; Kristensen, A. Imprinted silicon-based nanophotonics. Opt. Express 2007, 15, 1261–1266. [Google Scholar] [CrossRef] [PubMed]
- Elesin, Y.; Lazarov, B.S.; Jensen, J.S.; Sigmund, O. Design of robust and efficient photonic switches using topology optimization. Photonics Nanostruct.-Fundam. Appl. 2012, 10, 153–165. [Google Scholar] [CrossRef]
- Frandsen, L.H.; Borel, P.I.; Zhuang, Y.; Harpøth, A.; Thorhauge, M.; Kristensen, M.; Bogaerts, W.; Dumon, P.; Baets, R.; Wiaux, V. Ultralow-loss 3-dB photonic crystal waveguide splitter. Opt. Lett. 2004, 29, 1623–1625. [Google Scholar] [CrossRef] [Green Version]
- Zetie, K.; Adams, S.; Tocknell, R. How does a Mach-Zehnder interferometer work? Phys. Educ. 2000, 35, 46. [Google Scholar] [CrossRef] [Green Version]
- Liao, L.; Samara-Rubio, D.; Morse, M.; Liu, A.; Hodge, D.; Rubin, D.; Keil, U.D.; Franck, T. High speed silicon Mach-Zehnder modulator. Opt. Express 2005, 13, 3129–3135. [Google Scholar] [CrossRef] [Green Version]
- Cheben, P.; Halir, R.; Schmid, J.H.; Atwater, H.A.; Smith, D.R. Subwavelength integrated photonics. Nature 2018, 560, 565–572. [Google Scholar] [CrossRef] [PubMed]
- Cheng, L.; Mao, S.; Zhao, C.; Tu, X.; Li, Q.; Fu, H.Y. Three-Port Dual-Wavelength-Band Grating Coupler for WDM-PON Applications. IEEE Photonics Technol. Lett. 2021, 33, 159–162. [Google Scholar] [CrossRef]
- Whitley, D. A genetic algorithm tutorial. Stat. Comput. 1994, 4, 65–85. [Google Scholar] [CrossRef]
- Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of the ICNN’95-International Conference on Neural Networks, Perth, WA, Australia, 27 November–1 December 1995; pp. 1942–1948. [Google Scholar]
- Xu, P.; Zhang, Y.; Shao, Z.; Yang, C.; Liu, L.; Chen, Y.; Yu, S. 5 × 5 μm Compact Waveguide Crossing Optimized by Genetic Algorithm. In Proceedings of the 2017 Asia Communications and Photonics Conference (ACP), Guangzhou, China, 10–13 November 2017; pp. 1–3. [Google Scholar]
- Shen, B.; Wang, P.; Polson, R.; Menon, R. Integrated metamaterials for efficient and compact free-space-to-waveguide coupling. Opt. Express 2014, 22, 27175–27182. [Google Scholar] [CrossRef]
- Minkov, M.; Savona, V. Automated optimization of photonic crystal slab cavities. Sci Rep. 2014, 4, 5124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seldowitz, M.A.; Allebach, J.P.; Sweeney, D.W. Synthesis of digital holograms by direct binary search. Appl. Opt. 1987, 26, 2788–2798. [Google Scholar] [CrossRef]
- Lalau-Keraly, C.M.; Bhargava, S.; Miller, O.D.; Yablonovitch, E. Adjoint shape optimization applied to electromagnetic design. Opt. Express 2013, 21, 21693–21701. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mao, S.; Cheng, L.; Wu, S.; Mu, X.; Xin, T.; Fu, H. Inverse Design of Ultra-broadband and Ultra-compact Polarization Beam Splitter via B-spline Surface. In Proceedings of the Laser Science, Washington, DC USA, 14–17 September 2020; p. JTu1B-6. [Google Scholar]
- Miller, O.D. Photonic design: From fundamental solar cell physics to computational inverse design. arXiv 2013, arXiv:1308.0212. [Google Scholar]
- Vercruysse, D.; Sapra, N.V.; Su, L.; Trivedi, R.; Vuckovic, J. Analytical level set fabrication constraints for inverse design. Sci. Rep. 2019, 9, 8999. [Google Scholar] [CrossRef]
- Zhou, M.; Lazarov, B.S.; Wang, F.; Sigmund, O. Minimum length scale in topology optimization by geometric constraints. Comput. Methods Appl. Mech. Eng. 2015, 293, 266–282. [Google Scholar] [CrossRef] [Green Version]
- Sigmund, O. On the Design of Compliant Mechanisms Using Topology Optimization*. Mech. Struct. Mach. 1997, 25, 493–524. [Google Scholar] [CrossRef]
- Piggott, A.Y.; Petykiewicz, J.; Su, L.; Vuckovic, J. Fabrication-constrained nanophotonic inverse design. Sci. Rep. 2017, 7, 1786. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sigmund, O. Morphology-based black and white filters for topology optimization. Struct. Multidiscip. Optim. 2007, 33, 401–424. [Google Scholar] [CrossRef] [Green Version]
- Khoram, E.; Qian, X.; Yuan, M.; Yu, Z. Controlling the minimal feature sizes in adjoint optimization of nanophotonic devices using b-spline surfaces. Opt. Express 2020, 28, 7060–7069. [Google Scholar] [CrossRef] [Green Version]
- Chen, D.; Xiao, X.; Wang, L.; Yu, Y.; Liu, W.; Yang, Q. Low-loss and fabrication tolerant silicon mode-order converters based on novel compact tapers. Opt. Express 2015, 23, 11152–11159. [Google Scholar] [CrossRef]
- Qu, Y.; Zhu, H.; Shen, Y.; Zhang, J.; Tao, C.; Ghosh, P.; Qiu, M. Inverse design of an integrated-nanophotonics optical neural network. Sci. Bull. 2020, 65, 1177–1183. [Google Scholar] [CrossRef]
- Xie, Z.; Lei, T.; Li, F.; Qiu, H.; Zhang, Z.; Wang, H.; Min, C.; Du, L.; Li, Z.; Yuan, X. Ultra-broadband on-chip twisted light emitter for optical communications. Light Sci. Appl. 2018, 7, 18001. [Google Scholar] [CrossRef] [Green Version]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef] [PubMed]
- Blum, A.; Hopcroft, J.; Kannan, R. Foundations of Data Science; Cambridge University Press: Cambridge, UK, 2016; Volume 5. [Google Scholar]
- Da Silva Ferreira, A.; da Silva Santos, C.H.; Gonçalves, M.S.; Hernández Figueroa, H.E. Towards an integrated evolutionary strategy and artificial neural network computational tool for designing photonic coupler devices. Appl. Soft Comput. 2018, 65, 1–11. [Google Scholar] [CrossRef]
- Gostimirovic, D.; Ye, W.N. An Open-Source Artificial Neural Network Model for Polarization-Insensitive Silicon-on-Insulator Subwavelength Grating Couplers. IEEE J. Sel. Top. Quantum Electron. 2019, 25, 1–5. [Google Scholar] [CrossRef]
- Tahersima, M.H.; Kojima, K.; Koike-Akino, T.; Jha, D.; Wang, B.; Lin, C.; Parsons, K. Nanostructured photonic power splitter design via convolutional neural networks. In Proceedings of the 2019 Conference on Lasers and Electro-Optics (CLEO), Washington, DC, USA, 10–15 May 2019; pp. 1–2. [Google Scholar]
- Alagappan, G.; Png, C.E. Modal classification in optical waveguides using deep learning. J. Mod. Opt. 2018, 66, 557–561. [Google Scholar] [CrossRef]
- Hammond, A.M.; Camacho, R.M. Designing integrated photonic devices using artificial neural networks. Opt. Express 2019, 27, 29620–29638. [Google Scholar] [CrossRef] [Green Version]
- Gabr, A.M.; Featherston, C.; Zhang, C.; Bonfil, C.; Zhang, Q.-J.; Smy, T.J. Design and optimization of optical passive elements using artificial neural networks. J. Opt. Soc. Am. B 2019, 36. [Google Scholar] [CrossRef]
- Miyatake, Y.; Sekine, N.; Toprasertpong, K.; Takagi, S.; Takenaka, M. Computational design of efficient grating couplers using artificial intelligence. Jpn. J. Appl. Phys. 2020, 59. [Google Scholar] [CrossRef]
- Tang, Y.; Kojima, K.; Koike-Akino, T.; Wang, Y.; Wu, P.; Xie, Y.; Tahersima, M.H.; Jha, D.K.; Parsons, K.; Qi, M. Generative Deep Learning Model for Inverse Design of Integrated Nanophotonic Devices. Laser Photonics Rev. 2020, 14. [Google Scholar] [CrossRef]
- Tahersima, M.H.; Kojima, K.; Koike-Akino, T.; Jha, D.; Wang, B.; Lin, C.; Parsons, K. Deep Neural Network Inverse Design of Integrated Photonic Power Splitters. Sci. Rep. 2019, 9, 1368. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.; Agarwal, A.; Anthony, B.W. Mapping the design space of photonic topological states via deep learning. Opt. Express 2020, 28, 27893–27902. [Google Scholar] [CrossRef] [PubMed]
- Hegde, R.S. Photonics Inverse Design: Pairing Deep Neural Networks With Evolutionary Algorithms. IEEE J. Sel. Top. Quantum Electron. 2020, 26, 1–8. [Google Scholar] [CrossRef]
- Tao, Z.; Zhang, J.; You, J.; Hao, H.; Ouyang, H.; Yan, Q.; Du, S.; Zhao, Z.; Yang, Q.; Zheng, X.; et al. Exploiting deep learning network in optical chirality tuning and manipulation of diffractive chiral metamaterials. Nanophotonics 2020, 9, 2945–2956. [Google Scholar] [CrossRef]
- Wiecha, P.R.; Muskens, O.L. Deep Learning Meets Nanophotonics: A Generalized Accurate Predictor for Near Fields and Far Fields of Arbitrary 3D Nanostructures. Nano Lett. 2020, 20, 329–338. [Google Scholar] [CrossRef] [Green Version]
- Nadell, C.C.; Huang, B.; Malof, J.M.; Padilla, W.J. Deep learning for accelerated all-dielectric metasurface design. Opt. Express 2019, 27, 27523–27535. [Google Scholar] [CrossRef] [PubMed]
- An, S.; Fowler, C.; Zheng, B.; Shalaginov, M.Y.; Tang, H.; Li, H.; Zhou, L.; Ding, J.; Agarwal, A.M.; Rivero-Baleine, C.; et al. A Deep Learning Approach for Objective-Driven All-Dielectric Metasurface Design. ACS Photonics 2019, 6, 3196–3207. [Google Scholar] [CrossRef]
- Jiang, J.; Fan, J.A. Simulator-based training of generative neural networks for the inverse design of metasurfaces. Nanophotonics 2019, 9, 1059–1069. [Google Scholar] [CrossRef]
- Jiang, J.; Fan, J.A. Global Optimization of Dielectric Metasurfaces Using a Physics-Driven Neural Network. Nano Lett. 2019, 19, 5366–5372. [Google Scholar] [CrossRef] [Green Version]
- Sajedian, I.; Badloe, T.; Rho, J. Finding the best design parameters for optical nanostructures using reinforcement learning. arXiv 2018, arXiv:1810.10964. [Google Scholar]
- Gao, L.; Li, X.; Liu, D.; Wang, L.; Yu, Z. A Bidirectional Deep Neural Network for Accurate Silicon Color Design. Adv. Mater. 2019, 31, e1905467. [Google Scholar] [CrossRef]
- Jiang, J.; Sell, D.; Hoyer, S.; Hickey, J.; Yang, J.; Fan, J.A. Free-Form Diffractive Metagrating Design Based on Generative Adversarial Networks. ACS Nano 2019, 13, 8872–8878. [Google Scholar] [CrossRef] [Green Version]
- Debao, C. Degree of approximation by superpositions of a sigmoidal function. Approx. Theory Appl. 1993, 9, 17–28. [Google Scholar]
- Sharma, S. Activation functions in neural networks. Data Sci. 2017, 6, 310–316. [Google Scholar] [CrossRef]
- Qi, X.; Wang, T.; Liu, J. Comparison of support vector machine and softmax classifiers in computer vision. In Proceedings of the 2017 Second International Conference on Mechanical, Control and Computer Engineering (ICMCCE), Harbin, China, 8 December 2017; pp. 151–155. [Google Scholar]
- Melati, D.; Grinberg, Y.; Kamandar Dezfouli, M.; Janz, S.; Cheben, P.; Schmid, J.H.; Sanchez-Postigo, A.; Xu, D.X. Mapping the global design space of nanophotonic components using machine learning pattern recognition. Nat. Commun. 2019, 10, 4775. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.; Zhu, Z.; Cai, W. Topological encoding method for data-driven photonics inverse design. Opt. Express 2020, 28, 4825–4835. [Google Scholar] [CrossRef] [Green Version]
- O’Shea, K.; Nash, R. An introduction to convolutional neural networks. arXiv 2015, arXiv:1511.08458. [Google Scholar]
- Turhan, C.G.; Bilge, H.S. Recent trends in deep generative models: A review. In Proceedings of the 2018 3rd International Conference on Computer Science and Engineering (UBMK), Sarajevo, Bosnia and Herzegovina, 20–23 September 2018; pp. 574–579. [Google Scholar]
- Coen, T.; Greener, H.; Mrejen, M.; Wolf, L.; Suchowski, H. Deep learning based reconstruction of directional coupler geometry from electromagnetic near-field distribution. OSA Contin. 2020, 3. [Google Scholar] [CrossRef]
- Sohn, K.; Lee, H.; Yan, X. Learning structured output representation using deep conditional generative models. Adv. Neural Inf. Process. Syst. 2015, 28, 3483–3491. [Google Scholar]
- Goodfellow, I.J.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative adversarial networks. arXiv 2014, arXiv:1406.2661. [Google Scholar]
- Liu, Z.; Zhu, D.; Rodrigues, S.P.; Lee, K.T.; Cai, W. Generative Model for the Inverse Design of Metasurfaces. Nano Lett. 2018, 18, 6570–6576. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.; Jia, H.; Wang, T.; Yang, J. A Gradient-oriented Binary Search Method for Photonic Device Design. J. Lightwave Technol. 2021, 39, 2407–2412. [Google Scholar] [CrossRef]
- Introduction to High Performance Computing. Available online: https://support.lumerical.com/hc/en-us/articles/360025589054-Introduction-to-High-Performance-Computing (accessed on 6 April 2021).
- MEEP Documentation. Available online: https://meep.readthedocs.io/en/latest/ (accessed on 6 April 2021).
- Francés, J.; Bleda, S.; Neipp, C.; Márquez, A.; Pascual, I.; Beléndez, A. Performance analysis of the FDTD method applied to holographic volume gratings: Multi-core CPU versus GPU computing. Comput. Phys. Commun. 2013, 184, 469–479. [Google Scholar] [CrossRef]
- Shahmansouri, A.; Rashidian, B. GPU implementation of split-field finite-difference time-domain method for Drude-Lorentz dispersive media. Prog. Electromagn. Res. 2012, 125, 55–77. [Google Scholar] [CrossRef] [Green Version]
- Wang, K.; Ren, X.; Chang, W.; Lu, L.; Liu, D.; Zhang, M. Inverse design of digital nanophotonic devices using the adjoint method. Photonics Res. 2020, 8. [Google Scholar] [CrossRef]
- Peng, H.-T.; Nahmias, M.A.; de Lima, T.F.; Tait, A.N.; Shastri, B.J. Neuromorphic Photonic Integrated Circuits. IEEE J. Sel. Top. Quantum Electron. 2018, 24, 1–15. [Google Scholar] [CrossRef]
- Zhang, Q.; Yu, H.; Barbiero, M.; Wang, B.; Gu, M. Artificial neural networks enabled by nanophotonics. Light Sci. Appl. 2019, 8, 42. [Google Scholar] [CrossRef] [Green Version]
- Sacha, G.M.; Varona, P. Artificial intelligence in nanotechnology. Nanotechnology 2013, 24, 452002. [Google Scholar] [CrossRef] [Green Version]
- Reck, M.; Zeilinger, A.; Bernstein, H.J.; Bertani, P. Experimental realization of any discrete unitary operator. Phys. Rev. Lett. 1994, 73, 58. [Google Scholar] [CrossRef]
- Miller, D.A.B. Perfect optics with imperfect components. Optica 2015, 2. [Google Scholar] [CrossRef]
- Shen, Y.; Harris, N.C.; Skirlo, S.; Prabhu, M.; Baehr-Jones, T.; Hochberg, M.; Sun, X.; Zhao, S.; Larochelle, H.; Englund, D.; et al. Deep learning with coherent nanophotonic circuits. Nat. Photonics 2017, 11, 441–446. [Google Scholar] [CrossRef]
- Feldmann, J.; Youngblood, N.; Wright, C.D.; Bhaskaran, H.; Pernice, W.H.P. All-optical spiking neurosynaptic networks with self-learning capabilities. Nature 2019, 569, 208–214. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hughes, T.W.; Minkov, M.; Williamson, I.A.D.; Fan, S. Adjoint Method and Inverse Design for Nonlinear Nanophotonic Devices. ACS Photonics 2018, 5, 4781–4787. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.; Jia, H.; Wang, T.; Tian, Y.; Yang, J. Broadband Nonvolatile Tunable Mode-Order Converter Based on Silicon and Optical Phase Change Materials Hybrid Meta-Structure. J. Lightwave Technol. 2020, 38, 1874–1879. [Google Scholar] [CrossRef]
- Khoram, E.; Chen, A.; Liu, D.; Ying, L.; Wang, Q.; Yuan, M.; Yu, Z. Nanophotonic media for artificial neural inference. Photonics Res. 2019, 7. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mao, S.; Cheng, L.; Zhao, C.; Khan, F.N.; Li, Q.; Fu, H.Y. Inverse Design for Silicon Photonics: From Iterative Optimization Algorithms to Deep Neural Networks. Appl. Sci. 2021, 11, 3822. https://doi.org/10.3390/app11093822
Mao S, Cheng L, Zhao C, Khan FN, Li Q, Fu HY. Inverse Design for Silicon Photonics: From Iterative Optimization Algorithms to Deep Neural Networks. Applied Sciences. 2021; 11(9):3822. https://doi.org/10.3390/app11093822
Chicago/Turabian StyleMao, Simei, Lirong Cheng, Caiyue Zhao, Faisal Nadeem Khan, Qian Li, and H. Y. Fu. 2021. "Inverse Design for Silicon Photonics: From Iterative Optimization Algorithms to Deep Neural Networks" Applied Sciences 11, no. 9: 3822. https://doi.org/10.3390/app11093822