Design and Stability Analysis of a Robust-Adaptive Sliding Mode Control Applied on a Robot Arm with Flexible Links
Abstract
:1. Introduction
2. Mathematical Modeling of the Flexible Robot Arm
3. Controller Framework: Theoretical Remarks and Implementation
4. Simulation Results
5. Conclusive Summary and Discussion
Funding
Data Availability Statement
Conflicts of Interest
References
- Martínez, S.; Cortés, J.; Bullo, F. Motion planning and control problems for underactuated robots. Control. Probl. Robot. 2003, 4, 59–74. [Google Scholar]
- Bergerman, M.; Lee, C.; Xu, Y. Experimental Study of an Underactuated Manipulator; Carnegie Mellon University, The Robotics Institute: Pittsburgh, PA, USA, 1995. [Google Scholar]
- De Luca, A.; Lanari, L.; Ulivi, G.; Conte, G.; Perdon, A.M.; Wyman, B. Nonlinear regulation of end-effector motion for a flexible robot arm. New Trends Syst. Theory 1991, 7, 229–236. [Google Scholar]
- Chen, H.; Sun, N. Nonlinear control of underactuated systems subject to both actuated and unactuated state constraints with experimental verification. IEEE Trans. Ind. Electron. 2020, 67, 7702–7714. [Google Scholar] [CrossRef]
- Han, J.; Yang, S.; Xia, L.; Chen, Y. A Novel Trajectory Tracking Control Strategy for Underactuated Quadrotor UAV with Uncertainties and Disturbances. 2020. Available online: https://www.researchsquare.com/article/rs-18838/v1 (accessed on 25 March 2020).
- Din, S.U.; Khan, Q.; Rehman, F.U.; Akmeliawati, R. Robust control of underactuated systems: Higher order integral sliding mode approach. Math. Probl. Eng. 2016, 2016, 1–11. [Google Scholar] [CrossRef]
- Ovalle, L.; Rios, H.; Llama, M. Continuous sliding-mode control for a class of underactuated systems. In Proceedings of the IEEE 58th Conference on Decision and Control (CDC), Nice, France, 11–13 December 2019. [Google Scholar]
- Rudra, S.; Barai, R.K.; Maitra, M. Challenges and new frontiers in the field of underactuated mechanical systems control. In Block Backstepping Design of Nonlinear State Feedback Control Law for Underactuated Mechanical Systems; Springer: Berlin/Heidelberg, Germany, 2016; pp. 145–153. [Google Scholar]
- Tuan, L.A.; Lee, S.-G. Nonlinear feedback control of underactuated mechanical systems. In Nonlinear Systems—Design, Analysis, Estimation and Control; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar]
- Xu, R.; Özgüner, Ü. Sliding mode control of a class of underactuated systems. Automatica 2008, 44, 233–241. [Google Scholar] [CrossRef]
- Krafes, S.; Chalh, Z.; Saka, A. A review on the control of second order underactuated mechanical systems. Complexity 2018, 2018, 9573514. [Google Scholar] [CrossRef]
- Lai, X.; Xiong, P.; Wu, M. Stable control strategy for a second-order nonholonomic planar underactuated mechanical system. Int. J. Syst. Sci. 2019, 50, 2126–2141. [Google Scholar] [CrossRef]
- Jaritz, A.; Spong, M.W. An experimental comparison of robust control algorithms on a direct drive manipulator. IEEE Trans. Control. Syst. Technol. 1996, 4, 627–640. [Google Scholar] [CrossRef]
- Reyes-Cortes, F.; Kelly, R. Experimental evaluation of model-based controllers on a direct-drive robot arm. Mechatronics 2001, 11, 267–282. [Google Scholar] [CrossRef]
- Ullah, M.I.; Ajwad, S.A.; Irfan, M.; Iqbal, J. MPC and H-Infinity based feedback control of non-linear robotic manipulator. In Proceedings of the 2016 International Conference on Frontiers of Information Technology (FIT), Islamabad, Pakistan, 19–21 December 2016. [Google Scholar]
- Cheah, C.C.; Liu, C.; Slotine, J. Adaptive jacobian tracking control of robots with uncertainties in kinematic, dynamic and actuator models. IEEE Trans. Autom. Control. 2006, 51, 1024–1029. [Google Scholar] [CrossRef]
- Zhou, B.; Yang, L.; Wang, C.; Chen, Y.; Chen, K. Inverse jacobian adaptive tracking control of robot manipulators with kinematic, dynamic, and actuator uncertainties. Complexity 2020, 2020, 5070354. [Google Scholar] [CrossRef]
- Aghili, F.; Buehler, M.; Hollerbach, J. Dynamics and control of direct-drive robots with positive joint torque feedback. In Proceedings of the International Conference on Robotics and Automation, Albuquerque, NM, USA, 25 April 1997. [Google Scholar]
- Jiang, L.; Gao, B.; Zhu, Z. Design and nonlinear control of a 2-DOF flexible parallel humanoid arm joint robot. Shock. Vib. 2017, 2017, 2762169. [Google Scholar] [CrossRef] [Green Version]
- Petridis, A.G.; Kanarachos, A.E. Response optimization of a nonlinear controlled flexible robot arm carrying a variable mass. In Progress in System and Robot Analysis and Control Design Lecture Notes in Control and Information Sciences; Springer: Berlin/Heidelberg, Germany, 2007; pp. 465–476. [Google Scholar]
- Ansarieshlaghi, F.; Eberhard, P. Experimental study on a nonlinear observer application for a very flexible parallel robot. Int. J. Dyn. Control. 2018, 7, 1046–1055. [Google Scholar] [CrossRef]
- Cambera, J.C.; Feliu-Batlle, V. Input-state feedback linearization control of a single-link flexible robot arm moving under gravity and joint friction. Robot. Auton. Syst. 2017, 88, 24–36. [Google Scholar] [CrossRef]
- Sayahkarajy, M.; Mohamed, Z.; Faudzi, A.A.M. Review of modelling and control of flexible-link manipulators. Proc. Inst. Mech. Eng. Part I J. Syst. Control. Eng. 2016, 230, 861–873. [Google Scholar] [CrossRef]
- Arısoy, A.; Gokasan, M.; Bogosyan, O. Esnek-mafsallı robot kolun yüksek dereceli kayma kipli kontrolü. İTÜDERGISI/d 2011, 9, 1. [Google Scholar]
- Gokasan, M.; Bogosyan, O.S.; Sabanovic, A.; Arabyan, A. A sliding mode observer and controller for a single link flexible arm. In Proceedings of the 37th IEEE Conference on Decision and Control, Tampa, FL, USA, 18 December 1998. [Google Scholar]
- Kostic, D.; Jager, B.D.; Steinbuch, M. Robust attenuation of direct-drive robot-tip vibrations. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and System, Lausanne, Switzerland, 30 September–4 October 2002. [Google Scholar]
- Li, Y.; Tong, S.; Li, T. Adaptive fuzzy output feedback control for a single-link flexible robot manipulator driven DC motor via backstepping. Nonlinear Anal. Real World Appl. 2013, 14, 483–494. [Google Scholar] [CrossRef]
- Uecker, D.R.; Wang, Y.; Kokkinis, T. Experimental evaluation of real-time model-based control of a 3-DOF closed-chain direct-drive mechanism. In Proceedings of the 1991 IEEE International Conference on Robotics and Automation, Sacramento, CA, USA, 9–11 April 1991. [Google Scholar]
- Ayten, K.K.; Dumlu, A. Real-time ımplementation of sliding mode control technique for two-DOF ındustrial robotic arm. J. Inst. Sci. Technol. 2018, 8, 77–85. [Google Scholar] [CrossRef] [Green Version]
- Azizi, Y.; Yazdizadeh, A. Passivity-based adaptive control of a 2-DOF serial robot manipulator with temperature dependent joint frictions. Int. J. Adapt. Control. Signal Process. 2019, 33, 512–526. [Google Scholar] [CrossRef]
- Santibanez, V.; Kelly, R.; Llama, M. A novel global asymptotic stable set-point fuzzy controller with bounded torques for robot manipulators. IEEE Trans. Fuzzy Syst. 2005, 13, 362–372. [Google Scholar] [CrossRef]
- Naayagi, R.; Kamaraj, V. Minimization of torque ripple in switched reluctance machine for direct drive applications. In Proceedings of the IEEE Symposium on Emerging Technologies, Islamabad, Pakistan, 18 September 2005. [Google Scholar]
- Fei, Q.; Deng, Y.; Li, H.; Liu, J.; Shao, M. Speed ripple minimization of permanent magnet synchronous motor based on model predictive and ıterative learning controls. IEEE Access 2019, 7, 31791–31800. [Google Scholar] [CrossRef]
- Matsui, N. Autonomous torque ripple compensation of DD motor by torque observer. In Proceedings of the Proceedings 1993 Asia-Pacific Workshop on Advances in Motion Control, Singapore, 15–16 July 1993. [Google Scholar]
- Şahin, A.; Öner, Y. High efficient permanent magnet synchronous motor design, electromagnetic and noise-vibration analyzes. Balk. J. Electr. Comput. Eng. 2021, 9, 83–91. [Google Scholar] [CrossRef]
- Aghili, F.; Buehler, M.; Hollerbach, J. Torque ripple minimization in direct-drive systems. In Proceedings of the 1998 IEEE/RSJ International Conference on Intelligent Robots and Systems. Innovations in Theory, Practice and Applications, Victoria, BC, Canada, 17 October 1998. [Google Scholar]
- Pandya, S.N.; Chatterjee, J.K. Torque ripple minimization in direct torque control based induction motor drive using optimal multirate sampling technique. In Proceedings of the 2010 Joint International Conference on Power Electronics, Drives and Energy Systems & 2010 Power India, New Delhi, India, 20–23 December 2010. [Google Scholar]
- Petrovic, V.; Ortega, R.; Stankovic, A.; Tadmor, G. Design and implementation of an adaptive controller for torque ripple minimization in PM synchronous motors. IEEE Trans. Power Electron. 2000, 15, 871–880. [Google Scholar] [CrossRef]
- Fei, W.; Luk, P. A new technique of cogging torque suppression in direct-drive permanent-magnet brushless machines. IEEE Trans. Ind. Appl. 2010, 46, 1332–1340. [Google Scholar] [CrossRef] [Green Version]
- Almakhles, D.J. Robust backstepping sliding mode control for a quadrotor trajectory tracking application. IEEE Access 2020, 8, 5515–5525. [Google Scholar] [CrossRef]
- Petrovic, V.; Ortega, R.; Stankovic, A.; Tadmor, G. An adaptive controller for minimization of torque ripple in PM synchronous motors. In Proceedings of the PESC 98 Record. 29th Annual IEEE Power Electronics Specialists Conference (Cat. No.98CH36196), Fukuoka, Japan, 22 May 1998. [Google Scholar]
- Krener, A.J. Differential geometric methods in nonlinear control. Encycl. Syst. Control. 2015, 8, 275–284. [Google Scholar]
- Xin, X.; Yamasaki, T. Energy-based swing-up control for a remotely driven Acrobot: Theoretical and experimental results. IEEE Trans. Control. Syst. Technol. 2012, 20, 1048–1056. [Google Scholar] [CrossRef]
- Guo, W.; Liu, D. Nonlinear recursive design for the underactuated IWP system. J. Appl. Res. Technol. 2014, 12, 602–606. [Google Scholar] [CrossRef]
- Arteaga, M.; Siciliano, B. On tracking control of flexible robot arms. IEEE Trans. Autom. Control. 2000, 45, 520–527. [Google Scholar] [CrossRef]
- Chang, Y.-C.; Chen, B.-S.; Lee, T.-C. Tracking control of flexible joint manipulators using only position measurements. Int. J. Control. 1996, 64, 567–593. [Google Scholar] [CrossRef]
- Liu, H.; Huang, Y.; Wu, W. Improved adaptive output feedback controller for flexible-joint robot manipulators. In Proceedings of the IEEE International Conference on Information and Automation (ICIA), Ningbo, China, 1–3 August 2016. [Google Scholar]
- Loria, A.; Avila-Becerril, S. Output-feedback global tracking control of robot manipulators with flexible joints. In Proceedings of the American Control Conference, Portland, OR, USA, 4–6 June 2014. [Google Scholar]
- Park, J.; Chang, P.-H.; Park, H.-S.; Lee, E. Design of learning input shaping technique for residual vibration suppression in an industrial robot. IEEE/ASME Trans. Mechatron. 2006, 11, 55–65. [Google Scholar] [CrossRef]
- Markus, E.D. Flatness based feed-forward control of a flexible robot arm under gravity and joint friction. In Proceedings of the 12th International Conference on Informatics in Control, Automation and Robotics, Colmar, France, 21–23 July 2015. [Google Scholar]
- Mansor, N.N.; Jamaluddin, M.H.; Shukor, A.Z.; Lok, C.C. A study of accuracy and time delay for bilateral master-slave ındustrial robotic arm manipulator system. MATEC Web Conf. 2018, 150, 1015. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.H.; Lian, F.-L.; Fu, L.-C. Nonlinear adaptive control for flexible-link manipulators. IEEE Trans. Robot. Autom. 1997, 13, 140–148. [Google Scholar] [CrossRef]
- Arisoy, A.; Gokasan, M.; Bogosyan, O. Partial feedback linearization control of a single flexible link robot manipulator. In Proceedings of the 2nd International Conference on Recent Advances in Space Technologies, 2005 RAST 2005, Istanbul, Turkey, 9–11 June 2005. [Google Scholar]
- Liu, L.-Y.; Yuan, K. Noncollocated passivity-based PD control of a single-link flexible manipulator. Robotica 2003, 21, 117–135. [Google Scholar] [CrossRef]
- Mattioni, A.; Wu, Y.; Le Gorrec, Y. Infinite dimensional model of a double flexible-link manipulator: The port-hamiltonian approach. Appl. Math. Model. 2020, 83, 59–75. [Google Scholar] [CrossRef]
- Meurer, T.; Thull, D.; Kugi, A. Flatness-based tracking control of a piezoactuated Euler–Bernoulli beam with non-collocated output feedback: Theory and experiments†. Int. J. Control. 2008, 81, 475–493. [Google Scholar] [CrossRef]
- Han, L.; Chen, M.; Wu, Q.; Li, X. Sliding mode control using disturbance observer for a flexible link robot. In Proceedings of the 14th International Workshop on Variable Structure Systems (VSS), Nanjing, China, 1–4 June 2016. [Google Scholar]
- Sinha, A.; Mishra, R.K. Smooth sliding mode controller design for robotic arm. In Proceedings of the 2013 International Conference on Control, Automation, Robotics and Embedded Systems (CARE), Jabalpur, India, 16–18 December 2013. [Google Scholar]
- Hosaka, M.; Murakami, T. Vibration control of flexible arm by multiple observer structure. Electr. Eng. Jpn. 2006, 154, 68–75. [Google Scholar] [CrossRef]
- Lochan, K.; Roy, B.; Subudhi, B. SMC controlled chaotic trajectory tracking of two-link flexible manipulator with PID sliding surface. IFAC-PapersOnLine 2016, 49, 219–224. [Google Scholar] [CrossRef]
- Jin, Q.-B.; Liu, Q.; Wang, Q.; Li, S.-N.; Wang, Z. IMC-PID design: Analytical optimization for performance/robustness tradeoff tuning for servo/regulation mode. Asian J. Control. 2013, 16, 1252–1261. [Google Scholar] [CrossRef]
- Montazeri, A.; Poshtan, J.; Choobdar, A. Performance and robust stability trade-off in minimax LQG control of vibrations in flexible structures. Eng. Struct. 2009, 31, 2407–2413. [Google Scholar] [CrossRef]
- Farahmandrad, M.; Ganjefar, S.; Talebi, H.A.; Bayati, M. Design of higher-order sliding mode controller based on genetic algorithm for a cooperative robotic system. Int. J. Dyn. Control. 2019, 8, 269–277. [Google Scholar] [CrossRef]
- Mujumdar, A.; Kurode, S.; Tamhane, B. Control of two link flexible manipulator using higher order sliding modes and disturbance estimation. IFAC Proc. Vol. 2014, 47, 95–102. [Google Scholar] [CrossRef]
- Alandoli, E.A.; Lee, T.S. A critical review of control techniques for flexible and rigid link manipulators. Robotica 2020, 38, 2239–2265. [Google Scholar] [CrossRef]
- Souza, A.G.; Souza, L.C. H Infinity Attitude Controller Design for a Rigid-Flexible Satellite Considering the Parametric Uncertainty; SAE Technical Paper Series: New York, NY, USA, 2016. [Google Scholar]
- Yu, Z.; Chen, H.; Woo, P.-Y. Polytopic gain scheduled H∞ control for robotic manipulators. Robotica 2003, 21, 495–504. [Google Scholar] [CrossRef]
- Toussaint, G.; Basar, T.; Bullo, F. Motion planning for nonlinear underactuated vehicles using H∞ techniques. In Proceedings of the 2001 American Control Conference. (Cat. No.01CH37148), Arlington, VA, USA, 25–27 June 2001. [Google Scholar]
- Ali, H.I.; Abdulridha, A.J. H-infinity sliding mode controller design for a human swing leg system. Al-Nahrain J. Eng. Sci. 2020, 23, 117–126. [Google Scholar] [CrossRef]
- Ye, D.; Zou, A.-M.; Sun, Z. Predefined-time predefined-bounded attitude tracking control for rigid spacecraft. Available online: https://ieeexplore.ieee.org/iel7/7/7778228/09512481.pdf (accessed on 1 January 2021).
- Xiao, Y.; De Ruiter, A.; Ye, D.; Sun, Z. Adaptive fault-tolerant attitude tracking control for flexible spacecraft with guaranteed performance bounds. IEEE Trans. Aerosp. Electron. Syst. 2021, 1. [Google Scholar] [CrossRef]
- Mareels, I.M.Y.; Gevers, M. Persistency of excitation criteria for linear, multivariable, time-varying systems. Math. Control. Signals Syst. 1988, 1, 203–226. [Google Scholar] [CrossRef]
- Altıner, B.; Delibasi, A.; Erol, B. Modeling and control of flexible link manipulators for unmodeled dynamics effect. Proc. Inst. Mech. Eng. Part I J. Syst. Control. Eng. 2018, 233, 245–263. [Google Scholar] [CrossRef]
- Karkoub, M.; Tamma, K. Modelling and μ-synthesis control of flexible manipulators. Comput. Struct. 2001, 79, 543–551. [Google Scholar] [CrossRef]
- Krishnan, H.; Vidyasagar, M. Bounded input feedback control of linear systems with application to the control of a flexible system. In Proceedings of the 27th IEEE Conference on Decision and Control, Austin, TX, USA, 7–9 December 1988. [Google Scholar] [CrossRef]
- Kuo, K.; Lin, J. Fuzzy logic control for flexible link robot arm by singular perturbation approach. Appl. Soft Comput. 2002, 2, 24–38. [Google Scholar] [CrossRef]
- Lin, J.; Varaiya, P. Bounded-input bounded-output stability of nonlinear time-varying discrete control systems. IEEE Trans. Autom. Control. 1967, 12, 423–427. [Google Scholar] [CrossRef]
- Wang, D.; Vidyasagar, M. Passive control of a stiff flexible link. Int. J. Robot. Res. 1992, 11, 572–578. [Google Scholar] [CrossRef]
- Zuo, K.; Drapeau, V.; Wang, D. Closed loop shaped-ınput strategies for flexible robots. Int. J. Robot. Res. 1995, 14, 510–529. [Google Scholar] [CrossRef]
Definition Notation | |
---|---|
Gravitational constant | g |
Translational spring constants | |
Translational viscous damping constants | |
Rotational spring constants | |
Rotational viscous damping constants | |
Unloaded length of the links | |
The unloaded angle of the joints | |
Translational inertia values | |
Rotational inertia values |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Uyulan, Ç. Design and Stability Analysis of a Robust-Adaptive Sliding Mode Control Applied on a Robot Arm with Flexible Links. Vibration 2022, 5, 1-19. https://doi.org/10.3390/vibration5010001
Uyulan Ç. Design and Stability Analysis of a Robust-Adaptive Sliding Mode Control Applied on a Robot Arm with Flexible Links. Vibration. 2022; 5(1):1-19. https://doi.org/10.3390/vibration5010001
Chicago/Turabian StyleUyulan, Çağlar. 2022. "Design and Stability Analysis of a Robust-Adaptive Sliding Mode Control Applied on a Robot Arm with Flexible Links" Vibration 5, no. 1: 1-19. https://doi.org/10.3390/vibration5010001