V3TiNi0.56Crx(x=0, 0.2, 0.4, 0.6)/NiMoW钒基复合析氢阴极电催化与耐蚀性能研究

杜金晶 张轩 周宇 崔新新 朱军 左恒 王斌 鲍彦如 刘景田 郭悦豪

杜金晶, 张轩, 周宇, 崔新新, 朱军, 左恒, 王斌, 鲍彦如, 刘景田, 郭悦豪. V3TiNi0.56Crx(x=0, 0.2, 0.4, 0.6)/NiMoW钒基复合析氢阴极电催化与耐蚀性能研究[J]. 钢铁钒钛, 2024, 45(4): 48-53. doi: 10.7513/j.issn.1004-7638.2024.04.008
引用本文: 杜金晶, 张轩, 周宇, 崔新新, 朱军, 左恒, 王斌, 鲍彦如, 刘景田, 郭悦豪. V3TiNi0.56Crx(x=0, 0.2, 0.4, 0.6)/NiMoW钒基复合析氢阴极电催化与耐蚀性能研究[J]. 钢铁钒钛, 2024, 45(4): 48-53. doi: 10.7513/j.issn.1004-7638.2024.04.008
Du Jinjing, Zhang Xuan, Zhou Yu, Cui Xinxin, Zhu Jun, Zuo Heng, Wang Bin, Bao Yanru, Liu Jingtian, Guo Yuehao. Study on the corrosion resistance of vanadium-based V3TiNi0.56Crx (x=0, 0.2, 0.4, 0.6)/NiMoW composite cathode for hydrogen evolution[J]. IRON STEEL VANADIUM TITANIUM, 2024, 45(4): 48-53. doi: 10.7513/j.issn.1004-7638.2024.04.008
Citation: Du Jinjing, Zhang Xuan, Zhou Yu, Cui Xinxin, Zhu Jun, Zuo Heng, Wang Bin, Bao Yanru, Liu Jingtian, Guo Yuehao. Study on the corrosion resistance of vanadium-based V3TiNi0.56Crx (x=0, 0.2, 0.4, 0.6)/NiMoW composite cathode for hydrogen evolution[J]. IRON STEEL VANADIUM TITANIUM, 2024, 45(4): 48-53. doi: 10.7513/j.issn.1004-7638.2024.04.008

V3TiNi0.56Crx(x=0, 0.2, 0.4, 0.6)/NiMoW钒基复合析氢阴极电催化与耐蚀性能研究

doi: 10.7513/j.issn.1004-7638.2024.04.008
基金项目: 陕西省科技厅区域创新能力引导计划资助项目(编号:2022QFY10-05); 陕西省“两链融合”校企联合重点专项(编号:2022LL-JB-09)。
详细信息
    作者简介:

    杜金晶,1983年出生,女,博士,副教授,长期从事碱性电解水制氢方面的研究工作,E-mail:dujinzi@xauat.edu.cn

  • 中图分类号: TF125,TG139

Study on the corrosion resistance of vanadium-based V3TiNi0.56Crx (x=0, 0.2, 0.4, 0.6)/NiMoW composite cathode for hydrogen evolution

  • 摘要: 主要研究了金属元素Cr对钒基复合析氢阴极V3TiNi0.56Crx(x=0, 0.2, 0.4, 0.6)/NiMoW合金物相、形貌、电催化性能与耐腐蚀性能的影响。结果表明:随着合金基体材料中Cr含量增加,基体合金表面形成了钝化膜,能够使基体材料在电化学腐蚀的过程中产生钝化区。钒基复合析氢阴极的电催化能力略有下降,由极化曲线外推法计算得到自腐蚀电流减小3.61 mA/cm、自腐蚀电位正移0.154 V。长时间电解后,钒基复合析氢阴极表面形成的缝隙减少,电流密度变化幅度减小,说明掺杂金属元素Cr后,其耐蚀性能与长效稳定性均有所提高。
  • 图  1  V3TiNi0.56合金和V3TiNi0.56Cr0.6合金的XRD谱

    Figure  1.  XRD spectra of V3TiNi0.56 and V3TiNi0.56Cr0.6 alloys

    图  2  V3TiNi0.56合金(a)(b)和V3TiNi0.56Cr0.6合金(c)(d)表面SEM形貌

    Figure  2.  SEM images of V3TiNi0.56 alloy surface (a) (b) and V3TiNi0.56Cr0.6 alloy surface (c) (d)

    图  3  V3TiNi0.56Crx(x=0, 0.2, 0.4, 0.6)/NiMoW复合阴极电化学性能对比

    (a) LSV曲线; (b)过电位;(c)Tafel斜率;(d)极化曲线

    Figure  3.  Comparison of electrochemical performance of V3TiNi0.56Crx (x=0, 0.2, 0.4, 0.6)/NiMoW composite cathode

    图  4  V3TiNi0.56Crx(x=0, 0.2, 0.4, 0.6)/NiMoW复合阴极120 h长时间电解i-t曲线

    Figure  4.  The i-t curves of V3TiNi0.56Crx (x=0, 0.2, 0.4, 0.6)/NiMoW composite cathode for long-term electrolysis (120 h)

    图  5  V3TiNi0.56/NiMoW(a)(b)和V3TiNi0.56Cr0.6/NiMoW (c)(d)复合阴极长时间电解表面SEM形貌

    Figure  5.  SEM images of V3TiNi0.56/NiMoW surface (a), (b) and V3TiNi0.56Cr0.6/NiMoW composite cathode surface (c), (d) in long-term electrolysis

  • [1] Yu Hongmei, Shao Zhigang, Hou Ming, et al. Hydrogen production by water electrolysis: Progress and suggestions[J]. Strategic Study of CAE, 2021,23(2):146-152. (俞红梅, 邵志刚, 侯明, 等. 电解水制氢技术研究进展与发展建议[J]. 中国工程科学, 2021,23(2):146-152. doi: 10.15302/J-SSCAE-2021.02.020

    Yu Hongmei, Shao Zhigang, Hou Ming, et al. Hydrogen production by water electrolysis: Progress and suggestions[J]. Strategic Study of CAE, 2021, 23(2): 146-152. doi: 10.15302/J-SSCAE-2021.02.020
    [2] Bai Jing. Planning leads and promotes the high-quality leapfrog development of renewable energy —Nine departments jointly issue the "14th Five Year Plan for Renewable Energy Development"[J]. Science & Technology Industry of China, 2022(8): 26-27. (白静. 规划引领, 推动可再生能源高质量跃升发展——九部门联合印发《“十四五”可再生能源发展规划》[J]. 中国科技产业, 2022(8): 26-27.

    Bai Jing. Planning leads and promotes the high-quality leapfrog development of renewable energy —Nine departments jointly issue the "14th Five Year Plan for Renewable Energy Development"[J]. Science & Technology Industry of China, 2022(8): 26-27.
    [3] Navas Anguita Z, García Gusano D, Dufour J, et al. Revisiting the role of steam methane reforming with CO2 capture and storage for long-term hydrogen production[J]. Science Total Environment, 2021,771:145432. doi: 10.1016/j.scitotenv.2021.145432
    [4] Li Jinghong. Advanced battery materials[M]. Beijing: Chemical Industry Press, 2004. (李景虹. 先进电池材料[M]. 北京: 化学工业出版社, 2004.

    Li Jinghong. Advanced battery materials[M]. Beijing: Chemical Industry Press, 2004.
    [5] Hu Zilong. Hydrogen storage materials[M]. Beijing: Chemical Industry Press, 2002. (胡子龙. 贮氢材料[M]. 北京: 化学工业出版社, 2002.

    Hu Zilong. Hydrogen storage materials[M]. Beijing: Chemical Industry Press, 2002.
    [6] Wang Mingxing, Wang Yonggang, Kong Hanyang, et al. Development of Fe-containing BCC hydrogen storage alloys with high vanadium concentration[J]. Journal of Alloys and Compounds, 2023,958:170294. doi: 10.1016/j.jallcom.2023.170294
    [7] Li Lirong , Luo Long , Chen Liangpan , et al. Nanoscale microstructures and hydrogenation properties of an as-cast vanadium-based medium-entropy alloy[J]. International Journal of Hydrogen Energy, 2023, 48(75): 29230-29239.
    [8] Liao Longfei, Li Mingyu, Yin Yongli, et al. Research progress on catalysts of alkaline water electrolysis for hydrogen production[J]. Industrial Catalysis, 2023,31(2):7-11. (廖龙飞, 李明雨, 尹永利, 等. 碱性水电解制氢催化剂研究进展[J]. 工业催化, 2023,31(2):7-11. doi: 10.3969/j.issn.1008-1143.2023.02.002

    Liao Longfei, Li Mingyu, Yin Yongli, et al. Research progress on catalysts of alkaline water electrolysis for hydrogen production[J]. Industrial Catalysis, 2023, 31(2): 7-11. doi: 10.3969/j.issn.1008-1143.2023.02.002
    [9] Gao M, Yang C, Zhang Q B, et al. Facile electrochemical preparation of self-supported porous Ni-Mo alloy microsphere films as efficient bifunctional electrocatalysts for water splitting[J]. Journal of Materials Chemistry A, 2017,5(12):5797-5805. doi: 10.1039/C6TA10812A
    [10] Wang Bin, Du Jinjing, Li Erhu, et al. Preparation method and application of V-Ti Ni based porous hydrogen evolution cathode material:China, CN110373684B[P]. 2021-06-11. (王斌, 杜金晶, 李二虎, 等. 一种V-Ti-Ni基多孔析氢阴极材料、制备方法及应用: 中国, CN110373684B[P]. 2021-06-11.

    Wang Bin, Du Jinjing, Li Erhu, et al. Preparation method and application of V-Ti Ni based porous hydrogen evolution cathode material: China, CN110373684B[P]. 2021-06-11.
    [11] Gao Chenghui, Li Ning. Hydrogen evolution reaction activity of electrodeposited amorphous/nanocrystalline Ni-Mo-La alloy electrode[J]. The Chinese Journal of Nonferrous Metals, 2011,21(11):2819-2824. (高诚辉, 李凝. 电沉积非晶/纳米晶Ni-Mo-La合金电极的析氢性能[J]. 中国有色金属学报, 2011,21(11):2819-2824.

    Gao Chenghui, Li Ning. Hydrogen evolution reaction activity of electrodeposited amorphous/nanocrystalline Ni-Mo-La alloy electrode[J]. The Chinese Journal of Nonferrous Metals, 2011, 21(11): 2819-2824.
    [12] Wang Senlin, Zhang Yi. Preparation and electrocatalytic performance of Ni-Mo/LaNi5 porous composite electrode toward hydrogen evolution reaction[J]. Acta Physico-Chimica Sinica, 2011,27(6):1417-1423. (王森林, 张艺. Ni-Mo/LaNi5多孔复合电极的制备及其电催化析氢性能[J]. 物理化学学报, 2011,27(6):1417-1423. doi: 10.3866/PKU.WHXB20110510

    Wang Senlin, Zhang Yi. Preparation and electrocatalytic performance of Ni-Mo/LaNi5 porous composite electrode toward hydrogen evolution reaction[J]. Acta Physico-Chimica Sinica, 2011, 27(6): 1417-1423. doi: 10.3866/PKU.WHXB20110510
    [13] Zhang Q A , Lei Y Q , Yang X G , et al. Phase structures and electrochemical properties of Cr-added V3TiNi0.56Hf0.24Mn0.15 alloys [J]. International Journal of Hydrogen Energy, 2000, 25: 997-981.
    [14] Liu Shouping, Tian Weiguo, Liu Renlong, et al. Study on the corrosion resistance of V3TiNi0.56Cr x (x=0.1, 0.3) hydrogen storage alloys in alkaline solution[J]. Journal of Functional Materials, 2007,38:1649-1651. (刘守平, 田卫国, 刘仁龙, 等. V3TiNi0.56Cr x (x=0.1, 0.3) 贮氢合金耐碱液腐蚀性能研究[J]. 功能材料, 2007,38:1649-1651.

    Liu Shouping, Tian Weiguo, Liu Renlong, et al. Study on the corrosion resistance of V3TiNi0.56Crx (x=0.1, 0.3) hydrogen storage alloys in alkaline solution[J]. Journal of Functional Materials, 2007, 38: 1649-1651.
    [15] Tian Weiguo. Research on the alkaline corrosion resistance of V3TiNi0.56Mx (M=Al, Cr) hydrogen storage alloy[D]. Chongqing: Chongqing University, 2007. (田卫国. V3TiNi0.56Mx (M=Al, Cr) 贮氢合金耐碱液腐蚀性能研究[D]. 重庆: 重庆大学, 2007.

    Tian Weiguo. Research on the alkaline corrosion resistance of V3TiNi0.56Mx (M=Al, Cr) hydrogen storage alloy[D]. Chongqing: Chongqing University, 2007.
    [16] Panek J, Kubisztal J, Bierskaiech Bożena. Ni50Mo40Ti10 alloy prepared by mechanicalalloying as electroactive material for hydrogen evolution reaction[J]. Surface & Interface Analysis, 2014,46(10-11):716-720.
    [17] Jiao Y, Hong W Z, Li P Y, et al. Metal-organic framework derived Ni/NiO micro-particles with subtle lattice distortions for high-performance electrocatalyst and supercapacitor[J]. Applied Catalysis B:Environmental, 2018,244:732-739.
    [18] Dong S Z, Li Y S, Zhao Z L, et al. Reparation of porous Ti-Cu alloy by one-step sintering method and application of hydrogen evolution reaction[J]. Journal of Electroanalytical Chemistry, 2022,918:116448. doi: 10.1016/j.jelechem.2022.116448
    [19] Huang Y X, Zhan Z X, Lei T, et al. Amorphous CoFeB on nickel foam as a high efficient electrocatalyst for hydrogen evolution reaction[J]. International Journal of Hydrogen Energy, 2022,47(25):12539-12546. doi: 10.1016/j.ijhydene.2022.01.247
    [20] Macdonald D D. On the existence of our metals-based civilization: I. Phase-space analysis[J]. Journal of the Electrochemical Society, 2006,153:B213-B224. doi: 10.1149/1.2195877
    [21] Guo Pengfei, Lin Xin, Digby D, et al. Unveiling the transpassive film failure of 3D printing transition alloys[J]. Corrosion Science, 2022,204:110412. doi: 10.1016/j.corsci.2022.110412
  • 加载中
  • 图(5)
    计量
    • 文章访问数:  80
    • HTML全文浏览量:  7
    • PDF下载量:  11
    • 被引次数: 0
    出版历程
    • 收稿日期:  2023-12-20
    • 刊出日期:  2024-08-30

    目录