
Meltdown and Spectre Attacks 1

Meltdown and Spectre Attacks

Copyright © 2019 by Wenliang Du, All rights reserved.
Personal uses are granted. Use of these problems in a class is granted only if the author’s
book is adopted as a textbook of the class. All other uses must seek consent from the author.

H.1. When we read from a memory address multiple times, the second access is usually faster
than the first access, what is the reason?

H.2. Regarding the Flush+Reload technique used in the book, why do we use an array of size
256*4096, why not use an array of size 256?

H.3. How do we use CPU cache as a side channel to send out a number 89?

H.4. We have defined an array of size 1024 (bytes). If the CPU cache size is 128 bytes (i.e.,
when memory address x is accessed, the memory from x to x+127 will be cached by the
CPU). Please describe how many distinct values we can send out using this array and the
Flush+Reload technique.

H.5. A secret number is stored at the kernel address 0xfb102000. The following user-level
program tries to access and print out this number. What is going to happen?

#include <stdio.h>
int main()
{
char *kernel_data_addr = (char*)0xfb102000; À

char kernel_data = *kernel_data_addr; Á

printf("I have reached here.\n"); Â

return 0;
}

H.6. A secret number is stored at the kernel address 0xfb102000. You are trying to print it
out. Please use plain English to describe how you can do this.

H.7. To improve the success rate of the Meltdown attack, it is better that the targeted kernel
memory has already been cached by CPU. Why?

H.8. If CPU does not do out-of-order execution, can we still launch the Meltdown attack?
What is the downside?

H.9. KAISER can be used to defeat the Meltdown attack. Its main idea is to not map kernel
memory in the user space. Explain why this idea works.

H.10. In the Spectre attack, why do we need to train the CPU?

H.11. If CPU does not do out-of-order execution, can we still launch the Spectre attack?

H.12. In the Spectre attack scenario, the protected memory and the attacker program are in the
same process, why can’t attackers directly access the protected memory?

H.13. When we run the SpectreAttack.c program listed in the book, why do we always
see array[0*4096 + DELTA] in the cache?



2 Meltdown and Spectre Attacks

H.14. Your program runs in a sandbox, and it is allowed to access the first 100 elements of a
protected buffer; the access has to go through the following sandbox API. The address
of the buffer is at 0xbfff0200. There is a secret number stored at 0xbfff0100, but
your program cannot access it due to the sandbox protection. Can you get this secret
number? If so, please describe how.

int low = 0;
int high = 100;
int restrictedAccess(int x)
{
if (x > low && x < high) {

return buffer[x];
} else {

return 0;
}

}


