
Shellcode 1

Shellcode

Copyright © 2022 by Wenliang Du, All rights reserved.
Personal uses are granted. Use of these problems in a class is granted only if the author’s
book is adopted as a textbook of the class. All other uses must seek consent from the author.

S9.1. The essence of a shellcode (32-bit) is to prepare four registers, eax, ebx, ecx, and
edx, before invoking the execve() system call. Please describe what values these
four registers should contain.

S9.2. In the stack-based approach, we need to store command string in the memory, and then
save the string’s address in ebx. Please write a code snippet (32-bit) to store the string
”aaaabbbbccccdddd” in the memory, and then save its address to ebx.

S9.3. In the stack-based approach, we need to store the argument array argv[] in the mem-
ory, and then store the array’s address in ecx. Please write a code snippet (32-bit) to
construct the following argv[] array in the memory, and then assign its address to
ecx.

argv[0] = 0x11111111
argv[1] = 0x22222222
argv[2] = 0x33333333
argv[3] = 0x00000000

S9.4. Compared to the stack approach, what is the main difference of the code segment ap-
proach in writing shellcode?

S9.5. The following shellcode is incomplete. You need to replace all the *’s with actual num-
bers. Please also add a brief comment to each line marked by a circled number to explain
its purposes. You cannot just describe the meaning of each instruction (such as saying
"pop eax" is to take out a value from the stack and store it to eax). You need to
explain its purpose, i.e., why the instruction is needed there.

section .text
global _start

_start:
BITS 32
jmp short two

one:
pop ebx À

xor eax, eax
mov [ebx+*], al Á

mov [ebx+*], ebx Â

mov [ebx+*], eax Ã

lea ecx, [ebx+*] Ä

xor edx, edx
mov al, 0x0b
int 0x80

two:
call one
db ’/bin/shabcde’ Å

2 Shellcode

db ’AAAA’ Æ

db ’BBBB’ Ç

S9.6. Please replace the question marks in the following 32-bit shellcode with concrete num-
bers. Please also briefly explain how you get the numbers.

section .text
global _start

_start:
BITS 32
jmp short two

one:
pop ebx
xor eax, eax
mov [ebx+?], al
mov [ebx+?], ebx
mov [ebx+?], eax
lea ecx, [ebx+?]
xor edx, edx
mov al, 0x0b
int 0x80

two:
call one
db ’AAAA’
db ’BBBB’
db ’/bin/sh*’

S9.7. The following shellcode is incomplete. Its goal is to execute the following command:
"/bin/rm -rf *" (without the quotations). Part of the code is given, with some
helpful information. Please complete this code. Your code should be well commented or
you will lost points.

_start:
jmp short two

one:
... add code here ...

mov al, 0x0b ; invoke execve() system call
int 0x80

two:
call one
db ’abcd/bin/rmab-rf****’
db ’AAAABBBBCCCCDDDDEEEEFFFFGGGG’

S9.8. Why does shellcode in general not allow zeros in the code?

S9.9. Please list three typical solutions to get rid of zeros in shellcode.

S9.10. We would like to store a string ”ab” on the stack, but we are not allowed to include any
zero in the code (the end of the string has a binary zero). (1) Please complete the code
for a little endian machine. (2) Please complete the code for a big endian machine.

Shellcode 3

mov ecx, "ab**"
... (missing code) ...
push ecx

S9.11. H
Please store 0xAA00BB00 in the eax register. You cannot have any binary zero in the
final machine code.

