
Testing and monitoring distributed applications build
using Azure Functions, CosmosDB and Service Bus

LESS

Henry Been

MORE

@henry_been

WONDERING WHO

IS THAT GUY?

HENRY BEEN
Independent Devops & Azure Architect

Microsoft MVP & MCT

henry@azurespecialist.nl
@henry_been

linkedin.com/in/henrybeen
henrybeen.nl

Once upon a time…

… I was tasked with building a distributed system

One central transaction engine

A component that bootstrapped some data

A third component that initiated transactions

Finally, there were 1..* downstream execution agents

Something like this…

@henry_been

Transaction
Engine

Bootstrap
component

User Interface
(Portal-ish)

Transaction
Agent

Managed
System Y

Once upon a time…

… I was tasked with building a distributed system

Three weeks for a POC

Three months to build

Six FTE to run and further develop and extend

“Good decisions come from experience. Experience
comes from making bad decisions.”

Mark Twain

@henry_been

“Good decisions come from experience. Experience
comes from making bad decisions. This is life. So,
never regret. Learn from mistakes and go ahead”

Mark Twain

@henry_been

NO WAY!

You shouldn’t
build distributed

systems

@henry_been

You shouldn’t build distributed systems

Communication is complex

@henry_been

Testing, monitoring and
troubleshooting is HARD!

More components, more costs
Requires a different skill-

and mindset

Then why are we
forced to build

distributed systems?

@henry_been

Less impact of errors

@henry_been
VS

Less impact of errors

@henry_been

Focus for developers

Transaction
Engine

User Interface
(Portal-ish)

Transaction
Agent

Managed
System Y

This system we own, understand,
develop and monitor. We know it well!

We don’t have time to understand 10000s LOC

@henry_been

The need for speed

Smaller systems change faster

Smaller systems deploy faster

Smaller teams learn and develop faster

Smaller components come and go faster

Less impact of errors

Focus for developers

T
ea

m
 D

 (
fa

r
aw

ay
)

T
ea

m
 C

 (
fu

rt
h

er
 a

w
ay

)
T

ea
m

 B
 (

cl
o

se
-b

y
)

Built by my team

Provisioned by
team A (close-by)

Team A (close-by)

Scope of my team

Large organizations are complex

Transaction
Engine

Bootstrap
component

User Interface
(Portal-ish)

Transaction
Agent

Transaction
Agent

Transaction
Agent

Managed
System X

Managed
System Y

Managed
System Z

@henry_been

How to test
distributed systems

@henry_been

A proper pyramid of tests…

@henry_been

Unit Tests

Integration Tests

System Tests

Manual
Tests

NOT THIS

Unit Tests

Integration Tests

System Tests

Manual Tests

BUT THIS

How many tests do I need?

@henry_been

System tests are a necessary evil

Unit test everything you can

Write integration tests against other components..

... that verify your assumptions

... that are as atomic as possible

A ratio of 1 : 5 – 15 for every level often works, YMMV

Unit tests

@henry_been

[TestFixture]

Public class StuffTest

{

[TestCase(0)] [TestCase(3)] [TestCase(7)] [TestCase(17)] [TestCase(20)]

public void WhenUsernameIsOfInvalidLength_ThenItThrows(int usernamelength)

{

var username = new string("a", usernamelength)

TestDelegate act = () => new User(username);

Assert.Throws<InvalidUsernameException>(act);

}

}

Integration tests

@henry_been

Our system

Class A

Interface B Interface C

Class C Interface D

Class D

Another system

REST API

Integration tests

@henry_been

Integration test scope

Class D should only reflect the API capabilities and NOT
contain business logic

Class D REST API

Integration tests

@henry_been

[Test]

public async task WhenCreatingUserInExternalApi_ItCanBeRetrieved()

{

var subject = new ClassD(TestContext.GetClassDCredentials());

var username = Guid.newGuid().ToString();

await subject.CreateUser(username);

var actual = subject.FindUser(username);

Assert.IsNotNull(actual);

}

My opinion: connect to the production

environment of the other component

or when necessary: create and destroy

a new environment for every test case!

System tests

@henry_been

Our system

Service Bus Namespace

Another systemAnother system

Queue

Another system

System tests

@henry_been

Our system

Service Bus Namespace

Queue

Drive from Test

Sense from Test

System tests

@henry_been

Our system

Service Bus Namespace

Another system

Queue

Sense from Test

Drive from Test

My experience: this
can be a pain in the…
backside if it is HTTPS

MORE DEMOS,

PLEASE!

Testing distributed
systems is hard.

But then there are
those that believe

in manual testing…

@henry_been

“We need to verify that our system integrates
correctly with all systems we depend on and all

systems that depend upon us!”

- Your random risk-averse person

@henry_been

Connected test environments

@henry_been

your TEST env

Their TEST env

Their TEST env

Their TEST env

Should we connect test environments?

HELL NO!

They will not stop before all test systems are connected!

You will get complaints when YOUR test environment is down

State inconsistencies left and right will invalidate all test results

Connected acceptance environments instead

@henry_been

Your ACC env
V4.68

Their ACC env
V0.32

Should we connect acceptance environments?

HELL NO!

They will not stop before all acceptance systems are connected!

You will only know if your software works with future versions!

Their PROD env
V0.30

Your PROD env
V4.53

“East, West,
Home Production Best!!”

@henry_been

Testing in production

@henry_been

Feature Toggles Experiments

Execute current OR new implementation,
depending on configuration

Execute both implementations, but only
return result from current implementation

Interface

Current
Implementation

New
Implementation

Interface

Current
Implementation

New
Implementation

OR AND

Testing in production

@henry_been

public async Task OnPost()

{

Position = FibonacciInput.Position;

Result = await Scientist.ScienceAsync<int>("fibonacci-implementation", experiment =>

{

experiment.Use(async () => await _recursiveFibonacciCalculator.CalculateAsync(Position));

experiment.Try(async () => await _linearFibonacciCalculator.CalculateAsync(Position));

experiment.AddContext("Position", Position);

});

}

https://www.henrybeen.nl/running-experiments-in-production/

Contract testing

@henry_been

Both the producer and consumer of messages, constantly validate that all messages they send or receive
confirm to the agreed contract and if not decline the message. This also in production.

Queue
Abstraction

Service Bus Namespace

Queue

Class QueueAbstraction
{

private readonly ISdkQueueSender _sdkObject;
private readonly IMessageContractValidator _messageValidator;

// ctr with DI for validator
// and construction of SDK object from injected credentials

public async Task SendMessage(Message message)
{

await _messageValidator.ValidateAsync(message);

await _sdkObject.SendMessageAsync(message);
}

}

Contract testing

@henry_been

Both the producer and consumer of messages, constantly validate that all messages they send or receive
confirm to the agreed contract and if not decline the message. This also in production.

Queue
Function

Service Bus Namespace

Queue

Class QueueFunction
{

private readonly IBusinessLogic _ myBusinessLogic;
private readonly IMessageContractValidator _messageValidator;

// ctr with DI for validator and business logic

[FunctionName(“QueueConsumer”)]
public async Task Run(… Message message)
{

await _messageValidator.ValidateAsync(message);

await _myBusinessLogic.ProcessMessageAsync(message);
}

}

Shared Message Descriptor (JSON Schema, AVRO schema, …)

Published by consumer

How to monitor
distributed systems

@henry_been

Monitoring distributed systems

@henry_been

Alert on every backend invocation failure

Have deadletter queues everywhere

Alert on every deadletter message

Alert on resource consumption limits

Alert on critical log entries

Fix all alert causes / remove all alert noise

Have distributed tracing in place

Use synthetic monitoring / use case monitoring

NEEDS MORE…

DEMOS!

@henry_been

Only built distributed systems when
you really, really have to!

@henry_been

Do not connect your non-production environments with other components

Build a proper pyramid of tests for your system

Provide a means for integration testing to your consumers

Consider contract testing

Monitor every component at the individual level

Implement distributed tracing

DO TRY THIS AT HOME!

HENRY BEEN

Independent Devops & Azure Architect

E: henry@azurespecialist.nl
T: @henry_been
L: linkedin.com/in/henrybeen
W: henrybeen.nl

Questions?

@henry_been

QUESTIONS?

Now is the time!

