
Collisions of SHA-0 and Reduced SHA-1?

Eli Biham1??, Rafi Chen1,
Antoine Joux2,3,? ? ?,

Patrick Carribault3, Christophe Lemuet3, and William Jalby3

1 Computer Science Department
Technion – Israel Institute of Technology

Haifa 32000, Israel
Email: {biham,rafi hen}@cs.technion.ac.il

WWW: http://www.cs.technion.ac.il/∼biham/
2 DGA

Email: antoine.joux@m4x.org
3 Laboratoire PRISM†

Université de Versailles St-Quentin-en-Yvelines
45, avenue des Etats-Unis

78035 Versailles Cedex
FRANCE

Email: {Patrick.Carribault,Christophe.Lemuet,William.Jalby}@prism.uvsq.fr

Abstract. In this paper we describe improvements to the techniques
used to cryptanalyze SHA-0 and introduce the first results on SHA-
1. The results include a generic multi-block technique that uses near-
collisions in order to find collisions, and a four-block collision of SHA-0
found using this technique with complexity 251. Then, extension of this
and prior techniques are presented, that allow us to find collisions of
reduced versions of SHA-1. We give collisions of variants with up to 40
rounds, and show the complexities of longer variants. These techniques
show that collisions up to about 53–58 rounds can still be found faster
than by birthday attacks.

1 Introduction

The hash function SHA was designed by the National Security Agency (NSA)
and issued by NIST in 1993 as a Federal Information Processing Standard (FIPS-
180) [3]. A revised version called SHA-1, which specifies an additional rotate
operation to the message expansion, was later issued in 1995 as FIPS-180-1 [4].
The revised version is aimed to be a more secure replacement, that improves
the security provided by the hash function. No details of the weaknesses found

? Part of the results of this paper were given by the first author in an invited talk in
SAC 2004, Waterloo, Canada.

?? Part of this work was done while visiting École normale supérieure, Paris, France.
? ? ? This work was mostly done while the author was at DCSSI Crypto Lab

† CNRS UMR-8144



in SHA-0 were provided. In order to refer more clearly to the first version, we
denote it as SHA-0, which is a widely used but non standardized name.

SHA-0 and SHA-1 are based on the principles of MD4 [5] and MD5 [6]. They
take messages of any length (up to 264 bits) and compute 160-bit hash values.

At CRYPTO’98 Chabaud and Joux [2] proposed a theoretical attack on
the full SHA-0 with a complexity of 261. It is a differential attack that uses a
weakness of the expansion algorithm of SHA-0. Their attack is faster than the
generic birthday paradox attack and partially explain the withdrawal of SHA-0
by NSA. It is interesting to note that they count the complexity in term of the
number of message pairs to be tried and not in term of the number of SHA-0 calls.
At first, it may seem to be an artificial way to reduce the claimed complexity
by 2. However, due to the use of an early abort strategy in the implementation,
the effective complexity in term of SHA-0 calls is roughly 1/4 of the announced
value. For the sake of clarity, we continue this tradition and announce all the
complexity results by giving the average number of necessary message pairs.

In [1] Biham and Chen discussed near-collisions of SHA-0. By using some
of the ideas that originally appeared in [2], they showed that in SHA-0 near-
collisions are easier to find than full collisions, and proposed an efficient searching
algorithm that eliminates the probabilistic behavior of more than 20 rounds of
the algorithm, using the notion of neutral bits. When applied to the attack of
Chabaud and Joux, this improves the complexity by an approximate factor of 32.

In our current research we improve over the results of [1] in several directions:
we first present a tool that uses near-collisions in order to find collisions using a
multi-block technique. This tool can be used to attack variants that cannot be
attacked by the original technique, as well as to reduce complexities of attacking
other variants. With some additional refinements, it also improves the attack on
full SHA-0, reducing the complexity down to 251. Then we present our attacks
on reduced-round SHA-1, which can find collisions of up to 53–58 rounds faster
than the birthday attack, and show new techniques to attack SHA-1.

In parallel to this paper, Rijmen and Oswald also recently studies reduced
versions of SHA-1 [9].

This paper is organized as follows: In Section 2 we describe how near-collisions
can be used to find collisions by a multi-block technique. In section 3, we show
how the multi-block technique can be refined in order to work on the full SHA-0,
this leads to a full collision on SHA-0 using messages of four blocks. In Section 4
we describe how the attack on SHA-0 is expanded to attack SHA-1. This section
presents various attacks on reduced versions of SHA-1, where each attack em-
phasizes different aspects and techniques. A 34-round SHA-1 collision that can
be found with relatively low complexity is introduced. With this reduced version
we show how collisions can be found with messages that have only ASCII letters
and even messages with some meaningful words. We continue with a collision of
36-round SHA-1 that uses a message of two blocks, where the first block changes
the initial value to a value that is convenient for the attack, and the collision
is found in the second block. This attack also shows some differences between
the attack of SHA-0 and SHA-1, where the non-linearity of SHA is used in the



attack. We then discuss how to bypass the consecutive disturbances problem in
the IF rounds. The last attack in this section is a two-block collision of 40-round
SHA-1 that uses the same characteristic in both blocks. All the collisions of re-
duced SHA-1 that we present were found within a few seconds of computation
on a PC. Section 5 analyzes the complexity of attacking various reduced versions
of SHA-1 with more rounds, and shows that SHA-1 up to 53–58 rounds can be
attacked faster than the birthday attack. The assessments are based on the best
characteristics we could find for each reduced version. Section 6 summarizes the
paper.

Due to lack of space, we removed the descriptions of SHA-0 [3] and SHA-1 [4],
and the description of prior techniques related to this paper, e.g., the original
technique for analysis of SHA-0 [2], the improved technique and neutral bits [1].
For descriptions of SHA and these techniques, see the respective references. We
also shortened the descriptions of some results and removed some detailed ex-
planations about the attack complexity. The full details will appear in the full
version of the paper.

Note This paper is the result of the merge of two papers by non-intersecting
groups of authors. The first group consists of the Technion authors, and the
other consists of the DGA and PRISM authors. The multi-block technique as a
generic tool including the 50-rounds SHA-0 application and the results on SHA-
1 are due to the first group. Motivated by their work, the first author within
the second group restarted searching on old, non-working results about iterated
collisions in SHA-0. It resulted in an improved multi-block cryptanalysis for full
SHA-0, which was then ported and optimized for the supercomputer by the other
authors within the group.

2 The Multi-Block Tool

SHA uses an iterative process in which each block Mj along with an intermediate
value hj−1 is subjected to a compression function, whose output is the value
of the next intermediate value hj . Previous works on hash functions, and in
particular on SHA, use only one block for the attack. Those attacks start with
the initial value h0 and construct a pair of messages M1 and M∗

1 that output the
same h1 to find a collision, or h1, h

∗

1 with a small difference h′

1 for near-collisions.

The tool we present in this section uses the iterative process of SHA to find
collisions. The idea of this technique is to start with a pair of blocks M1 and
M∗

1 that create a near-collision h′

1, and continue with a construction of a second
block. In the first block we base the message on a characteristic that has a zero
input difference h′

0, and a non-zero output difference h′

1, with some message
difference M ′

1. In the second block we use a characteristic with a non-zero input
difference h′

1, and a zero output difference h′

2.

The attack proceeds as follows: Given messages M1, M
∗

1 that conform to the
first characteristic, we receive the pair of intermediate hash values h1 and h∗

1.
Using these values, we search for a second block M2, M

∗

2 whose input values are



h
′
0 = 0













�

J
J
J

J
JĴ

M1 M
∗
1

near-collisionh1 h
∗
1

J
J

J
J
JĴ













�

M2 M
∗
2

h
′
2 = 0

collision

Fig. 1. Using Intermediate Near-Collisions to Find Collisions with Two Blocks

h1, h
∗

1, and which conforms to the second characteristic. Such a pair will then
have h′

2 = 0, which means a collision after the second block.
As a result we succeed in finding a near-collision in the first block, and then

finding a second block, constructed in a similar way, but in which each message
starts with a different input value (rather than same value as is usually done in
hash functions) in order to find a collision. An illustration of a two-block attack
is given in Figure 1.

The multi-block tool is particularly useful when there is no characteristic
that predicts a full collision in one block, and to reduce the complexity of an
attack when a single-block collision is more complex.

It should be noted that Wang [7, 8] independently used two message blocks
to find the collision of MD5, using a first block that creates a near-collision, and
a second block that restarts from this near-collision and ends with a collision.

Applications In order to illustrate the multi-block technique, we can apply to
SHA-0 reduced to 50-rounds. This example is interesting, since this reduced ver-
sion does not have any characteristic (i.e., any disturbance vector) that predicts
a collision with a single block. However, it is very easy to find near-collisions
with complexity of about 217. Using the multi-block technique, we can restart
from this near-collision in order to find a longer message pair that collides after
the second block. The total complexity remains about 217.

Collisions with More than Two Blocks This technique can be generalized to
several blocks. In the case of two blocks the first block of the messages M, M ∗ is
constructed by using a characteristic that has a zero input difference h′

0 and, a
non-zero output difference h′

1. In the second block we use a characteristic whose
input difference is h′

1, and which has a non-zero output difference h′

2. In the case
of two blocks h′

2 = 0, which means a collision. However, in case h′

2 6= 0, it is



h
′
0 = 0













�

J
J
J

J
JĴ

M1 M
∗
1

near-collisionh1 h
∗
1

? ?

M2 M
∗
2

near-collisionh2 h
∗
2

near-collision

h
′
k = 0

collision

hk−1 h
∗
k−1

J
J

J
J
JĴ













�

Mk M
∗
k

Fig. 2. The Multi-Block Technique—Using Intermediate Near-Collisions to Find Col-
lisions

possible to use h′

2 as the input difference of a third block which leads to a collision
(see Figure 2). Alternatively the third block can lead to another near-collision
that may later be converted to a collision of the fourth block. In general the
technique can find k-block collisions, where the first block starts with h′

0 = 0,
with k − 1 intermediate near-collisions h′

i 6= 0 (i = 1, . . . , k − 1), which lead
to a collision with h′

k = 0 after k blocks. The complexity of finding the k-block
collision is the sum of the complexities of finding the k−1 near-collisions and the
final collision. More information on usage of multi-block collisions will appear in
the full paper.

3 A Multi-Block Collision of SHA-0

Since the multi-block technique described above is very promising, it is extremely
tempting to apply it to the full 80 rounds SHA-0. Unfortunately, contrarily to
what happens with the 50-rounds version, there is no attack of this type which
behaves better than the single block attack proposed by Chabaud and Joux. All
the other paths that use near collisions happen to be dead-ends.

In order to remove this obstruction, another key idea is necessary. We should
note that in the early rounds of SHA-0, an IF function is used. This means, that



during the early rounds, SHA-0 may in some case behave differently than the
linearized model of [2]. This misbehavior might allow us to connect differentials
which do not belong together in the linearized model of SHA-0. In order to make
this idea precise, we first introduce some notations to describe the differences
before and after each block. First, remark that in each register A to E, after
a successful application of a one block differential, a difference may occur at
a single, fixed, position. In A and B a difference may occur at bit 1, in C, D
and E at bit 31. As a consequence, to describe an initial or final difference, a
5-bit number suffices. We assign the high order bit to A and the low order bit
to E. Thus, a state with a single difference D will be referred to as state 2.
The second step is to compare the expected behavior of a reference state in
the linearized model with the possible behaviors of a given state when the IF
function is used, i.e., in real-life SHA-0. This is done by examining how the initial
difference propagates in the five first rounds.4 To start with a simple example,
assume that reference state 2 is considered in the linearized model. In that case,
we have a single initial difference on bit 31 of D. Due to the XOR function,
this difference propagates in the update formula for the next value of A. Thanks
to the disturbance vector, it will be adequately corrected, however, this is not
relevant for this part of the discussion, we just need to know that it propagates
in the formula. Then, the registers are shifted and the initial difference moves
to E. In the next update formula, it will also propagate, again on bit 31. After
that round, the initial difference has vanished and no longer propagates. Now,
consider that state 3 enters the real SHA-0. Then, in the first formula, both D
and E have a difference on bit 31, however, depending on the result of the IF
function the difference on D may either propagate or not. More precisely, if bit
31 of register B (which is the same in both messages) is a 1, the difference on D
does not propagate. On the other hand, the difference on E always propagates.
The gross result is that a single difference propagates on bit 31, thus at this point
state 3 behaves as reference state 2 in the linearized model. After the registers
shift, a difference remains on E and it propagates in the second update formula.
As a consequence, we see that real state 3 may behave as reference state 2. Thus,
we may start a differential attack from state 3 by using a disturbance vector that
“expects” state 2. Moreover, state 3 may also behave like reference state 3. This
implies, that it is possible to connect together much more differentials than
initially expected. Thus, the graph of possible paths is considerably richer than
first predicted and we expect to find a better attack.

With this translation table in mind, we now try to assemble several differen-
tials with different disturbance vectors into a global attack. For any disturbance
vector, we add five extra bits, the “negative” bits which indicate the starting
reference state. Similarly, the value of the last five bits indicate the expected

4 We further remark that this representation can be extended to a general kind of
characteristics describing the evolution of differences in registers A, . . . , E, and in
the expanded message, in a similar way to the characteristics used in related-key
differential cryptanalysis. In such a case, the intermediate differences can be very
different than predicted by the model of [2], while still leading to collisions.



state after the block cipher part of the compression function. To incorporate
such a disturbance vector into the global attack, we proceed as follows: Assume
that the current state is a and that we are given a disturbance vector a′ → b,
i.e., a disturbance that goes from reference state a′ to expected state b, then if a
is compatible with a′, we have a differential that goes from state a to next state
a⊕ b after the final addition. Thus, we can build a transition graph, where each
possible state is a node, and each differential, with good enough probability, is
an edge. In this graph, we now search for a path from state 0 to itself, with low
expected complexity. The best path we could find has length 4, it starts from
state 0, goes to 3, 25, 8 and finally comes back to zero. It is build on the following
disturbance vectors:

Ref (DV) DV Actual Compatible

States States With

0 → 3 00000 00010000101001000111 10010110000011100000 0 → 3 2 3

00000011000000110110 00000110001011011000

2 → 26 01000 10000000010000101001 00011110010110000011 3 → 25 17 18 28 31

10000000000011000000 11011000000110001011

17 → 17 10001 00100101000100101111 11000010000100001100 25 → 8 8 11 13 14

00101100100000000001 11010011101000010001

11 → 8 11010 00100000000100001010 01000111100101100000 8 → 0 collision
11100000000000110000 00110110000001100010

One can easily check that this sequence of block differences can possibly
lead to a full collision. Initially, the difference between the two messages of a
pair corresponds to state 0. After the first block, we intend to reach state 3.
Of course, for this block the final additions add equal values on each branch,
thus the difference is expected to remain at state 3. Since state 3 is compatible
with reference state 2, we restart from there and go to state 26. For this second
block, the additions change state 26 into state 25. Again, the compatibility of 25
with reference state 17 allows us to restart with the third block difference. The
expected state is 17 before the final additions and 8 after them. Thanks to
the compatibility of 8 with 11, we use the fourth difference and expect a state
of 8 before the additions. Since the two states 8 correspond to differences on
the same bits, we expect that they cancel each other. Thus, we finally reach a
full collision. Evaluating the exact complexity of this attack requires a detailed
analysis that, for lack of space, is not given here. The total cost is 251 message
pairs, as confirmed by our implementation.

3.1 Implementation and Optimization

The theoretical complexity of our collision search algorithm is 251. This com-
plexity is expressed in term of the number of pairs of messages to test. As is the
case with the original attack of Chabaud and Joux, this roughly corresponds to
the cost of 249 evaluations of the SHA-0 compression function.



In order to demonstrate feasibility of this collision search, we implemented
this algorithm on an Intel Itanium 2 processor. This processor allows a wide de-
gree of instruction level parallelism (ILP). More precisely, it is able to execute up
to six instructions per cycle, and a wide variety of combinations is possible (e.g.,
6 arithmetical operations, or 4 memory operations and 2 floating point multi-
ply add, or 3 logical operations and 3 branches, etc.). Furthermore, this wide
ILP capability is enhanced by a large register file and many duplicated functional
units. The processor also offers several mechanisms to implement control/branch
structures with speculative execution, predication, and multi-way branches (up
to three branches per cycle). Due to the complex nature of the processor, the
performance of programs running on it heavily relies on the capability of the
compiler to produce efficient code. Our algorithm was compiled by the Intel
compiler (ICC) whose performance in this respect is usually above average.

To optimize our code, a profiling step was performed to detect the most time-
consuming code sections. This study revealed that the main function, which
enumerates pairs of messages derived from a reference pair and its’ neutral set
represented a large majority of the execution time. Focusing on this part, we
checked the behavior of the code at the hardware level during execution through
the use of hardware counters.

We, thus, determined that the main performance limiting factors were:

– Limited amount of parallelism: All rounds of SHA-0 contain chains of bitwise
operations (+, ROLx, . . . ) depending on each other, which limited the effect
of the internal parallelism.

– Complex control flow : Due to the probabilistic nature of the collision search,
the control flow is quite complex and statistically (at compile time) unpre-
dictable.

– Cached memory access : Despite being in a very favorable case where all data
fits in the first level data cache (L1D) of the Itanium 2 (16KB), the number of
accesses to the cached memory is very high, when arrays are used to represent
the intermediate values during the computation. As a consequence, memory
access in L1D was a bottleneck in our basic implementation.

Due to the complex control flow, the Intel compiler could not determine a
good way to execute branches. Even the use of advanced optimization tools such
as profile guided optimization, did not help much. The compiler still used specu-
lative execution, which led to bad performance. A first step in our tuning process
was to make the compiler avoid speculation, by writing each round differently,
depending on the probability of success at this point.

Since the number of L1D memory accesses was critical, the second step con-
sisted in reducing them. This was done by replacing all arrays by registers thus
avoiding many memory stores and loads. This optimization makes good use of
the large number of registers of the Itanium 2. Such a technique is called register

promotion and is usually performed by the compilers. However, in this example,
this had to be done on a large number of source lines and the compiler was
unable to deal with this. Moreover, we had to extend the technique to deal with
the complex control structure.



All the fine tuning techniques allowed to gain an additional 20% of perfor-
mance compared to the best compiler options (which are not the standard O3

options and had to be determined through exhaustive search). On average, 4
instructions per cycle were effectively executed, out of a maximum 6.

3.2 A Full Collision of SHA-0

Once the program was ported to the supercomputer, it processed a large number
of messages pairs for each block. Very precisely, the total number of trial pairs
was:

First block 796 682 307 091 035 ≈ 249.5

Second block 1 572 177 940 314 628 ≈ 250.5

Third block 1 712 558 626 669 268 ≈ 250.6

Fourth block 17 049 400 703 749 ≈ 244

We can remark that the number of computations is higher than expected
for the first two blocks. At first, we simply assumed that we had been unlucky,
however, a deeper investigation revealed a subtle bug in the neutral bits identi-
fication code. Due to this bug, some messages pairs were processed more than
once, and up to four times, by the program. These useless computations explain
the mismatch between the predicted complexity of the first two blocks and the
effective numbers of messages pairs processed. Luckily, the bug did not affect
the computation of block 3, thus the total slowdown was limited. Finally, we
reached the following messages (written in hexadecimal):

a766a602 b65cffe7 73bcf258 26b322b3 d01b1a97 2684ef53 3e3b4b7f 53fe3762

24c08e47 e959b2bc 3b519880 b9286568 247d110f 70f5c5e2 b4590ca3 f55f52fe

effd4c8f e68de835 329e603c c51e7f02 545410d1 671d108d f5a4000d cf20a439

4949d72c d14fbb03 45cf3a29 5dcda89f 998f8755 2c9a58b1 bdc38483 5e477185

f96e68be bb0025d2 d2b69edf 21724198 f688b41d eb9b4913 fbe696b5 457ab399

21e1d759 1f89de84 57e8613c 6c9e3b24 2879d4d8 783b2d9c a9935ea5 26a729c0

6edfc501 37e69330 be976012 cc5dfe1c 14c4c68b d1db3ecb 24438a59 a09b5db4

35563e0d 8bdf572f 77b53065 cef31f32 dc9dbaa0 4146261e 9994bd5c d0758e3d

and

a766a602 b65cffe7 73bcf258 26b322b1 d01b1ad7 2684ef51 be3b4b7f d3fe3762

a4c08e45 e959b2fc 3b519880 39286528 a47d110d 70f5c5e0 34590ce3 755f52fc

6ffd4c8d 668de875 329e603e 451e7f02 d45410d1 e71d108d f5a4000d cf20a439

4949d72c d14fbb01 45cf3a69 5dcda89d 198f8755 ac9a58b1 3dc38481 5e4771c5

796e68fe bb0025d0 52b69edd a17241d8 7688b41f 6b9b4911 7be696f5 c57ab399

a1e1d719 9f89de86 57e8613c ec9e3b26 a879d498 783b2d9e 29935ea7 a6a72980

6edfc503 37e69330 3e976010 4c5dfe5c 14c4c689 51db3ecb a4438a59 209b5db4

35563e0d 8bdf572f 77b53065 cef31f30 dc9dbae0 4146261c 1994bd5c 50758e3d

which have the same hash values. More precisely, the intermediate hashes for
both messages are compatible with the predictions of our differential attack and
their precise values are:



IV 67452301 EFCDAB89 98BADCFE 10325476 C3D2E1F0

Block 1 83C1CE2D C5BF5480 C2AF2358 104B337B 9E78A1E7

Block 2 27AE025A 9D36F7B6 29FA88E7 87B70063 984119F3

Block 3 4DD120B4 D6EC801F 468628A7 0CC26464 371F36B2

Block 4 81FB4643 08FDF1F4 A3C4F3A3 6188FED3 FD2378E6

Padding C9F16077 7D4086FE 8095FBA5 8B7E20C2 28A4006B

IV 67452301 EFCDAB89 98BADCFE 10325476 C3D2E1F0

Block 1 83C1CE2D C5BF5480 C2AF2358 904B337B 1E78A1E7

Block 2 27AE0258 9D36F7B4 29FA88E7 87B70063 184119F3

Block 3 4DD120B4 D6EC801D 468628A7 0CC26464 371F36B2

Block 4 81FB4643 08FDF1F4 A3C4F3A3 6188FED3 FD2378E6

Padding C9F16077 7D4086FE 8095FBA5 8B7E20C2 28A4006B

In this table, the underlined values highlight the difference between the two
hash processes. These differences are as predicted by our differential attack. After
the fourth blocks, the two messages collide. Of course, since the two messages
have the same length, the padding blocks are identical. Thus, the final values
inherit from the fourth block collision.

4 SHA-1 Results

Our attack on SHA-1 extends the techniques of [1] designed for SHA-0. The
only difference between SHA-1 and SHA-0 is an additional rotation operation
in the expansion process. Due to this rotation SHA-1 mixes the bits in the
expanded message in a more efficient way than SHA-0 does, thus making the
attack much less efficient against SHA-1 (as was already noted in [1]). In this
section we observe that with some modifications, the attack can be applied to
reduced versions of SHA-1. In the next subsections we present collisions of 34–40
rounds SHA-1 that we found using this application.

4.1 A Collision of 34-Round SHA-1

The attacks of SHA-0 use only bit 1 as the location of disturbances. This bit
is selected to eliminate the probabilistic behavior of the carry when corrections
are applied to bit 31, thus increasing the total probability of the characteristic.
Since the expansion process in SHA-0 does not mix bits in different locations
in the 32-bit word, all the disturbances in the expanded message are in bit 1,
but this is not the case in SHA-1. Therefore, other bits can be used as distur-
bances. With this change in the selection, a disturbance vector in SHA-1 is not
boolean, in which each entry tells whether there is a disturbance in bit 1, but
instead a 32-bit word that represents all the disturbances in a round. Following
this change, the corrections associated with a disturbance vector are derivated
slightly differently than in [1] (i.e., corrections are applied to each disturbance
relative to its location).

We observe that for 34-round reduced SHA-1 (unlike longer versions) there is
a disturbance vector with a very low Hamming weight, which is given in Table 1.
In this table D.Vec column shows the expected values of A′

i+1 for i = 0, . . . , 33,



Rnd D.Vec D&C Rnd D.Vec D&C Rnd D.Vec D&C

−5 00000000 8 00000000 80000003 21 00000000 00000040
−4 00000000 9 00000002 40000002 22 00000002 00000000
−3 00000000 10 00000000 C0000040 23 00000000 80000040
−2 00000000 11 00000000 C0000002 24 00000000 80000002
−1 00000000 12 00000000 80000000 25 00000000 00000000

0 00000002 00000002 13 00000000 80000000 26 00000000 80000000
1 00000000 00000040 14 00000002 80000002 27 00000000 80000000
2 00000002 00000000 15 00000000 00000040 28 00000000 00000000
3 00000000 80000040 16 00000000 00000002 29 00000000 00000000
4 00000002 80000000 17 00000000 80000000 30 00000000 00000000
5 00000000 00000040 18 00000000 80000000 31 00000000 00000000
6 00000003 80000001 19 00000000 80000000 32 00000000 00000000
7 00000000 00000060 20 00000002 00000002 33 00000000 00000000

Table 1. The Disturbance Vector Used for 34-round SHA-1 (in 32-bit hex words)

Message 1:
F1641C2B 242BFDB5 EAE01E30 F4BBBA6F 18D45E8E DE68AEBA 74EC8CF9 FC204957

45AAA8BF 1CD3AE7D D845C2F3 AC737464 F25BEBBB BE5FFF1D 2ADB2818 0B1D13FB

Message 2:
F1641C29 242BFDF5 EAE01E30 74BBBA2F 98D45E8E DE68AEFA F4EC8CF8 FC204937

C5AAA8BC 5CD3AE7F 1845C2B3 6C737466 725BEBBB 3E5FFF1D AADB281A 0B1D13BB

Table 2. Collision of SHA-1 Reduced to 34 Round (in 32-bit hex words)

which we denote by δi+1 (note that the indices of δ here are 1, . . . , 34, rather
than 0, . . . , 33, as δi is the difference at the input of round i). The D&C col-
umn shows the message difference (which is underlined and shown in rounds
0, . . . , 15), and the differences of the expanded messages in rounds 16, . . . , 33.
δ−4, . . . , δ0 are also shown in this table (in rounds −5, . . . ,−1), and their values
are related to the initial value differences. Intermediate rounds after which colli-
sions are predicted are marked in boldface. This disturbance vector is unique in
that almost all the disturbances are in one location (bit 1), and in all of the 34
rounds there is only a single disturbance in a different location, which is bit 0
in round 6. This disturbance succeeds to cancel the avalanche effect that is ex-
pected in SHA-1 due to the additional rotate operation, and that does exist in
other disturbance vectors.

By using the neutral bits method of [1], the complexity of an attack can
be estimated based on the number of disturbances after round 20. Thus, using
this disturbance vector, that has only two disturbances after round 20, we easily
found millions of collisions, one of which is given in Table 2.

Since the complexity of finding collisions in this 34-round attack is so low,
we were able to generate collisions with additional constraints, which caused



Message 1:
IkGDqVMwISGGcBMpNHMYavPTsmUlykPTzokJOkwnrSgJSfDmlpeqsmDzWbAjmNxP

Message 2:
IkgDqRMwISGGcFEpNHEYarPTsmMlymPTzoSJOkSnrWkJSfhmlpmqsmLzWbijmJxP

Table 3. Two Messages in ASCII Letters that Collide Under 34-Round SHA-1

Message 1:
I Am OilMANgujnPay916472136314$USAkNOWwTkjepMFXGlmfHNGcpodElGfvL

Message 2:
I am KilMANgunfPay11607213.312$USASNOWSTknipMFtGlmnHNGkpodmlGbvL

Message 1:
OhG, not this mess,age notThat onenot U, oh noHRtBMTkKllLlIluvpB

Message 2:
Ohg, jot this$eess$aga notLhar oneVot q, kd nodRtBETkKdlLlalurpB

Table 4. Two Examples of Partially Meaningful Messages that Collide Under 34-
Round SHA-1

some increase in the complexity. This way we found collisions whose all bytes
are formed of ASCII letters. The disturbance vector of Table 2 does not allow
that, as some bytes of the message differ in the most significant bits. However,
by rotating the locations of the disturbances (by the same number of bits in
all the rounds) we can move the differences to lower bits, while increasing the
complexity of the attack by a small factor. A colliding pair of messages consisting
entirely of letters in ASCII is given in Table 3.

With some additional creativity, and some additional increase in the com-
plexity, it was also possible to force some of the bytes into partial English text.
Table 4 lists two examples. The first example is an attempt to force the two
colliding messages to contain meaningful text. However, there are still many
constraints on the possible text, thus it can be seen that some letters are capi-
talized, while other are not, that some spaces appear between words, while they
do not appear between other words, and that some random letters must be
allowed in some locations in order to allow more text afterwards. The second
example in Table 4 is an attempt to further improve the text of one message in
the expense of the text of the other message.

4.2 A Collision of 36-Round SHA-1

In this section we present a collision of 36-round reduced SHA-1 along with
several techniques that were used to find it.

In our attack on 36-round SHA-1 we use the best characteristic that predicts
a collision after one block. We show this disturbance vector in Table 5.

It should be noted that this characteristic cannot be used with the standard
initial value of SHA-1, i.e., with

h0 = (67452301x, EFCDAB89x, 98BADCFEx, 10325476x, C3D2E1F0x),



Rnd D.Vec D&C Rnd D.Vec D&C Rnd D.Vec D&C

−5 00000000 9 00000002 00000008 23 00000000 80000050
−4 00000000 10 00000002 00000042 24 80000003 80000001
−3 00000000 11 80000000 50000042 25 00000000 A0000070
−2 00000000 12 00000002 10000010 26 00000000 20000003
−1 00000000 13 00000000 90000040 27 00000002 40000002

0 80000000 80000000 14 00000002 20000000 28 00000000 E0000040
1 00000000 00000010 15 00000000 20000040 29 00000000 E0000002
2 00000001 80000001 16 80000003 20000001 30 00000002 80000002
3 00000000 20000020 17 00000000 00000070 31 00000000 80000040
4 00000003 20000002 18 00000000 00000003 32 00000000 80000002
5 00000002 60000062 19 00000002 60000002 33 00000000 80000000
6 00000001 40000042 20 00000000 E0000040 34 00000000 80000000
7 00000002 80000020 21 00000000 E0000002 35 00000000 80000000
8 40000000 00000041 22 80000002 00000002

Table 5. The Disturbance Vector Used for 36-Round SHA-1 (in 32-bit hex words)

Common block 1: sixteen 00000000 words

Message 1, block 2:
9F29DE8D BBD58270 1F11EB22 A6637C3E 7E6FB0C0 63E9BF5E C4FF7010 073174B3

3133689A 579A753E 2D17124D 7D37E853 5B5BBB01 F0371FBB 025A725C 8FB9FE33

Message 2, block 2:
1F29DE8D BBD58260 9F11EB23 86637C1E 5E6FB0C2 03E9BF3C 84FF7052 87317493

313368DB 579A7536 2D17120F 2D37E811 4B5BBB11 60371FFB 225A725C AFB9FE73

Table 6. The Second Block of the Collision of 36-Round SHA-1 (in 32-bit hex words)

due to the observation that in round 2 there is a difference in the most significant
bit of register B (B′ = 80000000x), but both most significant bits of C and D
are zero (where C = 67452301x ≪ 30 and D = EFCDAB89x ≪ 30). Thus,
considering the differences of the messages (W ′

2 = 80000001x) in that bit, the
new content of A must have a difference in this bit, in contrary to the prediction
of the disturbance vector.

In order to be able to use the disturbance vector of Table 5, the initial value
is replaced by another value by adding an additional first block, which in this
case is the whole zero block (M1 = M∗

1 = 0). The resultant intermediate hash
value is

h1 = (37970DFFx, 5E912289x, C78B3705x, 923B82E9x, CC36E948x).

With this intermediate value h1, we can now proceed to the next block with the
disturbance vector of Table 5. The second block of the collision of the 36-round
SHA-1 is presented in Table 6.



Round D&C δi+1 A
′
i+1 B

′
i+1 C

′
i+1 D

′
i+1

0 80000000 80000000 80000000 00000000 00000000 00000000
1 00000010 00000000 00000000 80000000 00000000 00000000
2 80000001 00000001 00000001 00000000 20000000 00000000
3 20000020 00000000 00000000 00000001 00000000 20000000
4 20000002 00000003 00000001 00000000 40000000 00000000
5 60000062 00000002 00000002 00000001 00000000 40000000
6 40000042 00000001 00000001 00000002 40000000 00000000
7 80000020 00000002 00000002 00000001 80000000 40000000
8 00000041 40000000 40000000 00000002 40000000 80000000
9 00000008 00000002 00000002 40000000 80000000 40000000
10 00000042 00000002 00000002 00000002 10000000 80000000
11 50000042 80000000 80000000 00000002 80000000 10000000
12 10000010 00000002 00000002 80000000 80000000 80000000
13 90000040 00000000 00000000 00000002 20000000 80000000
14 20000000 00000002 00000002 00000000 80000000 20000000
15 20000040 00000000 00000000 00000002 00000000 80000000

Table 7. Comparison of δi and A
′
i in the 36-Round Collision (in 32-bit hex words)

A Generalized Test for Conformance The 36-round collision of Table 6
presents an additional change in respect to the attack of SHA-0. In the attack on
SHA-0, the intermediate differences A′

i are necessarily equal to δi for i = 1, . . . , r,
where r is the number of rounds of the analyzed compression function. In SHA-1
this is not the case, since more than a single location of a bit are selected for the
disturbances. In cases where there are two or more disturbances or corrections
in adjacent bits, it may happen that the more significant bit is not correctly
approximated, e.g., the IF function does not output the XOR of its inputs for
the particular values of the registers. However, it may happen that the carry
of the less significant bit cancels this wrong approximation, resulting with the
expected difference A′

i = δi. In other cases, a wrong approximation of the less
significant bit cancels the correct approximation of the more significant bit, e.g.,
the addition modulo 232 of the less significant bit changes the carry. In these
cases A′

i 6= δi, and the difference is in this more significant bit. The difference
that the more significant bit expects to create in A′

i is now canceled, but the
corrections for this expected difference still exist in the following five rounds.
These corrections are now used to correct wrong approximations of the less
significant bit which change the carries in the next five rounds. If we are lucky,
the less significant bit creates additional differences in the carry, thus corrects
the differences in A′

i in the next rounds.

Table 7 shows the differences of first 16 rounds of the compression function
in the second block of the 36-round collision (shown in Table 6). In this table
the D&C column shows the message difference M ′, δi+1 shows the expected
difference in A′

i+1, and the other four columns show the actual difference A′

i+1,
B′

i+1, C ′

i+1, and D′

i+1. The table shows a situation where two disturbances are
applied to bit 0 and 1, and the carry change of bit 0 cancel the disturbance of



bit 1. The entry of round 4 in the table shows (in boldface) that the expected
difference δ5 is different from the actual value of A′

5. This difference between the
expected and actual values is due to a carry change of the disturbance of bit 0
that cancels the difference in bit 1. The five corrections in the next five rounds
do not have a disturbance in registers A, B, C, D, nor E, but other properties of
the IF and carry overcome the missing difference and ensure correct differences
in the following rounds.

We call bits whose difference may differ from the expected value of the char-
acteristic, but whose effect can be canceled immediately afterwards, by the name
T bits. In some cases a simultaneous modification of a few bits makes a similar
effect. We can view T bits as extending the notion of characteristics into differ-
entials in which most information on the intermediate differences is fixed, but
a few can have any value, describing several different paths leading to the same
differential. There are several T bits in the intermediate differences characteristic
of 36-round SHA-1, and also in other characteristics used in this paper.

Due to such cases we extended our program to check for conformance by
testing for a generalized kind of differences instead of testing exactly whether
A′

i = δi.

Consecutive Disturbances in the IF Rounds In the attack on SHA-0 two
consecutive disturbances in the first 17 rounds (i.e., rounds 0, . . . , 16) have a
probability zero to be corrected (see [2]). This limitation forces a higher Ham-
ming weight to occur in the expanded disturbance vector, but an attack is still
feasible (i.e., there are still few disturbance vectors that predict collisions, and
do not have two consecutive disturbances in the first 17 rounds). We observed
that all the disturbance vectors that we could find that predict one-block colli-
sions of SHA-1 reduced to 35 or more rounds have consecutive disturbances, i.e.,
two disturbances at the same bit locations in two consecutive rounds. Thus, this
limitation seems to be much more restrictive in SHA-1. However, this stronger
limitation comes with the ability to bypass it by various techniques in some frac-
tion of the cases. The characteristic we use for the collision of 36-round SHA-1
is an example for such a case.

In the following discussion, we first explain the limitation of the two con-
secutive disturbances in SHA-0, and then we show how they behave in SHA-1.
In SHA-0, two consecutive disturbances in rounds i and i + 1 (in bit 1) create
differences in D31

′

i+4 and C31
′

i+4, respectively. The two corrections to these differ-
ences are applied to the same bit, thus cancel each other in the approximation
leading to no difference in δi+4. On the other hand, the IF function applied on
these two differences, where the difference of B31

′

i+4 is zero, causes the result to be
complemented always. Thus, in A′

i+4 we have a difference with no corrections.
With SHA-1 the same arguments apply, but we allow disturbances at any bit
location. Thus, we can use the carry bit from another disturbance (or correction)
as an additional source of corrections.

The following two examples, which are taken from our 36-round attack,
should clarify the above: In the first example we show how a carry can be used



as follows: At rounds 4 and 5 there are disturbances in bit 1, from which we
expect to get A′

5 and A′

6 equal to δ5 = 00000003x and δ6 = 00000002x respec-
tively, which lead after three rounds to the differences D′

8 = C0000000x and
C ′

8 = 80000000x. With these differences the IF function applied on D31
′

8 and
C31

′

8 always complement the output, but it is never complemented in the ap-
proximation. Thus, we have a difference that cannot be corrected. However, in
the messages we use the carry from bit 0 at round 4 cancels the disturbance at
bit 1 of this round, and therefore the created differences are A′

5 = 00000001x

and A′

6 = 00000002x (see Table 7). Thus, in round 8 the differences are C ′

8 =
80000000x and D′

8 = 40000000x, which can be corrected by the non-linear be-
havior of the IF function to fit the approximation.

In the second example we show how the problem of two consecutive dis-
turbances can be bypassed when there is another disturbance in one of a few
different locations. In rounds 9 and 10 (see Table 7) we have two consecutive
disturbances in bit 1 (δ10 = 00000002x and δ11 = 00000002x), but in this case
there is also a disturbance in round 11 in bit 31 (δ12 = 80000000x). Thus, in
round 13 we have B′

13 = C ′

13 = D′

13 = 80000000x, which fit the approximation
with probability 1/2.

In general, consecutive disturbances in bit j of rounds i and i + 1 can be
corrected, if there is a correction or disturbance in a less significant bit that may
change the carry to bit j − 2 in round i + 4 (i.e., in bit j − 8 of δi+3, bit j − 1
of δi+2, or bit j − 1 of δi+1, δi or of δi−1 where the bit numbers are mod 32),
leaving the rest of the differences behave as expected.

4.3 A Two-Block Collision of 40-Round SHA-1

In this section we present a collision of 40-round reduced SHA-1. The best (one-
block) characteristic that we could find has 19 disturbances from round 20 to
round 39, so the complexity of the attack is expected to be around 257. However,
it is easy to find near-collisions of 40 rounds with only five disturbances from
round 20 to 39. Thus, we construct a two-block attack where the first block
generate such a near-collision, and the second block uses the difference of the
initial value that are created by the first block and generate a collision.

We observe that the hash values of multi-block messages are computed as
the sum of the initial value and the states gi of the compression function before
the final addition operations, i.e.,

hn = h0 +

n∑

i=1

gi.

Therefore, for colliding pairs of messages the following equation holds

n∑

i=1

(gi − g∗i ) = 0,



which when the addition is approximated by XOR becomes

n∑

i=1

g′i = 0.

Therefore, when searching for multi-block collisions it may be best to find char-
acteristics for which this sum is zero, and verify that all the other requirements
are satisfied, rather than vice versa.

In the particular case of a two-block collision this equation means that g′

1 =
g′2, i.e., the two disturbance vectors should have same differences in the last
five rounds. This leads to the question why should we use different disturbance
vectors for both blocks. The answer would be that the initial value difference of
the second block is necessarily different than of the first block (as h′

0 = 0 and
h′

1 6= 0), where the initial value is related to the difference of the first five rounds
of the disturbance vector (rounds −5, . . . , −1). But this is only a partial answer,
as we can extend the technique (using for example T bits, with similarities to
the extension of Section 3 in the case of SHA-0, but with much more flexibility),
and use a disturbance vector whose first five rounds are different than the initial
value difference (in the second block). Once we say that, we observe that in the
case of the disturbance vector that we use for the first round, the intermediate
value h′

1 fits as a replacement initial difference for the same disturbance vector,
i.e., if we replace rounds −5, . . . , −1 of the disturbance vector by the last five
rounds from the first block, we still get differences that can be corrected later
by the disturbance vector. In terms of characteristics, this means that we have
two characteristics with different input differences, but same message differences
and output differences (and that in most of the rounds they have the same
intermediate differences).

Table 8 describes the disturbance vector we use for this attack. This distur-
bance vector is the same vector used in our 34-round collision (Table 1) rotated
by 28 bits to the left and expanded to 40 rounds. In the first five rounds (−5, . . . ,
−1) of the disturbance vector the differences are zero, and in the last five rounds
they have two active bits (these rounds are marked in parentheses). Therefore,
we expect that h′

1 will have two active bits in these locations (up to the rotation
by 30 bits), so the disturbance vector for the next block should have the first
five rounds with the same differences as given in parentheses in the table. Now,
we observe that when we replace the first five rounds of the same disturbance
vector with the values in parentheses (see Table 9) we still receive a correctable
result. The disturbance vector itself, from round 0 to round 39 is unchanged,
thus the modified five rounds do not fit to the expansion function of SHA-1, but
as these difference come from the initial value, they are not calculated anyway
by this expansion. These values should only ensure that the probability of the
rounds in which they participate (as A, B, C, D, or E) is greater than zero, and
this is the case with these replaced differences.

We would also wish to add that the change of the initial rounds of the dis-
turbance vector can be even extended to a few additional rounds, as long as the
message differences remain unchanged, i.e., it would be possible to expect for



Rnd D.Vec D&C Rnd D.Vec D&C Rnd D.Vec D&C

−5 00000000 10 00000000 0C000004 25 00000000 00000000
−4 00000000 11 00000000 2C000000 26 00000000 08000000
−3 00000000 12 00000000 08000000 27 00000000 08000000
−2 00000000 13 00000000 08000000 28 00000000 00000000
−1 00000000 14 20000000 28000000 29 00000000 00000000

0 20000000 20000000 15 00000000 00000004 30 00000000 00000000
1 00000000 00000004 16 00000000 20000000 31 00000000 00000000
2 20000000 00000000 17 00000000 08000000 32 00000000 00000000
3 00000000 08000004 18 00000000 08000000 33 00000000 00000000
4 20000000 08000000 19 00000000 08000000 34 40000000 40000000
5 00000000 00000004 20 20000000 20000000 35 (00000000) 00000008
6 30000000 18000000 21 00000000 00000004 36 (00000000) 40000000
7 00000000 00000006 22 20000000 00000000 37 (80000000) 90000000
8 00000000 38000000 23 00000000 08000004 38 (40000000) 50000010
9 20000000 24000000 24 00000000 28000000 39 (00000000) 90000008

Table 8. The Disturbance Vector Used for the Two-Blocks Collision of 40-round SHA-1
(in 32-bit hex words)

Round First Block Second Block Common
D.Vec D.Vec D&C

−5 00000000 (00000000)
−4 00000000 (00000000)
−3 00000000 (80000000)
−2 00000000 (40000000)
−1 00000000 (00000000)

0 20000000 20000000 20000000
1 00000000 00000000 00000004
2 20000000 20000000 00000000
3 00000000 00000000 08000004
4 20000000 20000000 08000000
5 00000000 00000000 00000004
6 30000000 30000000 18000000
7 00000000 00000000 00000006
8 00000000 00000000 38000000
9 20000000 20000000 24000000
...

...
...

...

Table 9. The Beginning of Both Blocks of the Disturbance Vector Used for 40-round
SHA-1 (in 32-bit hex words)



Message 1, block 1:
404B674C B70CB385 D2DDAC0D 3A0E9BD3 CA7F1780 7FEFDA17 05E43AF2 444344C2

641A2CB6 86C2CFE6 EBCDEF67 6577E095 1A9CAD10 CFE48484 78639157 B13B759A

Message 2, block 1:
604B674C B70CB381 D2DDAC0D 320E9BD7 C27F1780 7FEFDA13 1DE43AF2 444344C4

5C1A2CB6 A2C2CFE6 E7CDEF63 4977E095 129CAD10 C7E48484 50639157 B13B759E

Message 1, block 2:
E63C47F7 0AB5F259 47DE1E6B 09E06877 6229CC42 604CF1AB 9B14B8F3 7261186C

1A5370F9 822E13EB FB7157EF 6B0919C5 1F3D744B FA4DE198 FBB10C06 FDA3C3E9

Message 2, block 2:
C63C47F7 0AB5F25D 47DE1E6B 01E06873 6A29CC42 604CF1AF 8314B8F3 7261186A

225370F9 A62E13EB F77157EB 470919C5 173D744B F24DE198 D3B10C06 FDA3C3ED

Table 10. The Two-Block Collision of 40-Round SHA-1 (in 32-bit hex words)

different values in round 0 (or even 1) of the disturbance vector when changing
the initial five rounds, but without changing the message differences. Also, it is
possible to make replacements in the last few rounds. This phenomena is similar
to the usual technique of differential cryptanalysis, where iterative characteristics
are used with modified first and last rounds, allowing even larger probabilities
than in the full iterative case.

The messages of the 40-round collision are presented in Table 10. The output
difference h′

1 of the compression function of the first block becomes the input
difference entering the second application. These intermediate differences can be
corrected by the same message difference that we use in the first block. Thus,
by using the same message difference in the second block the difference of the
intermediate value is corrected. We expect to get g′

2 = h′

1 (i.e., the differences
in the registers after the last round of the compression function are equal to the
intermediate value differences), which with probability 1/4 cancels the differences
after the final addition of h2 = g2 + h1.

5 Strength of Reduced Versions of SHA-1 with More

Rounds

SHA-1 with more than 40 rounds is also vulnerable to the attacks described in
this paper. Though all the disturbance vectors that we found have consecutive
disturbances in the first 17 rounds, many of them contain correctable consecutive
disturbances. We therefore list here two set of results: the first is the results for
SHA-1 reduced to fewer rounds, where these rounds are set at the first rounds
of SHA-1, i.e., the first 20 rounds use the IF function. This case is denoted later
by SHA-1. The second set of results, denoted later by NO-IF, have consecutive
disturbances, so if the reduced version starts with 20 IF rounds, the probability
of success is reduced to 0, but if the reduced version of SHA-1 starts at a different



Rounds SHA-1 NO-IF Rounds SHA-1 NO-IF
HW 2B NC HW 2B NC HW 2B NC HW 2B NC

34 2 2 48 28 25 13 14 14 13
35 7 6 3 4 5 3 49 32 22 15 14 14 14
36 7 3 3 5 3 3 50 35 29 16 14 14 14
37 11 9 3 5 5 3 51 38 26 19 15 15 15
38 12 7 4 8 6 3 52 42 32 19 16 16 15
39 12 11 5 8 8 4 53 42 32 20 16 16 16
40 19 5 5 11 5 5 54 39 42 24 36 34 16
41 17 14 6 12 10 6 55 39 48 27 39 38 16
42 17 14 7 13 11 7 56 41 39 28 41 29 16
43 17 15 8 17 13 7 57 61 56 29 42 23 17
44 19 17 9 15 15 8 58 58 52 29 42 17 17
45 25 16 10 15 15 10 59 64 53 29 51 17
46 25 18 10 23 13 10 60 45 45 29 18
47 26 23 12 24 21 11 61 45 38 30 19

Table 11. The Hamming Weights of the Best Disturbance Vectors that We Found
(Counted from Round 20)

location, the attack is still possible (such as when the reduced version contains
the last rounds of SHA-1, rather than the first ones).

Table 11 lists the results for 34 up to 61 rounds. For each number of rounds,
and each set of results (SHA-1 or NO-IF) the table lists the Hamming weight of
the disturbance vector from rounds 20 and on for three cases: the first, marked
by HW, is the Hamming weight of the best disturbance vector predicting a one-
block collision we found. The second, marked by 2B, is the best disturbance
vector predicting a two-block collision, and the last, marked by NC is the best
disturbance vector predicting a near-collision. Entries that we used to actually
find a collision are marked in boldface.

The complexities of the attacks that use the mentioned disturbance vectors
can be approximated by 23HW, where HW is the Hamming weight of the dis-
turbance vector from round 20 and on (i.e., the value in the table). The exact
complexity may vary (between 22HW to 24HW ) by some factor which depends on
the exact functions (IF, MAJ, XOR) used, by the rounds where the disturbances
occur, and by a few additional details.

We can thus see that entries with up to about 26 Hamming weight predict
a collision with complexity (slightly) faster than the generic birthday attack (as
23·26 = 278 < 280). We marked the location of this threshold by underlines. Ham-
ming weights much smaller than 26 predict much more practical complexities,
and as can be seen from the table, Hamming weights up to about 10 require only
a short computation on a personal computer (all the found collisions marked in
boldface were found within a few seconds of computation).

It is especially interesting to see the huge increase of the Hamming weight in
the case of NO-IF after 53 rounds, where the Hamming weight of 53 rounds is 16



and of 54 rounds is 36. Similarly in the two-block attack the Hamming weight is
17 for 58 rounds. Thus, we expect that one-block collisions of 53-round reduced
SHA-1 can be found with complexity about 260, and two-block collisions of 58-
round SHA-1 can be found with complexity about 275 (this is a more accurate
approximation than 23HW for this case), where the reduction is to the last 53
(respectively 58) rounds of SHA-1, but we have no hope according to the table
to find one-block collisions of 54-round reductions. In the case of the first rounds
of SHA-1, the maximal number of rounds according to the table is 51 using the
two-block technique, but the complexity of this attack would be only marginally
faster than the birthday attack (though much easier to parallelize).

We are now working on improvements for further rounds, some of them are
by applications of the techniques described in this paper in more complex ways,
and some using new ideas. Note that the NC column is a lower bound for any
multiple-block attack, thus we see that there is still some hope for the attacker
to find better results.

In particular, we succeed to show that the NO-IF figures hold also for the
case of the first rounds of SHA-1 (starting with IF rounds) by using different
characteristic paths for the first rounds, but leaving the same input, output, and
message differences.

6 Summary

This paper presents various attacks on reduced versions of SHA-0 and SHA-1
along with various techniques for the analysis of hash functions. These tech-
niques, along with the neutral bit technique and other prior techniques, form
a set of tools that enable practical attacks on the full SHA-0, and reduces the
complexity of attacking SHA-1 reduced to 58 or fewer rounds to less than the
complexity of the birthday attack.

As this work is still in progress, we expect to further improve some of the
attacks presented in this paper, and to incorporate several new ideas that may
increase the total number of rounds that we can attack, such as three-block
attacks and attacks with more than three blocks. In particular, it is possible to
use the 53-round and the 58-round attacks on SHA-1 even against the first 53
and 58 rounds.

Finally we observe that a search for one-block near-collisions is easier than
search for one-block collisions, as when searching for near-collisions, there is no
need to fix the initial value of the compression function, but instead it is possible
to fix an intermediate value, and search backwards in the direction of the initial
value, and then forward for the output. In such a search, we found that the
number of neutral bits is much larger than in the regular case, thus allowing to
increase the number of rounds that we get for free from about 20–22 rounds to
about 30 rounds, thus decreasing the number of rounds that should be analyzed
by the probabilistic stage. Moreover, it is possible to select the 30 rounds to
be the 30 consecutive rounds with the lowest probability in the characteristic,
thus increasing the probability even further. For example, with such a technique



it is possible to find pseudo-collisions of the full SHA-0 with probability about
230–233.

References

1. Eli Biham, Rafi Chen, Near-Collisions of SHA-0, Advances in Cryptology, pro-
ceedings of CRYPTO 2004, LNCS 3152, pp. 290–305, Springer Verlag, 2004.

2. Florent Chabaud, Antoine Joux, Differential Collisions in SHA-0, Advanced in
Cryptology, proceedings of CRYPTO ’98, LNCS 1462, pp. 56–71, Springer Verlag,
1999.

3. National Institute of Standards and Technologies, Secure Hash Standard, Federal
Information Processing Standards Publication, FIPS-180, May 1993.

4. National Institute of Standards and Technologies, Secure Hash Standard, Federal
Information Processing Standards, Publication FIPS-180-1, April 1995.

5. Ron Rivest,The MD4 Message-Digest Algorithm, Network Working Group, Re-
quest for Comments:1186, October 1990.

6. Ron Rivest, The MD5 Message-Digest Algorithm, Network Working Group, Re-
quest for Comments:1321, April 1992.

7. Xiaoyun Wang, Xuejia Lai, Dengguo Feng, Hui Chen, and Xiuyuan Yu, Cryptanal-

ysis for Hash Functions MD4 and RIPEMD, these proceedings.
8. Xiaoyun Wang, Hongbo Yu, How to Break MD5 and Other Hash Functions, these

proceedings.
9. V. Rijmen, E. Oswald. Update on SHA-1. In RSA Crypto Track 2005, LNCS 3376,

2005.


