
WebSphere Application Server for z/OS V6.1

WSADMIN PrimerWSADMIN PrimerWSADMIN PrimerWSADMIN Primer
(With JythonJythonJythonJython Scripting Illustrated)

This document supersedes WP100421, which was V5.x and JACL

This document can be found on the web at:
www.ibm.com/support/techdocs

Search for document number WP101014 under the category of "White Papers"

Version Date: September 10, 2008
Please see "Document Change History" on page 108 for updates provided in this version of the document.

IBM Washington Systems CenterIBM Washington Systems CenterIBM Washington Systems CenterIBM Washington Systems Center

Don Bagwell
IBM Washington Systems Center

301-240-3016
dbagwell@us.ibm.com

Many thanks to Mike Loos for sharing with me his knowledge of
WSADMIN, in particular the specifics of Jython and the "fine grain
security" topic. Mike Kearney is my source for nearly all things

related to security, such as keyrings, certificates and all that other
mysterious stuff. Rohith Ashok of WebSphere development, who
seems to know something about any question I've ever asked him.

Table of Contents

32Exercise: passing parameters into a script .
32The "break" statement .
31The "for" statement .
31The "if" and "elif" statements .
30Exercise: looping and other logic in Jython .
29Exercise: ASCII vs. EBCDIC encoding of Jython file .
28Exercise: invoke WSADMIN and specifying input file .
28Exercise: comments in the file (optional) .
27Exercise: use the execfile() function .
27Lesson Overview .
27File-based Input Exercises .
26Lesson wrap-up and summary .
26Exercise: another way of constructing list variables .
24Exercise: list variables .
21Exercise: setting simple Jython variables .
21Exercise: uninstall the application .
19Exercise: simple application installation .
18Exercise: change default script language of WSADMIN and verify .
18Background: where the wsadmin.properties file is located .
18Lesson Overview .
18Command Line Usage and Jython Exercises .
17Lesson wrap-up and summary .
16Exercise: invoke WSADMIN using RMI rather than SOAP .
15Exercise: invoke WSADMIN so Jython is the expected scripting language .
15Where the default scripting language is defined to WSADMIN .
14How to tell WSADMIN to use Jython rather than JACL .
14Background: the default script language .
12Exercise: invoke Help object .
12Exercise: invoke WSADMIN with -conntype SOAP .
10Exercise: invoke WSADMIN with -help parameter .
10Exercise: invoke WSADMIN with -conntype NONE .
9Exercise: invoke WSADMIN with no parameters at all .
8Background: where wsadmin.sh client shell script is located .
8Checklist: what you need to do the exercises in this section .
8Lesson Overview .
8WSADMIN Invocation Exercises .
7Summary .
7Other sources of WSADMIN information .
7Performing the exercises provided in this document .
7How this document is organized .
7This document is not the complete source of information on WSADMIN .
6Important Point: two "modes" -- local and remote .
6How the WSADMIN client is invoked .
5Programming "script" .
5WSADMIN "client" .
4Five programming "objects" (or "commands") .
4Basic elements of WSADMIN .
4Is this just for WebSphere on z/OS? .
4What is the primary benefit of WSADMIN? .
4What is WSADMIN? .
4Introduction and Overview .

WP101014 - WSADMIN z/OS V6.1 Primer

Section: Table of Contents
Version Date: Wednesday, September 10, 2008

- 1 -
© 2007, IBM Americas Advanced Technical Support
Washington Systems Center, Gaithersburg, MD

82Listing the commands within a command group .
82Listing all the different "command groups" .
82Jython or JACL? .
82Further Exploration of the AdminTask Object .
81Lesson wrap-up and summary .
81Exercise: synchronize a node, multiple nodes, or whole cell .
80Exercise: start and stop a server .
78Exercise: check the current state of a server .
77Lesson Overview .
77Topic: WSADMIN and operation-oriented activities .
77Lesson wrap-up and summary .
74Exercise: create a new cluster across two nodes .
74Background: change node host name and node system name reference .
71Exercise: remap a server's TCP ports .
69Exercise: add an application server .
68Exercise: listing configuration "types" .
67Lesson Overview .
67Topic: WSADMIN and configuration-oriented activities .
67Lesson wrap-up and summary .
67Example: map resource reference to JDBC data source .
65Example: map resource reference to connection factory JNDI .
63Exercise: map application to different virtual host at installation time .
61Exercise: change JNDI name relationships at installation time .
59Exercise: change the application name and context root at installation time .
58Exercise: using taskInfo() to get information on contents of application EAR file
57Background: syntax for our highlighted AdminApp.install() options .
56Background: AdminApp.install() options syntax and how to learn what to use .
55Exercise: combined installation, synchronization and application starting in one script
53Exercise: uninstall application .
51Exercise: starting and stopping an application .
49Exercise: node synchronization .
47Exercise: simple installation and listing of installed applications .
47Lesson Overview .
47Topic: WSADMIN and application-oriented activities .
47Lesson wrap-up and summary .
44Exercise: drill down on the AdminApp object .
40Exercise: display contents of help() method .
40Lesson Overview .
40Topic: use "help" to get a sense for what methods are on what objects .
40Lesson wrap-up and summary .
39Exercise: a more complex command .
38Exercise: enable logging of command assistance .
37Exercise: enable command assistance in Admin Console .
37Lesson Overview .
37Topic: Admin Console command assistance .
37Becoming an expert in WSADMIN .
37Exploring the WSADMIN Objects Exercises .
36Lesson wrap-up and summary .
35Exercise: passing in parameters .
34Exercise: simple invocation of WSADMIN .
34Lesson Overview .
34JCL and BPXBATCH Exercises .
33Lesson wrap-up and summary .

WP101014 - WSADMIN z/OS V6.1 Primer

Section: Table of Contents
Version Date: Wednesday, September 10, 2008

- 2 -
© 2007, IBM Americas Advanced Technical Support
Washington Systems Center, Gaithersburg, MD

108Document Change History .
107Suggestions For Improvement? .
107Lesson wrap-up and summary .
106Exercise: test fine grained security .
105Exercise: create RACF EJBROLE .
103Exercise: create authorization group and assign resource and ID to it .
103Overview: fine grain security exercises .
103Background: who is allowed to configure and manage the fine grain definitions .
101Background: how fine grained security works, at a high level .
100Background: evolution of access authority in WebSphere z/OS .
100Topic: fine grained security .
99Exercise: invoke workstation WSADMIN client and connect to DMGR on z/OS .
98Exercise: update ssl.client.props file and wsadmin.properties file on workstation
95Exercise: use IKEYMAN to create new TrustFile and import CA cert .
94Exercise: export CA cert from RACF and download to workstation .
94Background: what's involved with making CA cert available to workstation client .
93Error: SSL establishment failure when workstation client doesn't have CA cert .
93Exercise: WSADMIN client on a remote workstation .
92Granting an ID permission to an EJBROLE profile .
92Seeing what IDs have permission to an EJBROLE profile .
91Determining the EJBROLE definitions created for a cell .
91Background: how WebSphere controls administrative authority .
90Error: SOAP or RMI port access failure .
87Solution: SSL connection establishment failure .
86Error: SSL connection establishment failure .
86Solution: File permission access failure .
85Error: File permission access failure .
85Exercise: use a different ID from WebSphere Admin ID .
85Lesson Overview .
85Security Related Exercises .
84What about the InfoCenter? .
84changeClusterShortName .
83changeServerSpecificShortName .
83Listing the help on a specific command .

WP101014 - WSADMIN z/OS V6.1 Primer

Section: Table of Contents
Version Date: Wednesday, September 10, 2008

- 3 -
© 2007, IBM Americas Advanced Technical Support
Washington Systems Center, Gaithersburg, MD

Introduction and Overview

In this section we'll explore some high-level topics and set the stage for the more detailed exploration of
WSADMIN that follows.

What is WSADMIN?

You can think of WSADMIN as a programming interface to the configuration and management of a
WebSphere Application Server cell. With WSADMIN you can programmatically do pretty much
anything you can do in the Admin Console.

What is the primary benefit of WSADMIN?

One of the most common uses of WSADMIN is to automate the installation of applications into
WebSphere. The benefit is that it provides a way to make certain an application is installed in a
consistent way in different environments, such as development, QA, test and then production.

That basic notion -- what would normally be done in the Admin Console is now done with a program
and WSADMIN -- provides a way to automate and streamline WebSphere configuration and
operations.

Is this just for WebSphere on z/OS?

No. WSADMIN is a common feature of WebSphere Application Server across all platforms. There
are some aspects of WSADMIN usage that are unique to z/OS, but the vast majority of WSADMIN
is common across the platforms.

That said, in this document we'll highlight the z/OS-specific things, particularly as it relates to things
like how to invoke WSADMIN using batch JCL, and security issues related to RACF.

Basic elements of WSADMIN

Here we'll introduce you to three of the basic pieces of the WSADMIN puzzle. You'll get to see how
these things work as you go through the exercises provided.

Five programming "objects" (or "commands")

With WebSphere Application Server V6.1, WSADMIN now comes with five programming
"objects".

Don't worry if you're not familiar with object oriented programming. Think of an "object" in this
sense as a "command."

???

Note: We've intentionally glossed how each object has "methods" (sub-commands), parameters and options.
Learning the syntax of these WSADMIN objects can be the most challenging aspect of learning WSADMIN.
We'll get to all that. These "objects" are really the major high-level commands.

As the name implies, this is a help facility that is quite handy in determining the
syntax requirements of the other objects.

Help

New with V6.1, this object provides a simplified way to do what used to be much
more complicated. For example, changing the IP host name and MVS system
name throughout a node. In the past that was a very challenging thing to do,
but with AdminTask it becomes a single command.

AdminTask

Used to control the running WebSphere environment, such as starting and
stopping servers, or synchronizing changes to a node.

AdminControl

Used for configuration-oriented things, such as adding a new server, or
changing the name of something in the configuration.

AdminConfig

Used for application-oriented things, such as installing or uninstalling an
application.

AdminApp

DescriptionObject

WP101014 - WSADMIN z/OS V6.1 Primer

Section: Introduction and Overview
Version Date: Wednesday, September 10, 2008

- 4 -
© 2007, IBM Americas Advanced Technical Support
Washington Systems Center, Gaithersburg, MD

WSADMIN "client"

In order to get your commands processed against the interface of WebSphere, you'll need to
invoke the WSADMIN "client". You provide the client the WSADMIN commands; the client then
works against the programming interface of WebSphere.

The WSADMIN client is really just a UNIX shell script. It's a very smart shell script, but still just a
shell script you invoke. That shell script is found in the configuration directory of your
WebSphere for z/OS server. The name of the shell script is wsadmin.sh, and is found under:

/<mount_point>/DeploymentManager/profiles/default/bin

The way that shell script is invoked, and how WSADMIN commands are processed by it is what
this white paper is all about.

Programming "script"

WSADMIN is more properly referred to as a "scripting interface" because it can be used for
more than issuing just those five objects we listed before. We may also use a programming
language with it. Using a programming language gives us more power to do things like use
variables, if-then-else structures, and loops.

For WSADMIN we have two programming languages we may use -- Jython and JACL. Both are
more properly called interpreted scripts. That's why WSADMIN is called a "scripting interface."
We don't need to compile Jython or JACL. We simply tell the WSADMIN client to read and
interpret the script we provide it.

This document will focus on Jython because it's the preferred scripting language. JACL was
what WSADMIN supported initially. But it is now deprecated in V6.1. That means it still works,
but eventually will be dropped from support. New development should be done in Jython.

� No, unfortunately REXX is not a supported scripting language.

� People with a library of JACL scripts might wish to consider the "IBM Jacl to Jython
Conversion Assistant," a tool to assist in the conversion of Jacl to Jython. That can be
found at:

http://www.ibm.com/support/docview.wss?rs=180&uid=swg24012144

Notes:

Here's a very simple a Jython script used to install an application:

ear = '/u/myapps/SuperSnoopProj.ear'

node = 'mynodec'

server = 'mysr01c'

options = '[-node ' + node + ' -server ' + server + ']'

AdminApp.install(ear,options)

AdminConfig.save()

1

2

3

It's too early to give a full description of all that's going on in that example, but for the sake of
getting a sense of it, here are some notes:

1. This script creates four variables right up front -- ear, node, server, options. The use of
variables is simply a way to code custom information in one place in the script, then use those
variables in lots of different places throughout the script.

2. The variable options is a special type of variable. Think of it as like an array ... a way to hold
information in a variable so that each element can be referenced directly, without having to do
things like sub stringing some number of bytes in. The WSADMIN objects require that any option
lists be in an array-like format, so to accomplish that we use this special kind of variable
construction. We'll see more of that later.

3. Two WSADMIN objects are used -- AdminApp is what installs the application into WebSphere;
AdminConfig is what's used to save the changes. You'll notice that each has something

WP101014 - WSADMIN z/OS V6.1 Primer

Section: Introduction and Overview
Version Date: Wednesday, September 10, 2008

- 5 -
© 2007, IBM Americas Advanced Technical Support
Washington Systems Center, Gaithersburg, MD

appended to it -- AdminApp.install and AdminConfig.save. Those are methods on the
objects. AdminApp has several different methods, install being one of them. Think of
methods as sub-commands.

Scripts can be a great deal more sophisticated than that. But this simple example illustrates a
key point -- the Jython script language is the program that works against the programming
interface (that's what WSADMIN really is) of WebSphere.

How the WSADMIN client is invoked

As mentioned, the client is a UNIX shell script. That means it can be invoked in two basic ways:

� Command Line -- you, the operator, invokes the wsadmin.sh shell script by hand. This command
line may be a Telnet session, or an OMVS session.

� Batch JCL -- using BPXBATCH, which invokes the wsadmin.sh shell script from within JCL.

The two end up doing essentially the same thing. However, there are some differences. For
instance, the command line invocation allows you to issue WSADMIN commands interactively, while
the batch JCL method is just that ... batch. Both have their places.

We have much more to cover on the subject of invoking the wsadmin.sh shell script client.

Important Point: two "modes" -- local and remote

The WSADMIN client has two basic "modes" in which it can operate: remote and local.

� Remote mode -- the wsadmin.sh client establishes a TCP network connection with the running
Deployment Manager (or Standalone server).

� Local mode -- no TCP connection is made; the wsadmin.sh client directly manipulates the
configuration XML files.

There's a lot of detail yet to be discussed. For now, let's summarize some of the differences
between the two:

� The only security that comes into play is
file access permissions.

� Using this when someone else is using the
Admin Console can create problems.
WSADMIN is directly manipulating XML
files and the Admin Console will report (or
warn) that its configuration base is
changing unexpectedly.

� The issue of coordinating SSL certificates
isn't present because no network
connection is made.

� WebSphere does not need to be active for
this to work.

Local Mode

� WebSphere must be up and running for
this to work

� The security implications of SSL across the
network connection can be confusing

� WSADMIN client may be anywhere: the
same LPAR as WebSphere, a different
LPAR, a different Sysplex, or even on a
distributed platform like Windows or UNIX.

� If someone else is using the Admin
Console at the same time, WebSphere is
able to juggle the two so changes aren't in
conflict.

� The "fine grained security" capabilities of
WebSphere V6.1 may be used 1

Remote Mode

ConsPros

If the Deployment Manager (or Standalone server) is running, then use "remote mode"
and connect to the DMGR so it can manage the updates. Use "local mode" only if the
server is down.

Basic Rule:

WP101014 - WSADMIN z/OS V6.1 Primer

Section: Introduction and Overview
Version Date: Wednesday, September 10, 2008

- 6 -
© 2007, IBM Americas Advanced Technical Support
Washington Systems Center, Gaithersburg, MD

1 What the "fine grained security" provides is a way to limit what parts of a WebSphere configuration a given user is permitted
to act upon. For instance, "Fred" is allowed to install applications into server XYZ only, but no others. More on fine grained
security and WSADMIN later.

This document is not the complete source of information on WSADMIN

The topic is simply too big. Rather than try to be the source of all information, this document is
designed to introduce the reader to some key concepts. The thinking is that once you have those
key concepts figured out, and you've done a few basic things with WSADMIN, you'll be in a better
position to use the other sources of information out there.

How this document is organized

This white paper is intended to be worked through from start to finish, with you performing the
simple exercises along the way. The exercises are designed to introduce key WSADMIN concepts
to you in a logical, systematic way. Intermixed with the exercises are further explanations of
important concepts.

Any time you see a square checkbox serving as a bullet to the left of a paragraph, consider it a
signal that there's a "to do" for you in that paragraph.

Performing the exercises provided in this document

You will need access to a WebSphere Application Server for z/OS configuration, preferably a
"Network Deployment" cell (with a Deployment Manager). This cell should not be a production cell
as some of the exercises will result in modifications being made to the configuration.

A "standalone server" will also work, unless the nature of the exercise is applicable only to a
Network Deployment configuration. Examples of that would be node synchronization and the
adding of a new server -- neither of those things applies to a standalone server.

We will generally illustrate the use of a Deployment Manager. You'll see that we'll reference the
/DeploymentManager directory. If you have a standalone server, substitute /AppServer for
/DeploymentManager. Everything else will be the same.

Note:

Other sources of WSADMIN information

� ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP100421

This is the older V5 edition of this Primer, written to the JACL scripting standard. The document
you're reading right now is intended to replace WP100421.

� ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP100963

This is the Jython white paper written by Mike Loos. It has some more sophisticated scripting
examples than does this document. Don't overlook that as a good source of information just
because this new Primer has been published.

� The InfoCenter, which is the best place to go for reference information on command syntax and
usage.

Summary

WSADMIN is a programming interface to WebSphere Application Server's management and
configuration function. You use a program -- a "script" -- to issue commands against the API and
thus make the changes you wish to make. WSADMIN can be used to do most everything that can
be done through the Admin Console. The primary benefit of WSADMIN is that tasks can be
automated, making repetitive tasks more easily done and done consistently.

You may be tempted to get right into the scripting that modifies the configuration. But we believe
there is great value in understanding the other basics of this thing, such as how to invoke
WSADMIN, and how to program with Jython. Be patient with your learning, and follow the exercises
from front to back. It'll be worth it.

WP101014 - WSADMIN z/OS V6.1 Primer

Section: Introduction and Overview
Version Date: Wednesday, September 10, 2008

- 7 -
© 2007, IBM Americas Advanced Technical Support
Washington Systems Center, Gaithersburg, MD

WSADMIN Invocation Exercises

Lesson Overview

In this section we'll perform exercises related to the invoking of WSADMIN from a Telnet (or OMVS)
session. Contrast this with invoking WSADMIN from batch JCL, which we cover under "JCL and
BPXBATCH Exercises" starting on page 34. The two are very similar to one another, but there are
aspects of batch invocation we wanted to highlight so we broke it out into a separate section.

We won't do much with WSADMIN in this section. We'll just explore the different ways to invoke the
client. This will lay the groundwork for the actual Jython scripting elsewhere in this document.

Checklist: what you need to do the exercises in this section

Make sure you have the following available to you:

� A WebSphere for z/OS Network Deployment configuration, with Deployment Manager running,
and one in which it's okay for you to be making the small changes that may occur from these
exercises.

A standalone server configuration will suffice for these exercises.Note:

� A Telnet or OMVS session. (Telnet is preferable because pasting a long command into OMVS
can be cumbersome, while most Telnet clients will wrap the long line for you.)

� Access to the WebSphere "Admin ID" for that cell, along with that ID's password.

� Access to the Admin Console

� Knowledge of the what the DMGR (or standalone server) configuration mount point is.

Background: where wsadmin.sh client shell script is located

There are actually two copies in each node, but the wsadmin.sh client shell script that you are to
invoke is located in the following place:

/<mount_point>

/DeploymentManager

/bin

/profiles

/default

/bin

wsadmin.sh

wsadmin.sh Not this one

Or under /AppServer if a standalone configuration.Note:

The one located up under /bin might also work, but the rule is always invoke the one under
/profiles/default/bin. The one under /profiles/default/bin establishes the
"command line environment" (including STEPLIB if applicable) then it calls the one under /bin.

Again, the rule is: always invoke the one under /profiles/default/bin.

WP101014 - WSADMIN z/OS V6.1 Primer

Section: Invoking WSADMIN
Version Date: Wednesday, September 10, 2008

- 8 -
© 2007, IBM Americas Advanced Technical Support
Washington Systems Center, Gaithersburg, MD

Exercise: invoke WSADMIN with no parameters at all

The purpose of this exercise is to show you what happens when wsadmin.sh is invoked
without any parameters. Then we'll start exploring some of the parameters that determine
how client operates.

Objective

� Open up a Telnet session (or OMVS session ... but not ISHELL)

� Log on with the WebSphere Admin ID. Or log on with some other ID and then "switch user" to
the WebSphere Admin ID.

That ID has the necessary file system read and write permissions to invoke the WSADMIN
client. Some other ID might not, which would result in a failure. It is not recommended you
do this with a UID=0 ID. That might result in some changed file ownerships, which could
cause problems later. Better to operate under the WebSphere Admin ID.

The other reason you want to use the WebSphere Admin ID when first learning WSADMIN
is that when security is enabled for a cell (the typical "default" for a V6.1 cell), the
WebSphere Admin ID will have the necessary keyring and certificates to establish the SSL
connection a connection is made to the running server.

Why?

� Issue the command whoami. This should reply with your WebSphere Admin ID.

� Change directories to your Deployment Manager's /profiles/default/bin directory

If you find your system does not display the current directory and you've lost track of where
you are, issue the command pwd. That stands for "present working directory" and it will
report where you are in the configuration structure.

Hint:

� Issue the command ls -- that will result in all the files in that directory being listed out. There's a
bunch. You should see wsadmin.sh in that list.

� Now invoke the shell script with no parameters:

./wsadmin.sh

This might take a minute or so to initialize. Be patient.Note:

What happens next depends on whether security is enabled or not for the cell:

Security Enabled

You'll see something like this:

Realm/Cell Name: <default>

Username:

When the Admin ID is entered you then see:

Password:

When the password is supplied you then see:

WASX7209I: Connected to process "dmgr" on node <node> using SOAP
connector; The type of process is: DeploymentManager

WASX7029I: For help, enter: "$Help help"

wsadmin>

Security Not Enabled

There's no need to authenticate, so you simply see this:

WASX7209I: Connected to process "dmgr" on node <node> using SOAP
connector; The type of process is: DeploymentManager

WASX7029I: For help, enter: "$Help help"

wsadmin>

WP101014 - WSADMIN z/OS V6.1 Primer

Section: Invoking WSADMIN
Version Date: Wednesday, September 10, 2008

- 9 -
© 2007, IBM Americas Advanced Technical Support
Washington Systems Center, Gaithersburg, MD

� Issue the command quit at the wsadmin> prompt. This will exit WSADMIN and return you to
the standard UNIX prompt.

The default behavior of the wsadmin.sh client shell script is to use -conntype SOAP when
no other parameters are offered. If security is enabled for the cell, then the client shell script
prompts for the WebSphere Admin ID's userid and password. With that the client is permitted
to authenticate into the SOAP port of the Deployment Manager.

WSADMIN client knew what host and port to use by reading the contents of a key XML file:
wsadmin.properties. The host, port and protocol to use is specified in there.

In a little bit we'll see how to do the same thing, but do it by providing the explicit -host and
-port parameters. If you ever invoke the WSADMIN client somewhere other than the DMGR
you wish to connect to, you'll need to tell it where to connect. That's what -host and -port
will do.

Review

Exercise: invoke WSADMIN with -conntype NONE

In this exercise you'll invoke the WSADMIN client, but with the explicit -conntype NONE
parameter. This tells the client to go into "local mode" and directly manipulate the XML files.

Objective

� You should still be the /profiles/default/bin directory of your Deployment Manager (or
AppServer if standalone).

� Issue the command:

./wsadmin.sh -conntype NONE

There should be no prompting for userids or passwords, whether security is enabled or not. You
should see:

WASX7357I: By request, this scripting client is not connected to any
server process. Certain configuration and application operations will be
available in local mode.

WASX7029I: For help, enter: "$Help help"

wsadmin>

� Issue the command quit to exit the WSADMIN prompt.

This told the client shell script to go into "local" mode. That meant any changes to the
configuration would be done directly by the client shell script. When you invoke a copy of the
wsadmin.sh shell script in "local mode," all it can do is manipulate the configuration files in
that same configuration directory structure. But not elsewhere.

There is no security checking beyond that done by UNIX file permissions. Since the
configuration files are manipulate directly, and no server process is connected to, there is no
authentication and no need to pass userid and password. Even if security is enabled that is
true.

Review

Exercise: invoke WSADMIN with -help parameter

This will provide a printout of all the input parameters supported by the wsadmin.sh shell
script client.

Objective

� Issue the command:

./wsadmin.sh -help

There should see the following:

It is not important for you to understand all this right now. Just be aware of it.Note:

WP101014 - WSADMIN z/OS V6.1 Primer

Section: Invoking WSADMIN
Version Date: Wednesday, September 10, 2008

- 10 -
© 2007, IBM Americas Advanced Technical Support
Washington Systems Center, Gaithersburg, MD

WASX7001I: wsadmin is the executable for WebSphere scripting.

Syntax:

wsadmin

 [-h(elp)]

 [-?]

 [-c <command>]

 [-p <properties_file_name>]

 [-profile <profile_script_name>]

 [-f <script_file_name>]

 [-javaoption java_option]

 [-lang language]

 [-wsadmin_classpath classpath]

 [-profileName profile]

 [-conntype

 SOAP

 [-host host_name]

 [-port port_number]

 [-user userid]

 [-password password] |

 RMI

 [-host host_name]

 [-port port_number]

 [-user userid]

 [-password password] |

 NONE

]

 [-jobid <jobid_string>]

 [-tracefile <trace_file>]

 [-appendtrace <true/false>]

 [script parameters]

Where "command" is a command to be passed to the script processor;

 "properties_file_name" is a java properties file to be used;

 "profile_script_name" is a script file to be executed before the

 main command or file;

 "script_file_name" is a command to be passed to the script processor;

 "java_option" is a java standard or non-standard option to be passed

 to the java program;

 "language" is the language to be used to interpret scripts;

 supported values are "jacl" and "jython".

 "classpath" is a classpath to be appended to built-in one;

 "-conntype" specifies the type of connection to be used;

 the default argument is "SOAP"

 a conntype of "NONE" means that no server connection is made

 and certain operations will be performed in local mode;

 "host_name" is the host used for the SOAP or RMI connection;

 the default is the local host;

 "port_number" is the port used for the SOAP or RMI connection;

 "userid" is the userid required when the server is running in

 secure mode;

 "password" is the password required when the server is running in

 secure mode;

 "script parameters" is anything else on the command line. These

 are passed to the script in the argv variable; the number of

 parameters is available in the argc variable.

 "jobid_string" is a jobID string to be used to audit each invocation

 of wsadmin;

 "trace_file" is the log file name and location where wsadmin trace

 output is directed;

If no command or script is specified, an interpreter shell is

created for interactive use. To leave an interactive scripting session,

use the "quit" or "exit" commands.

Several commands, properties files, and profiles may be specified

on a single command line. They are processed and executed in

order of their specification.

You'll see some of these used throughout this primer, and that's how you'll learn what some of
them do. The lesson here was to know about the -help parameter and to know that
wsadmin.sh has a set of acceptable parameters.

Review

WP101014 - WSADMIN z/OS V6.1 Primer

Section: Invoking WSADMIN
Version Date: Wednesday, September 10, 2008

- 11 -
© 2007, IBM Americas Advanced Technical Support
Washington Systems Center, Gaithersburg, MD

Exercise: invoke WSADMIN with -conntype SOAP

What we'll do here will result in the same thing that happened when we invoked
wsadmin.sh with no parameters -- that is, it'll go into "remote mode" and connect to the
DMGR via SOAP. But rather than allowing the default behavior to apply, we're going to
explicitly tell WSADMIN to use SOAP. And we'll tell it the host and port and pass in the
userid and password.

Objective

� Log into your Admin Console and then drill down to determine the SOAP port of your
Deployment Manager:

� "System Administration" � "DeploymentManager"

� Look on the right side of screen, under "Additional Properties." You should see a link for "Ports."
Click on that link and look for SOAP_CONNECTOR_ADDRESS. Note the following:

Port

Host

� Invoke the wsadmin.sh client shell script with the following command:

./wsadmin.sh -conntype SOAP -host aaaa -port bbbb -user cccc -password dddd

where:

� aaaa is the host address where the DMGR can be reached
� bbbb is the SOAP port of the DMGR
� cccc is the WebSphere Admin ID
� dddd is the password for the WebSphere Admin ID

Start a Notepad (or other text editor) session with these commands. It'll save a lot of extra
typing.

Hint:

You should see the following:

WASX7209I: Connected to process "dmgr" on node <node> using SOAP
connector; The type of process is: DeploymentManager

WASX7029I: For help, enter: "$Help help"

wsadmin>

Even if security is enabled, you do not see the prompt as we saw before. That's because we
passed in the userid and password on the invocation command.

� Stay at the wsadmin> prompt. Proceed to the next exercise.

When invoking the WSADMIN client in "remote" mode, it's always best to use the explicit
-conntype SOAP with -host and -port. Even if on the same LPAR, where coding that isn't
strictly required. This provides a nice clear way to saying exactly how WSADMIN is to behave.
Invoking with no parameters is okay provided you know what's in the wsadmin.properties
file, which is where it would get its information when no parameters are present.

Review

Exercise: invoke Help object

The first WSADMIN object we're going to invoke is the Help object. This will simply reply
back with a list of ways in which Help can be used. It's simple to do and will not result in any
changes to the configuration.

Objective

� Issue the following command at the wsadmin> prompt:

$Help help

WP101014 - WSADMIN z/OS V6.1 Primer

Section: Invoking WSADMIN
Version Date: Wednesday, September 10, 2008

- 12 -
© 2007, IBM Americas Advanced Technical Support
Washington Systems Center, Gaithersburg, MD

That dollar sign out front means the scripting language is JACL. That's the default. We'll
see how to change that to Jython in a bit.

Note:

You should see something like this:

WASX7028I: The Help object has two purposes:

 First, provide general help information for the the objects

 supplied by wsadmin for scripting: Help, AdminApp, AdminConfig,

 and AdminControl.

 Second, provide a means to obtain interface information about

 MBeans running in the system. For this purpose, a variety of

 commands are available to get information about the operations,

 attributes, and other interface information about particular

 MBeans.

 The following commands are supported by Help; more detailed

 information about each of these commands is available by using the

 "help" command of Help and supplying the name of the command

 as an argument.

attributes given an MBean, returns help for attributes

operations given an MBean, returns help for operations

constructors given an MBean, returns help for constructors

description given an MBean, returns help for description

notifications given an MBean, returns help for notifications

classname given an MBean, returns help for classname

all given an MBean, returns help for all the above

help returns this help text

AdminControl returns general help text for the AdminControl object

AdminConfig returns general help text for the AdminConfig object

AdminApp returns general help text for the AdminApp object

AdminTask returns general help text for the AdminTask object

wsadmin returns general help text for the wsadmin script

 launcher

message given a message id, returns explanation and

 user action message

� Now issue the following command at the wsadmin> prompt:

$Help AdminApp

Case matters. Type carefully.Note:

That will respond with the "methods" of the AdminApp object. You should see something like
this:

deleteUserAndGroupEntries

 Deletes all the user/group information for all

 the roles and all the username/password information for RunAs

 roles for a given application.

edit Edit the properties of an application

editInteractive Edit the properties of an application interactively

export Export application to a file

exportDDL Export DDL from application to a directory

getDeployStatus Returns the combined Deployment status of the application

help Show help information

install Installs an application, given a file name and an option string.

installInteractive

 Installs an application in interactive mode, given a

 file name and an option string.

isAppReady Checks whether the application is ready to be run

list List all installed applications

listModules List the modules in a specified application

options Shows the options available, for a given file, application,

 or in general.

publishWSDL Publish WSDL files for a given application

WP101014 - WSADMIN z/OS V6.1 Primer

Section: Invoking WSADMIN
Version Date: Wednesday, September 10, 2008

- 13 -
© 2007, IBM Americas Advanced Technical Support
Washington Systems Center, Gaithersburg, MD

searchJNDIReferences

 List application that refer to the given JNDIName on a given

node

taskInfo Shows detailed information pertaining to a given install task

 for a given file

uninstall Uninstalls an application, given an application name and

 an option string

update Updates an installed application

updateAccessIDs Updates the user/group binding information with accessID

 from user registry for a given application

updateInteractive Updates an installed application interactively

view View an application or module,

 given an application or module name

At this time it is not important to know what all those things do. Just be aware that the Help
object is useful in displaying the available methods on an object.

Note:

� Issue the command quit to exit the WSADMIN prompt.

What you did there was invoke the Help object twice -- once with the method help, which
displayed back the various methods on the Help object; and once with the AdminApp method,
which displayed all the methods on the AdminApp object.

This seems like a trivial thing to do, but it illustrates a very important thing: the interactive help
facility of WSADMIN is a very useful tool to see what methods are available on the various
WSADMIN objects. It also illustrates how using WSADMIN interactively can be of use.

Review

Background: the default script language

Do you recall the $ sign on the front of the Help object? That means the script language used to
invoke the Help object was JACL. It turns out JACL is the default scripting language in V6.1 for
WSADMIN, despite it being "deprecated". JACL still works.

That's good news for backwards compatibility. Scripts written in the past in JACL keep working.
For now. At some point the JACL support may drop away. Hence our encouraging Jython.

Note:

Jython can be used -- and we recommend that it becomes your preferred scripting language -- but it
requires you to do something so WSADMIN doesn't expect to see the default JACL language.
There are two ways to accomplish this:

1. Provide the -lang Jython parameter on the WSADMIN invocation command

2. Change the default language expected by WSADMIN

We'll take a look at both next.

How to tell WSADMIN to use Jython rather than JACL

If you want WSADMIN to expect Jython for a particular invoked session of WSADMIN, but you
don't want to change the default language, you can pass the -lang Jython parameter into the
wsadmin.sh shell script:

./wsadmin.sh -lang jython -conntype SOAP -host aaaa -port bbbb

-user cccc -password dddd

� Do not issue that command right now. We'll do that in a few moments.

� The command used to invoke WSADMIN may end up being quite long ... longer than can
be shown on one line in this document. We may break the line as we did here. But the
command is always entered as one line, not two.

Notes:

This does not change the default scripting language. This simply changes the language for this
session of WSADMIN.

WP101014 - WSADMIN z/OS V6.1 Primer

Section: Invoking WSADMIN
Version Date: Wednesday, September 10, 2008

- 14 -
© 2007, IBM Americas Advanced Technical Support
Washington Systems Center, Gaithersburg, MD

Where the default scripting language is defined to WSADMIN

When you invoke the wsadmin.sh shell script from a node's /profiles/default/bin
directory, WSADMIN goes out to the /profiles/default/properties directory and reads
the file wsadmin.properties. That file contains many values that tell WSADMIN how to
behave.

The default scripting language is defined a few lines down in the file:

#---

The defaultLang property determines what scripting language to use.

Supported values are jacl and jython.

The default value is jacl.

#---

com.ibm.ws.scripting.defaultLang=jacl

If you wanted the default language for WSADMIN invoked from this node to be Jython, you
would need to change the property to:

com.ibm.ws.scripting.defaultLang=jython

Do not do that at this point in time. We'll do it later, as part of an exercise.Note:

There are many other properties defined in this file. It's worth browsing it and seeing what's
there.

Exercise: invoke WSADMIN so Jython is the expected scripting language

The first WSADMIN object we're going to invoke is the Help object. This will simply reply
back with a list of ways in which Help can be used. It's simple to do and will not result in any
changes to the configuration.

Objective

� Invoke the wsadmin.sh client shell script with the following command:

./wsadmin.sh -lang jython -conntype SOAP -host aaaa -port bbbb

 -user cccc -password dddd

Again, compose this in Notepad first. Then copy/paste into WSADMIN. It'll save typing.Hint:

where:

� aaaa is the host address where the DMGR can be reached
� bbbb is the SOAP port of the DMGR
� cccc is the WebSphere Admin ID
� dddd is the password for the WebSphere Admin ID

The first time you do this you're going to see a list of messages indicating that various JAR files
are being processed. This may take a minute or two:

 :
sys-package-mgr: processing new jar, '/shared/zWebSphere/V6R1B/lib/startup.jar'
sys-package-mgr: processing new jar, '/shared/zWebSphere/V6R1B/lib/bootstrap.jar'
sys-package-mgr: processing new jar, '/shared/zWebSphere/V6R1B/lib/j2ee.jar'
 :

Subsequent invocations of WSADMIN with -lang Jython should not result in this
happening. Generally this happens only when Jython is invoked the first time for a node.
But it may if the location where these JAR files is cached is cleared.

Note:

Ultimately you will see:

WASX7031I: For help, enter: "print Help.help()"
wsadmin>

See the new format of the Help object? That's the Jython format.Note:

WP101014 - WSADMIN z/OS V6.1 Primer

Section: Invoking WSADMIN
Version Date: Wednesday, September 10, 2008

- 15 -
© 2007, IBM Americas Advanced Technical Support
Washington Systems Center, Gaithersburg, MD

� Now issue the command:

print Help.help()

You should get back exactly what you saw with the JACL $Help help command.

� Now issue the command:

print Help.AdminApp()

Again, you should see what you saw with the JACL $Help AdminApp command

� Issue the same command again, but this time making AdminApp all lowercase. This will result
in an error, illustrating that WSADMIN is case sensitive:

print Help.adminapp()

You should see something like this:

WASX7015E: Exception running command: "Help.adminapp()"; exception information:

 com.ibm.bsf.BSFException: exception from Jython:

Traceback (innermost last):

 File "<input>", line 1, in ?

AttributeError: adminapp

� Issue the command quit to exit the WSADMIN prompt.

That exercise was to show that a different scripting language -- Jython -- can be invoked by
passing in the -lang jython parameter on the wsadmin.sh invocation. When that takes
place, the syntax of the commands changes slightly. Gone is the dollar sign. Methods are
specified as "dot extensions" to the object rather than as a parameter that follows after a blank
space.

But the output is the same. That's the key. $Help help and print Help.help() produce
the same results.

Review

Exercise: invoke WSADMIN using RMI rather than SOAP

To illustrate how the RMI (Remote Method Invocation) protocol can be used rather than
SOAP.

Objective

� Go back to your Admin Console and capture the "ORB" port of your Deployment Manager:

� "System Administration" � "DeploymentManager"

� Look on the right side of screen, under "Additional Properties." You should see a link for "Ports."
Click on that link and look for ORB_LISTENER_ADDRESS. Note the following:

Port

Host

� Invoke the wsadmin.sh client shell script with the following command:

./wsadmin.sh -lang jython -conntype RMI -host aaaa -port bbbb

 -user cccc -password dddd

Again, compose this in Notepad first. Then copy/paste into WSADMIN. It'll save typing.Hint:

where:

� aaaa is the host address where the DMGR can be reached
� bbbb is the ORB port of the DMGR
� cccc is the WebSphere Admin ID
� dddd is the password for the WebSphere Admin ID

WP101014 - WSADMIN z/OS V6.1 Primer

Section: Invoking WSADMIN
Version Date: Wednesday, September 10, 2008

- 16 -
© 2007, IBM Americas Advanced Technical Support
Washington Systems Center, Gaithersburg, MD

� Notice that once the wsadmin> prompt appears, it looks pretty much just like it did with SOAP.
That's as it should be. The difference between RMI and SOAP is at the lower network protocol
layer, not up at the WSADMIN behavior layer.

� Issue the command quit to exit the WSADMIN prompt.

RMI is a more efficient protocol, particularly for SSL, and firewall configurations are more likely
to be already configured to allow RMI-IIOP than SOAP. For the purposes of this document
we'll just assume you use whichever you prefer. At the higher WSADMIN programming level it
doesn't matter.

Review

Lesson wrap-up and summary

In this lesson we went through a few of the essential points about invoking the WSADMIN client.
We didn't really do much in the way of actual WSADMIN scripting. Nothing we did changed the
configuration at all.

Being able to get to the wsadmin> command prompt is a fundamental first step in WSADMIN
operations. Once there, then we can start invoking specific WSADMIN objects, make use of various
Jython things, and even fetch in Jython scripts kept in files. Invoking WSADMIN from a JCL batch
file is really pretty much the same thing we did here, except it's done using BPXBATCH from JCL.

We've intentionally glossed over a few things. This was so this first set of exercises didn't get too
complicated. Some of the things we glossed over were:

� The use of RMI vs. SOAP. Those are communication protocols used between the WSADMIN client
and the Deployment Manager. The two are very similar, though RMI has certain benefits over SOAP.
We'll explore RMI a little later.

� Security issues; specifically why using the WebSphere Admin ID makes things easier, and how we
could use a different ID if we wished to. We'll cover those topics down under "Security Related
Exercises" starting on page 85.

In this lesson we learned a few important things:

� The WSADMIN client is a shell script. Using the WSADMIN function requires the wsadmin.sh shell
script to be invoked.

� There are two basic "modes" -- remote mode, which implies a network connection to the running
server; and local mode, which means the wsadmin.sh shell script will update the configuration files
directly. Remote mode is achieved with the parameter -conntype SOAP (or RMI), and local mode is
achieved with -conntype NONE.

� Our basic rule is this: if the server is up (DMGR or standalone server), use remote mode to connect to
the server. Local mode is intended for situations where the server is down.

� By default, WSADMIN expects the scripting language to be JACL. However, JACL is "deprecated,"
meaning that while JACL still works, the future is Jython. New script development should be in
Jython, not JACL.

� Telling WSADMIN to expect Jython is accomplished in one of two ways -- by passing in the -lang
jython parameter at invocation, or by changing the default scripting language as specified in the
wsadmin.properties. file.

Now that we've learned to invoke the wsadmin.sh client, we'll start using it. That's the next exercise.

WP101014 - WSADMIN z/OS V6.1 Primer

Section: Invoking WSADMIN
Version Date: Wednesday, September 10, 2008

- 17 -
© 2007, IBM Americas Advanced Technical Support
Washington Systems Center, Gaithersburg, MD

Command Line Usage and Jython Exercises

Lesson Overview

We'll change the default scripting language from JACL to Jython. We'll invoke WSADMIN using
Jython and we'll start learning about the various objects. We'll start learning about some basic
Jython things like variables.

Background: where the wsadmin.properties file is located

The wsadmin.properties file holds the property that defines the default script language for the
WSADMIN client. There are two copies of this file in each node's HFS. The one that applies to us
is the one under /default/profiles/properties.

/<mount_point>

/DeploymentManager

/properties

/profiles

/default

/bin

wsadmin.properties Not this one

wsadmin.sh

/properties

wsadmin.properties

Copy of
wsadmin.sh

invoked

Copy of wsadmin.properties
that applies to the invoked copy of

wsadmin.sh client

This file is in held in the HFS in ASCII format. Editing it on the MVS system requires tools
to convert it to EBCDIC before tools like OEDIT will work. It's generally easier to FTP the
file in binary mode down to the workstation, where an editor such as Notepad can be used.
Then FTP it back to in binary mode.

But it's your choice ... whatever tool you know you can use to edit an ASCII file that's stored
in the HFS will work. We'll show FTPing it to the workstation.

Important:

Exercise: change default script language of WSADMIN and verify

In this exercise you will modify the default language setting in the wsadmin.properties
file. That will eliminate the need to code -lang jython on every WSADMIN invocation.

Objective

� Open up an FTP session to your host MVS

� Change directories to the /DeploymentManager/profiles/default/properties
directory.

� Set the file transfer mode to binary.

� Download the file to your workstation.

� Edit the file and modify the line:

com.ibm.ws.scripting.defaultLang=jacl

WP101014 - WSADMIN z/OS V6.1 Primer

Section: Command Line Usage
Version Date: Wednesday, September 10, 2008

- 18 -
© 2007, IBM Americas Advanced Technical Support
Washington Systems Center, Gaithersburg, MD

changing the value =jacl to =jython. After you're done, it should look like this:

#---

The defaultLang property determines what scripting language to use.

Supported values are jacl and jython.

The default value is jacl.

#---

com.ibm.ws.scripting.defaultLang=jython

� FTP the changed file back to the MVS system. Make sure you upload in binary mode.

� Check the permissions on the updated file in the HFS. Its permissions should be 644.

� Now invoke WSADMIN from the Deployment Manager's /profiles/default/bin directory
with the following command:

./wsadmin.sh -conntype SOAP -host aaaa -port bbbb -user cccc -password dddd

where:

� aaaa is the host address where the DMGR can be reached (see page 12)
� bbbb is the SOAP port of the DMGR (see page 12)
� cccc is the WebSphere Admin ID
� dddd is the password for the WebSphere Admin ID

You should see the following:

WASX7209I: Connected to process "dmgr" on node <node> using SOAP
connector; The type of process is: DeploymentManager

WASX7031I: For help, enter: "print Help.help()"

wsadmin>

The presence of the Jython format for the help command is evidence that the change
you made was picked up. The default language is now Jython.

Note:

� Leave WSADMIN at the wsadmin> prompt.

That was a one-time change. The WSADMIN client invoked from the Deployment Manager's
/profiles/default/bin directory will now read that wsadmin.properties file and
assume a default scripting language of jython.

That wsadmin.properties file is also where the WSADMIN client picks up the host and port
when -host and -port is not specified. As mentioned, we prefer to explicitly code those.

Review

Exercise: simple application installation

In this exercise you will install a very simple application called "SuperSnoop" into your
Deployment Manager's master configuration.

Note: We will not use WSADMIN to synchronize the node. It is possible to do that, and we'll
see that under "Exercise: node synchronization" on page 49. Here our objective is to install
the application using the AdminApp object. But not actually use the application. That would
require synchronization from the DMGR's master configuration out to the node.

Objective

� Go the Techdocs website and pull the SuperSnoop application EAR file:

http://www.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/TD101815

� Place the SuperSnoopProj.ear file up on the z/OS in an HFS location that's accessible to the
Deployment Manager server. The file should have permissions that permit of at least 644. For
example, place the file at:

/u/user1/SuperSnoopProj.ear

� Log onto the Admin Console and get the long name of the node and application server into
which this application will be installed:

WP101014 - WSADMIN z/OS V6.1 Primer

Section: Command Line Usage
Version Date: Wednesday, September 10, 2008

- 19 -
© 2007, IBM Americas Advanced Technical Support
Washington Systems Center, Gaithersburg, MD

Server long name:

Node long name:

� At the wsadmin> prompt, enter the following command:

AdminApp.install('/aaaa/SuperSnoopProj.ear','[-node bbbb -server cccc]')

where:

� aaaa is location where you stored the EAR file
� bbbb is the long name of the node into which the application will be installed
� cccc is the long name of the application into which the application will be installed

Where did we get the syntax of that? The InfoCenter offers helpful examples:

http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/index.jsp?topic=/com

.ibm.websphere.zseries.doc/info/zseries/ae/txml_callappinstall.html

That long URL will take you straight to the page. Otherwise, you can go to the InfoCenter
and search on something like AdminApp.install and start browsing.

We'll be showing more examples of syntax throughout this document.

Note:

If your command is properly constructed, you should see something like this:

ADMA5016I: Installation of SuperSnoop started.

ADMA5058I: Application and module versions are validated ...

 :

ADMA5011I: The cleanup of the temp dir for application SuperSnoop is complete.

ADMA5013I: Application SuperSnoop installed successfully.

� But the application is not yet saved. Do that with this command:

AdminConfig.save()

You won't see any positive confirmation of that. You'll simply be returned to the wsadmin>
command prompt. You can verify the application is installed with this command:

print AdminApp.list()

You should see something like this:

DefaultApplication

SuperSnoop
ivtApp

query

wsadmin>

� Go the Admin Console and look at the applications installed in the cell:

WP101014 - WSADMIN z/OS V6.1 Primer

Section: Command Line Usage
Version Date: Wednesday, September 10, 2008

- 20 -
© 2007, IBM Americas Advanced Technical Support
Washington Systems Center, Gaithersburg, MD

In this exercise you did several things:

� You changed the default script language from JACL to Jython
� You used the AdminApp object to install an application
� You used the AdminApp object to display a list of all applications currently in the cell

You are on your way to becoming a WSADMIN user.

Review

Exercise: uninstall the application

We'll turn around and uninstall the application.Objective

� At the wsadmin> prompt enter:

AdminApp.uninstall('SuperSnoop')

You'll see something like this:

ADMA5017I: Uninstallation of SuperSnoop started.

ADMA5104I: The server index entry for WebSphere ... is updated successfully.

ADMA5102I: The configuration data for SuperSnoop ... is deleted successfully.

ADMA5011I: The cleanup of the temp dir for application SuperSnoop is complete.

ADMA5106I: Application SuperSnoop uninstalled successfully.

''

wsadmin>

� Issue the save command:

AdminConfig.save()

� Verify that the application is gone:

print AdminApp.list()

� You should see SuperSnoop now gone from the list.

More experience with the methods of AdminApp. So far you've used install, list and
uninstall. If you turn back to page 13, you'll see a list of all the methods the AdminApp
object has. You should see install, list and uninstall in that list.

Review

Exercise: setting simple Jython variables

We'll now start to explore the Jython language itself. What we'll do here has nothing to do
with WSADMIN objects and methods. It's intended to showcase what you can do with the
Jython scripting language.

When you do these exercise, keep in mind that ultimately we'll code Jython in a file and have
WSADMIN read the file. Issuing the commands one after another at the command prompt is
just a simple way to start showing you how things work.

Objective

Much of what you'll see in the next few exercises came from the Techdoc:

http://www.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP100963

written by Mike Loos. I would recommend you read that if you want a more thorough treatment
of Jython. This white paper is taking some of that information and expanding it into a
step-by-step "primer" style.

Note:

� Issue the command:

a = 1

� Now echo back the current value of the variable a:

print a

You should get back:

WP101014 - WSADMIN z/OS V6.1 Primer

Section: Command Line Usage
Version Date: Wednesday, September 10, 2008

- 21 -
© 2007, IBM Americas Advanced Technical Support
Washington Systems Center, Gaithersburg, MD

1

wsadmin>

� Issue the command

a = hello

You should get back

WASX7015E: Exception running command: "a = hello"; exception
information:
 com.ibm.bsf.BSFException: exception from Jython:
Traceback (innermost last):
 File "<input>", line 1, in ?
NameError: hello

wsadmin>

What that's saying is that string values can't be entered without some indication it's a string.
That's done with quotes, which is next.

� Issue the command

a = 'hello'

Double-quotes works equally well. But you can't start a string with a double quote and end
with a single quote. The starting and ending quote must match.

Note:

� Now echo back the current value of the variable a:

print a

You should get back:

hello

wsadmin>

� Issue the following commands, one after another:

a = 1

b = 2

c = a + b

print c

You should get back:

3

wsadmin>

� Now try the following:

a = 1.11

b = 2.22

c = a * b

d = c ** 2

print d

You should get back:

6.072281640000002

wsadmin>

That was (1.11 x 2.22) 2Note:

WP101014 - WSADMIN z/OS V6.1 Primer

Section: Command Line Usage
Version Date: Wednesday, September 10, 2008

- 22 -
© 2007, IBM Americas Advanced Technical Support
Washington Systems Center, Gaithersburg, MD

� Issue the following commands, one after another:

a = 'Hello ' notice the space between the o and the single quote

b = 'World'

print a + b

You should get back:

Hello World

wsadmin>

� Another way to accomplish that would be:

a = 'Hello' notice no space this time

b = 'World'

print a , b

You should get back:

Hello World

wsadmin>

The comma acted as a separator. Notice that Jython added a blank space between the
two variables.

Note:

� Here's a bit more fancy string variable usage. This will "add" strings together to form a longer
single string. Issue each command, one after another:

a = 'one'

b = 'two'

print 'The value of a is ' + a + ' and the value of b is '+ b

You should get back:

The value of a is one and the value of b is two

wsadmin>

If your strings ran together without the blank spaces you desire, go back and look very
carefully at how the blank spaces were specified inside the quotes.

Note:

� If you tried the last exercise when the value of either variable was numeric, it would throw an
error. Here's how you mix string and numeric in a single print statement:

a = 1

b = 2

c = a + b

print 'The value of c is' , c

You should get back:

The value of c is 3

wsadmin>

Again, the comma acted as a separator. Jython added a blank space between the string
and the numeric variable value.

Note:

� Leave WSADMIN at the wsadmin> prompt.

A very simple set of exercises to allow you to see how numeric and string variables are set,
acted upon (addition, multiplication) and printed back out.

Review

WP101014 - WSADMIN z/OS V6.1 Primer

Section: Command Line Usage
Version Date: Wednesday, September 10, 2008

- 23 -
© 2007, IBM Americas Advanced Technical Support
Washington Systems Center, Gaithersburg, MD

Exercise: list variables

The options for the application install was created as a list variable called options. The
variable was then used with the AdminApp.install method. That's a very common thing
to do. Learning the essentials of list variables is a big part of mastering Jython for use with
WSADMIN.

ear = '/u/myapps/SuperSnoopProj.ear'

node = 'mynodec'

server = 'mysr01c'

options = '[-node ' + node + ' -server ' + server + ']'

AdminApp.install(ear,options)

AdminConfig.save()

List variables are really element arrays. By that we mean the things in the variable are
considered discrete -- that is, not simply part of a bigger string -- and can be parsed and
used by the program.

For example, the variable a = [1, 2, 3, 4] contains four discrete elements: the integers
1, 2, 3 and 4.

We're going to focus on list variables because they play an important role in WSADMIN
usage. Option lists for a WSADMIN object's method are passed in as a list. If you want to
construct the list ahead of time as a variable, you must create a list variable.

We saw an example of that earlier:

Objective

� Issue the following command:

options = [1, 2, 3, 4]

� Now Issue the following command

print options[2]

You should get back:

3

wsadmin>

Why 3? Because lists have an starting offset of 0. So the first element in the list is really
accessed with offset 0. Offset 2 is therefore the number 3.

Note:

� Now Issue the following command

options = options + [5]

That appends the element 5 to the list. The list now consists of [1, 2, 3, 4, 5]. Note:

� Test the appended element. Issue the command:

print options

You should get back:

[1, 2, 3, 4, 5]

wsadmin>

Why are the square brackets part of that print options? It's Jython telling you the variable is
really a list variable.

Note:

WP101014 - WSADMIN z/OS V6.1 Primer

Section: Command Line Usage
Version Date: Wednesday, September 10, 2008

- 24 -
© 2007, IBM Americas Advanced Technical Support
Washington Systems Center, Gaithersburg, MD

� Extract the last element:

last = options[4]

print last

You should get back:

5

wsadmin>

� Lists may also contain string variables. Do the following:

options = ['Hello', 'World']

print options

You should get back:

['Hello', 'World']

wsadmin>

� And of course you can extract strings as easily as numbers:

last = options[1]

print last

You should get back:

World

wsadmin>

� Numbers and strings can be mixed:

options = ['One', 2, 'Three', 4]

print options

You should get back:

['One', 2, 'Three', 4]

wsadmin>

� And to prove that elements [1] and [3] are really numbers:

x = options[1]

y = options[3]

z = x + y

print z

You should get back:

6

wsadmin>

� You can programmatically test for the length of a list variable:

a = len(options)

print a

You should get back:

4

wsadmin>

The len() function returned the actual number of elements. It did not assume the first
was counted as "0." So be careful with the output of len() and using the number to index
into a list to extract a value.

Note:

WP101014 - WSADMIN z/OS V6.1 Primer

Section: Command Line Usage
Version Date: Wednesday, September 10, 2008

- 25 -
© 2007, IBM Americas Advanced Technical Support
Washington Systems Center, Gaithersburg, MD

� You can reset a list back to empty:

options = []

print options

You should get back:

[]

wsadmin>

� Finally, you can nest lists within lists:

opt1 = [1, 2, 3]

opt2 = ['eggs', 'milk', 'cheese']

opt3 = [opt1, opt2]

print opt3

You should get back:

[[1, 2, 3], ['eggs', 'milk', 'cheese']]

wsadmin>

List variables are special variables whose contents are discrete elements. This of it as an
array of data, if that's helpful to you. You can test for the length of a list with the len()
function, and you can parse out values using the index function options[n], where n is the
offset, starting with 0.

There's much more you can do with variables and list variables. Consult the Python tutorial at:

http://www.python.org/doc/tut/tut.html

Python was the predecessor to Jython. The syntax is nearly identical

Review

Exercise: another way of constructing list variables

To show how to create a list variable as a string. This is the more common way you'll see
such list variables built for use by WSADMIN commands.

Objective

� At the WSADMIN prompt, issue the following, one after the other:

x = 'eggs'

y = 'milk'

z = 'cheese'

opt = '[' + x + ',' + y + ',' + z + ']'

print opt

You should get back:

[eggs,milk,cheese]

wsadmin>

That is not truly a "list variable" right now ... Jython would consider that just a string of
characters. But it would be what WSADMIN could use as an option list on a command.
And you'll see us constructing option lists as strings quite frequently in this document.

Note:

Constructing lists as strings is a handy way of building WSADMIN options. Constructing lists in
the manner we showed before is how you'd do it if you want to process the list
programmatically, such as looping through it.

Review

Lesson wrap-up and summary

Interactive mode is quite useful for small, ad hoc things. In this exercise we learned a few things
about issuing commands from the command prompt, and a little about Jython itself.

WP101014 - WSADMIN z/OS V6.1 Primer

Section: Command Line Usage
Version Date: Wednesday, September 10, 2008

- 26 -
© 2007, IBM Americas Advanced Technical Support
Washington Systems Center, Gaithersburg, MD

File-based Input Exercises

Lesson Overview

Interactive mode is nice for small stuff, but beyond a few lines of Jython it gets tedious. Thankfully
we're able to tell WSADMIN to read in a file with the Jython we wish to execute. File-based input
allows us to code routines that execute the same way, time and time again.

In this unit we'll explore a number of different elements of WSADMIN and Jython:

� Using the execfile() function to pull the file while in interactive mode

� Specifying the file at WSADMIN invocation

� ASCII vs. EBCDIC encoding of the Jython file

� Passing parameters into a script

� Looping and if-then-else structures

Exercise: use the execfile() function

The execfile() function is a way to read in a Jython file from the WSADMIN command
prompt. It's a way to have the best of both worlds: flexibility of interactive mode with the
reusability of file-based Jython.

Objective

� If you still have the wsadmin> prompt, then continue. Otherwise, launch WSADMIN with the
following command:

./wsadmin.sh -conntype SOAP -host aaaa -port bbbb -user cccc -password dddd

where:

� aaaa is the host address where the DMGR can be reached
� bbbb is the SOAP port of the DMGR
� cccc is the WebSphere Admin ID
� dddd is the password for the WebSphere Admin ID

Remember that your telnet or OMVS session needs to be operating under that Admin ID
before you issue the command to invoke WSADMIN.

Note:

� We need to get a file up on the z/OS system to read into WSADMIN. We'll do that by creating
one in ASCII on workstation and FTP-ing it up to z/OS. Do the following:

� Open a Notepad session.

� Type the following into the Notepad session:

list_a = ['one', 'two', 'three', 'four', 'five']

for i in list_a:

 print 'The value of the item is', i

Jython is sensitive to the column in which statements begin. Start each statement in
column 1, except for things inside a code block, which is what follows the colon at end
of for statement.

Note:

� Save the file as test.jy

� FTP the file to the z/OS system in binary mode and place in some directory such as
/u/user1 or whatever directory you have easy access to. Maintain the same name of
test.jy.

� We'll soon show you how to tell WSADMIN to accept EBCDIC input. For now, we
need to make sure input is in ASCII because that's the default for WSADMIN.

� The file does not need to have an extension of jy. But it's as good as any.

Notes:

WP101014 - WSADMIN z/OS V6.1 Primer

Section: File Input and Jython
Version Date: Wednesday, September 10, 2008

- 27 -
© 2007, IBM Americas Advanced Technical Support
Washington Systems Center, Gaithersburg, MD

� Make sure the permissions on that file are at least 644

� Use the execfile() function to read in and execute that file. Issue the following command at
the wsadmin> prompt:

execfile('/aaaa/test.jy')

where:

� aaaa is the directory location where you FTPed the file

You should get back:

The value of the item is one

The value of the item is two

The value of the item is three

The value of the item is four

The value of the item is five

wsadmin>

You just executed a series of Jython commands -- in this case, the creation of a list variable
and a simple loop that read through and printed out each element in the list -- and you
executed them from a stored file. Coding Jython and WSADMIN in a file is a very important
building block for using WSADMIN effectively.

We'll now learn about a few other things having to do with executing WSADMIN from a stored
file. In the next section we'll show how that's done from a batch JCL file.

Review

Exercise: comments in the file (optional)

This exercise is so simple you may opt to skip it.Objective

� Edit your workstation copy of test.jy and add the following comments:

list_a = ['one', 'two', 'three', 'four', 'five']

Loop through and print
for i in list_a:

 # Printing each element
 print 'The value of the item is', i

� Save the file and FTP in binary mode up to the z/OS system.

� Invoke that file with the execfile() function, just as you did before. You should see the exact
same results as before. The comments will not display.

Once a script file gets beyond a few lines, comments will be needed to keep things orderly.
We wanted to introduce how comments were coded.

Review

Exercise: invoke WSADMIN and specifying input file

The execfile() function read in a file from the interactive command prompt, which meant
that WSADMIN was already up. There's another way to read in a file -- at the time
WSADMIN itself is invoked. If you have a WSADMIN script you want to run once and that's
all you want to do, then having WSADMIN read the file in at invocation time, run the script
and then exit may be just the thing for you.

Objective

� If you're still at the wsadmin> command prompt, enter quit to exit WSADMIN.

� Launch WSADMIN with the following command (all on one line):

Compose in Notepad, then copy/paste into telnet or OMVS. Save the command string
for use later.

Reminder:

WP101014 - WSADMIN z/OS V6.1 Primer

Section: File Input and Jython
Version Date: Wednesday, September 10, 2008

- 28 -
© 2007, IBM Americas Advanced Technical Support
Washington Systems Center, Gaithersburg, MD

./wsadmin.sh -conntype SOAP -lang jython -f /eeee/test.jy -host aaaa

-port bbbb -user cccc -password dddd

where:

� aaaa is the host address where the DMGR can be reached
� bbbb is the SOAP port of the DMGR
� cccc is the WebSphere Admin ID
� dddd is the password for the WebSphere Admin ID
� eeee is the location where you stored the test.jy script file

We saw that the -lang jython was necessary for WSADMIN to understand the language
type, despite the default language being specified as jython in the wsadmin.properties
file. Hence the inclusion of that parameter.

Note:

� Check to make sure you get back the following, which is exactly the same thing you saw when
you used the execfile() function:

The value of the item is one

The value of the item is two

The value of the item is three

The value of the item is four

The value of the item is five

� Note that you are not at the wsadmin> prompt. You're at the UNIX prompt. That means that
the WSADMIN client is not presently active.

The client came up, processed your input file, then closed back down.

We hope you can see that it should be easy to issue the same invocation command from a
JCL batch file. We'll cover that under "JCL and BPXBATCH Exercises" starting on page 34.

Note:

The ability to have WSADMIN come up, process a file, and then close back down positions us
to do various WebSphere administrative things in batch mode.

Review

Exercise: ASCII vs. EBCDIC encoding of Jython file

The test.jy file in the z/OS system's HFS is presently in ASCII encoding. That's what
WSADMIN expects by default. But you may want input in EBCDIC format, which would
make it easier to create and edit using the standard z/OS editors. To do that, we need to tell
WSADMIN to expect the EBCDIC. That's done with a somewhat strange Java option we
pass into the WSADMIN client.

Objective

� On your workstation, copy the test.jy file to test2.jy.

� Edit the new test2.jy file and change it so it reads as follows:

list_a = ['this', 'file', 'is', 'in', 'EBCDIC'] all changes this line

Loop through and print

for i in list_a:

 # Printing each element

 print 'The value of the item is', i

� Save the file.

� FTP that file to the z/OS system, this time in ascii mode. That'll convert the file to EBCDIC
format. Place in the same directory as the test.jy file was placed earlier. Make sure the file
permissions are at least 644.

� Using ISHELL or OMVS, use the standard z/OS editor to look at the file. You should be able to
read that since the encoding is in EBCDIC.

WP101014 - WSADMIN z/OS V6.1 Primer

Section: File Input and Jython
Version Date: Wednesday, September 10, 2008

- 29 -
© 2007, IBM Americas Advanced Technical Support
Washington Systems Center, Gaithersburg, MD

If the text is garbled, re-FTP and make sure the transfer mode is ascii, not binary.Note:

� Launch WSADMIN with the following command (all on one line):

./wsadmin.sh -javaoption -Dscript.encoding=Cp1047 -conntype SOAP

-lang jython -f /eeee/test2.jy -host aaaa

-port bbbb -user cccc -password dddd

Text shaded in gray is what's new compared to previous command issued. It's important the
-javaoption come before the -f command. Parameters are processed in order seen, so
in this case you'd want to tell WSADMIN about the encoding before it attempted to read in
the file.

Note:

where:

� aaaa is the host address where the DMGR can be reached
� bbbb is the SOAP port of the DMGR
� cccc is the WebSphere Admin ID
� dddd is the password for the WebSphere Admin ID
� eeee is the location where you stored the test2.jy script file

� You should get back the following:

The value of the item is this

The value of the item is file

The value of the item is is

The value of the item is in

The value of the item is EBCDIC

Again, note that you are not at the wsadmin> prompt. You're at the UNIX prompt. That means
that the WSADMIN client is not presently active. WSADMIN was invoked, the file specified with
the -f option executed, and WSADMIN then closed down.

That is the key to having your input in EBCDIC encoding. You must tell WSADMIN to expect
the non-default character encoding, and that's done with the -javaoption parameter to
WSADMIN with -Dscript.encoding=Cp1047 supplied.

Review

Exercise: looping and other logic in Jython

We've already one example of a "for" loop. Here we'll explore a few more. Most of this is
coming straight from the Python tutorial at:

http://www.python.org/doc/tut/tut.html

They call these things "control flow tools."

We'll revert back to creating the script files on the workstation and FTPing them to the host in
binary mode. That means the files will be stored on z/OS in ASCII, which is the default for
WSADMIN. No -javaoption will be needed. We'll use execfile().

Objective

� Your WSADMIN client should not be active. In case it is, close it now.

� Launch WSADMIN with the following command:

./wsadmin.sh -conntype SOAP -host aaaa -port bbbb -user cccc -password dddd

where:

� aaaa is the host address where the DMGR can be reached
� bbbb is the SOAP port of the DMGR
� cccc is the WebSphere Admin ID
� dddd is the password for the WebSphere Admin ID

WP101014 - WSADMIN z/OS V6.1 Primer

Section: File Input and Jython
Version Date: Wednesday, September 10, 2008

- 30 -
© 2007, IBM Americas Advanced Technical Support
Washington Systems Center, Gaithersburg, MD

The "if" and "elif" statements

� Create a file on your workstation with the name control1.jy

At this point we're going to supply the exercise files in the ZIP file that is a companion to the
PDF on Techdocs.

Note:

� Code the contents of file as:

x = 4

if x < 0:

 print 'The value of x is', x, 'which is less than zero'

elif x == 0:

 print 'The value of x is', x, 'which is exactly equal zero'

elif x > 0:

 print 'The value of x is', x, 'which is greater than zero'

� FTP the file in binary mode to the z/OS system. Make sure permissions are at least 644.

� Invoke the file with:

execfile('/aaaa/control1.jy')

where aaaa is the location where you stored the file.

You should see:

The value of x is 4 which is greater than zero

wsadmin>

The "for" statement

� Create a file on your workstation with the name control2.jy

� Code the contents of file as:

count = 0

option = ['one', 'two', 'three', 'four', 'five', 1, 2, 3, 4, 5]

len_option = len(option)

print 'The length of the variable "option" is', len_option

for i in option:

 count = count + 1

 print 'Checking item', count, 'in the list. The value found is', i

print 'Done'

� There may be a more elegant way to report the iteration count of the loop.
� Note the colon at the end of the for statement

� Note how the statements inside the for loop are indented at least one space. That's
important ... that's what tells Jython that it's part of the loop

� The final print 'Done' statement is back at column 1

Notes:

� FTP it to the z/OS system in binary. Make sure permissions are 644 minimum.

� Invoke with execfile() as you did before

� You should see back:

The length of the variable "option" is 10

Checking item 1 in the list. The value found is one

Checking item 2 in the list. The value found is two

Checking item 3 in the list. The value found is three

Checking item 4 in the list. The value found is four

Checking item 5 in the list. The value found is five

Checking item 6 in the list. The value found is 1

Checking item 7 in the list. The value found is 2

Checking item 8 in the list. The value found is 3

Checking item 9 in the list. The value found is 4

Checking item 10 in the list. The value found is 5

Done

WP101014 - WSADMIN z/OS V6.1 Primer

Section: File Input and Jython
Version Date: Wednesday, September 10, 2008

- 31 -
© 2007, IBM Americas Advanced Technical Support
Washington Systems Center, Gaithersburg, MD

The "break" statement

� Make of copy of control2.jy and call it control3.jy

� Make the following modifications. Code added is highlighted in gray:

count = 0

check = 'four'
option = ['one', 'two', 'three', 'four', 'five', 1, 2, 3, 4, 5]
len_option = len(option)
print 'The length of the variable "option" is', len_option
for i in option:
 count = count + 1
 print 'Checking item', count, 'in the list. The value found is', i

 if i == check:
 print 'Found item at position', count
 break
print 'Done'

� Notice how the if statement has a colon at the end
� Notice how the following print statement is indented further
� The break statement breaks whatever loop processing was taking place when the

statement encountered. In this case it was the for i in option: loop

Notes:

� FTP it to the z/OS system in binary. Make sure permissions are 644 minimum.

� Invoke with execfile() as you did before

� You should see back:

The length of the variable "option" is 10
Checking item 1 in the list. The value found is one
Checking item 2 in the list. The value found is two
Checking item 3 in the list. The value found is three
Checking item 4 in the list. The value found is four
Found item at position 4
Done
wsadmin>

A quick review of the if statement, the for looping function an the break function. These
things are not strictly required to invoke the methods on WSADMIN objects. But you'll find
them handy when you start building slightly more intelligent Jython scripts. This is particularly
true if you plan to do validation testing on parameters passed into the script.

Review

Exercise: passing parameters into a script

Imagine a script that installs an application into a server. We saw earlier that such a script
requires the EAR file be specified, and the server and node be named as well. You could
hard-code those values as variables at the top of the script. That certainly works. But you
may want to code a script that is a bit more flexible.

What we'll explore now is how you can pass parameters into a script, and then
programmatically extract the parameters and use them in your script processing.

To do this, we're going to leave the execfile() function and go back to invoking
WSADMIN and using the -f parameter to point to the script file.

Objective

� If you still have a wsadmin> prompt, issue the quit command to close it.

� Create a file on your workstation with the name parms.jy

� Code the contents of file as:

WP101014 - WSADMIN z/OS V6.1 Primer

Section: File Input and Jython
Version Date: Wednesday, September 10, 2008

- 32 -
© 2007, IBM Americas Advanced Technical Support
Washington Systems Center, Gaithersburg, MD

import sys

len_args = len(sys.argv)

print 'The number of parms passed in:', len_args

for i in sys.argv:

 print 'Parm value:', i

print 'All done'

� The special variable sys.argv is where the passed-in parameters will go. We need to
tell Jython about that special variable. We do that by importing the Java sys package.

� You custom parameters will be added to the end of the ./wsadmin.sh invocation
statement, after the -f parameter that points to the script file.

� The rest of this script involves things we've already looked at.

Notes:

� FTP it to the z/OS system in binary. Make sure permissions are 644 minimum.

� Launch WSADMIN with the following command (all on one line):

./wsadmin.sh -conntype SOAP -lang jython -host aaaa -port bbbb

-user cccc -password dddd -f /eeee/parms.jy milk eggs cheese

where:

� aaaa is the host address where the DMGR can be reached
� bbbb is the SOAP port of the DMGR
� cccc is the WebSphere Admin ID
� dddd is the password for the WebSphere Admin ID
� eeee is the location where you stored the test.jy script file
� and the parameters follow ... in this example, milk eggs cheese

� You should see back:

WASX7303I: The following options are passed to the scripting
environment and are available as arguments that are stored in

the argv variable: "[milk, eggs, cheese]"
The number of parms passed in: 3
Parm value: milk
Parm value: eggs
Parm value: cheese
All done

The special variable sys.argv is very useful when you want a script to be more generic, with
specific information passed in at time of invocation. The example shown here is rather simple:
it does no validity checking to make sure the correct parameters are passed in, or that they're
provided in the proper sequence. There are ways to do that, and we'll some of that later.

Review

Lesson wrap-up and summary

In this set of lessons you saw some fundamentally important things about coding Jython in scripts
and having WSADMIN read those scripts in and process them. We saw that the file can be
encoded in either ASCII or EBCDIC format, but if EBCDIC then you need to inform WSADMIN of
that fact.

We saw some of the basic elements of Jython logical control. And we saw how to pass parameters
into a script using the sys.argv variable.

You are becoming well positioned to delve deeper into the specifics of the WSADMIN objects, and
how you can programmatically do things you've used the Admin Console for up to now. We want
first to cover how to use JCL and BPXBATCH to invoke WSADMIN because that will set the stage
for true MVS batch operations. Then we'll explore the WSADMIN objects and show many examples
of how to do key WebSphere things.

WP101014 - WSADMIN z/OS V6.1 Primer

Section: File Input and Jython
Version Date: Wednesday, September 10, 2008

- 33 -
© 2007, IBM Americas Advanced Technical Support
Washington Systems Center, Gaithersburg, MD

JCL and BPXBATCH Exercises

Lesson Overview

This will be a relative short set of exercises because invoking WSADMIN from JCL is really little different
than doing it from a telnet or OMVS session. That's why we spent some time on the manual invocation of
WSADMIN and the use of the -f option to point to a script file.

Exercise: simple invocation of WSADMIN

To get the JCL working, with WSADMIN successfully invoked and a script file processed.Objective

� In a JCL library data set of your choosing, provide the following JCL, substituting in as needed
according to the notes below the JCL:

This JCL is supplied as file wsadmin.jcl in the accompanying ZIP file.Note:

=COLS> ----+----1----+----2----+----3----+----4----+----5----+

****** ***************************** Top of Data *************

//WSADMIN JOB (ACCTNO,ROOM),REGION=0M,

// USER=aaaa,PASSWORD=bbbb

//STEP1 EXEC PGM=IKJEFT01

//SYSTSPRT DD SYSOUT=*

//SYSTSIN DD *

 BPXBATCH SH +

 /cccc/DeploymentManager+ Note: no space before + sign

 /profiles/default/bin/wsadmin.sh + Note: there is a space before + sign

 -lang jython +

 -conntype SOAP +

 -host ddd.ddd.ddd +

 -port eeee +

 -user aaaa +

 -password bbbb +

 -f /ffff/gggg + Note: point to control3.jy used earlier

 1> /tmp/wsadmin.out +

 2> /tmp/wsadmin.err

/*

where:

� aaaa -- is the WebSphere Admin ID
� bbbb -- is the WebSphere Admin ID password
� cccc -- is the mount point for the DMGR node
� ddd.ddd.ddd -- is the host name where the DMGR is listening
� eeee -- is the SOAP port (or ORB port if -conntype RMI used)
� ffff -- is the directory location where the script file is located
� gggg -- is the name of the script file

When there's no space before the + sign it means the concatenation is made with no spaces
inserted. That's exactly what we want when we built the path to the wsadmin.sh shell

script. But everywhere else we do want a blank space, hence the space before the + sign.

What we're building here is pretty much exactly like what we built when we invoked
WSADMIN manually by entering all this in at the telnet prompt.

The 1> and 2> is there STDOUT and STDERR are going to go.

Note:

� Update the JOB card to you local requirements

WP101014 - WSADMIN z/OS V6.1 Primer

Section: JCL and BPXBATCH
Version Date: Wednesday, September 10, 2008

- 34 -
© 2007, IBM Americas Advanced Technical Support
Washington Systems Center, Gaithersburg, MD

� Update the USER= and PASSWORD= on the JOB card with the WebSphere Admin ID.

If you are not permitted to code a password in the JOB card, then make sure this job runs
under the authority of the WebSphere Admin ID. That is important because this will attempt
to establish a SOAP connection to the DMGR, and that will mean SSL if security is enabled.
The WebSphere Admin ID will have the keyring and certificates; other IDs will not.

See "Exercise: use a different ID from WebSphere Admin ID" on page 85 for more on
running JCL batch under a different userid authority.

Note:

� Make sure the -f option points to the control3.jy file you created earlier.

� Submit this job.

� Look for RC=0 in the JESMSGLG for the submitted job. You won't see the output from the script
here.

� If RC=0, then look in the /tmp/wsadmin.out to see the output; if other than RC=0 and not
some simple JCL error, then look in the /tmp/wsadmin.err to see what might have gone
wrong.

� If it worked, the output in /tmp/wsadmin.out should look like this:

********************************* Top of Data *********

WASX7209I: Connected to process "dmgr" on node <node>

The length of the variable "option" is 10

Checking item 1 in the list. The value found is one

Checking item 2 in the list. The value found is two

Checking item 3 in the list. The value found is three

Checking item 4 in the list. The value found is four

Found item at position 4

Done

******************************** Bottom of Data *******

The invocation of WSADMIN with a JCL batch file and BPXBATCH truly is just like issuing the
command at a telnet command prompt.

Review

Exercise: passing in parameters

To see how parameters can be passed into a WSADMIN script when invoking from JCL.
This is fairly simple: it involves the same JCL with the parameters added after the -f pointer
to the script file. We'll change the script we run to parms.jy.

Objective

� Edit the WSADMIN JCL you created in the previous exercise. Change the Jython script file
name being invoked from control3.jy to parms.jy.

Both script files are provided in the companion ZIP file to this PDF on Techdocs. See the top
of this page for the Techdoc number.

Note:

� Now add parameters after the parms.jy file name but before the + sign. Be sure to leave a
space between your last parameter and the + sign.

 :

 -f /u/user1/parms.jy eggs milk cheese +
 1> /tmp/wsadmin.out +

 2> /tmp/wsadmin.err

/*

� Submit the job and review the output as before.

WP101014 - WSADMIN z/OS V6.1 Primer

Section: JCL and BPXBATCH
Version Date: Wednesday, September 10, 2008

- 35 -
© 2007, IBM Americas Advanced Technical Support
Washington Systems Center, Gaithersburg, MD

� If it worked, the output in /tmp/wsadmin.out should look like this:

WASX7209I: Connected to process "dmgr" on node <node> using SOAP connector; The

type of process is: DeploymentManager

WASX7303I: The following options are passed to the scripting environment and are

available as arguments that are stored in the argv variable: "[eggs, milk, cheese]"

The number of parms passed in: 3

Parm value: eggs

Parm value: milk

Parm value: cheese

All done

Again, no different than when the command was entered at the telnet prompt.Review

Lesson wrap-up and summary

Using JCL as the tool to control the invocation of WSADMIN is a very useful thing. It can't be used
for interactive ad hoc type things, but once you have a script developed and working, invoking it
using batch JCL may help non-UNIX people use WSADMIN.

During script development you may wish to use the execfile() function from a WSADMIN
command prompt. That saves the time of starting up WSADMIN each time you want to test
some new portion of your script.

Hint:

WP101014 - WSADMIN z/OS V6.1 Primer

Section: JCL and BPXBATCH
Version Date: Wednesday, September 10, 2008

- 36 -
© 2007, IBM Americas Advanced Technical Support
Washington Systems Center, Gaithersburg, MD

Exploring the WSADMIN Objects Exercises

Becoming an expert in WSADMIN

Is not an easy thing to do. Knowing that five WSADMIN "objects" exist is the easy part.
Understanding all the methods on those objects and -- more difficult still -- all the options those
methods have is what takes time.

With WebSphere V6.1 we have something that helps -- the "Command Assistance" function of the
Admin Console. It will report on the WSADMIN command that is equivalent to some action taken in
the console. But it's not perfect; do not expect it to provide you with all the information you may
need.

WSADMIN is like any programming language: learning it involves starting out with some relatively
simple things, then branching out from there. And making liberal use of reference material where
available. This is where the InfoCenter comes into play. The InfoCenter is an excellent reference
source for WSADMIN. So is the Internet ... you'd be surprised how many examples of WSADMIN
scripts are starting to appear out there.

With all that in mind, what we're going to do now is wade into WSADMIN, starting out relatively slow
with fairly simple things, then building up to more complicated things.

Topic: Admin Console command assistance

Lesson Overview

The new Command Assistance feature of WebSphere Application Server Version 6.1 is a
feature of the Admin Console that will report the WSADMIN command equivalent to the action
taken in the console. In this lesson you will learn how to enable and use the feature.

Exercise: enable command assistance in Admin Console

To see where in the console we have the ability to enable or disable the Command
Assistance function, and how to quickly verify that it is working.

Objective

� In the Admin Console, go to System Administration � Console Preferences

� Enable command assistance. Do the following:

Click the "Enable command
assistance notifications" checkbox

Click "Apply"

1

2

� In the Admin Console, go to Applications � Enterprise Applications

� You should see a list of whatever applications you have installed, along with a link for
"command assistance" over on the right side of the screen:

WP101014 - WSADMIN z/OS V6.1 Primer

Section: Exploring the WSADMIN Objects
Version Date: Wednesday, September 10, 2008

- 37 -
© 2007, IBM Americas Advanced Technical Support
Washington Systems Center, Gaithersburg, MD

Click the the "View
administrative scripting

command for last
action" link

1

� Using your mouse, copy the command out of the window that's provided:

Mark the command and
copy it to the clipboard 1

AdminApp.list() is the WSADMIN Jython command used to list the applications in
the cell.

Note:

� Paste the command into a Notepad session, or any text editor. You have the very
beginnings of a Jython script.

A very simple exercise to validate that command assistance is turned on. We of course
are interested in more complex commands than this. We will get to those in a moment.

Review

Exercise: enable logging of command assistance

Displaying the commands to the Admin Console is one method of doing this; logging
them to a file is another method. The file the command is written to is deep inside the
configuration file system for the DMGR, and will be held in ASCII. You'll see where that
file is in this exercise.

Objective

� In the Admin Console, go to System Administration � Console Preferences

� Click the checkbox for "Log command assistance commands"

� Click on the "Apply" button.

WP101014 - WSADMIN z/OS V6.1 Primer

Section: Exploring the WSADMIN Objects
Version Date: Wednesday, September 10, 2008

- 38 -
© 2007, IBM Americas Advanced Technical Support
Washington Systems Center, Gaithersburg, MD

� In the Admin Console, go to Applications � Enterprise Applications. This will once again
list all the applications installed in the cell.

� In a Telnet session, go to:

/aaaa/DeploymentManager/profiles/default/logs/dmgr

where aaaa is the mount point for your Deployment Manager's configuration file system.

� In that directory you should see a file named:

commandAssistanceJythonCommands_aaaa.log

where aaaa is the ID you used when you logged into the Admin Console.

� That file is in ASCII encoding. Open the file for browsing and scroll to the bottom. You
should see something like the following:

[4/24/07 13:03:47:560 GMT+00:00] ApplicationDeployment

AdminApp.list()

� Mark the command (not the date/timestamp) and copy to the clipboard, then paste to a
separate Notepad session or other text editor session. Again, you've demonstrated how you
can extract the command for your own scripting use.

� Close the "Command Assistance" window.

You've seen another way to capture the WSADMIN Jython command equivalent to an
Admin Console action.

Review

Exercise: a more complex command

The AdminApp.list() example was used because it was an easy and non-disruptive
command to generate. But our interest in the command assistance feature is that it
provides a way to see far more complex commands; command structures we might not
otherwise be able to figure out. Here we'll see an example of that: we'll create a new
server and see the resulting command.

We will not save the change, however. So in reality nothing gets changed in the
WebSphere configuration. It will illustrate an important point: you can use the Admin
Console to capture WSADMIN commands without disturbing the actual configuration.
You simply avoid the final "save" process.

Objective

This exercise assumes a Network Deployment configuration. It won't work for a Standalone.Note:

� In the Admin Console, go to Servers � Application Servers.

� Click the New button.

� Provide a "Server Name" of test.

� At "Server Template," click Next.

� For "Server specific short name" provide SPECIFIC

� For "Server generic short name" provide GENERIC

� Click Next

� At "Confirm New Server" click Finish

� You should see the "View administrative scripting command for last action" link to the right
side of the screen. Click on that link.

WP101014 - WSADMIN z/OS V6.1 Primer

Section: Exploring the WSADMIN Objects
Version Date: Wednesday, September 10, 2008

- 39 -
© 2007, IBM Americas Advanced Technical Support
Washington Systems Center, Gaithersburg, MD

� You should see the associated WSADMIN command:

AdminTask.createApplicationServer('aaaa', '[-name test

-templateName defaultZOS -specificShortName SPECIFIC

-genericShortName GENERIC]')

where aaaa is the long name of the node where the server would be created.

The AdminTask object is new with V6.1. It has some very useful functions that are now
part of single command that used to take multiple commands before. The method
createApplicationServer() is what creates the server. What's inside the () are
the option for the method. This is where the "Command Assistance" feature is so helpful
-- here it is giving us an example of the options we would need, as well as the syntax of
those options.

Note:

� Close the "Command Assistance" window.

� Click the Review link at the top of the screen. This will give us a chance to discard the
changes we've made.

� Click on Discard and then Yes so the new server is not created.

The creation of a server is a more complex thing than simply listing out the applications
that are installed. We saw that the command assistance feature will handle the more
complex thing.

Review

Lesson wrap-up and summary

The purpose of this exercise was to demonstrate how the new "Command Assistance" feature
of WebSphere Application Server V6.1 can be used to get a good example of the WSADMIN
command syntax for a given action.

Topic: use "help" to get a sense for what methods are on what objects

Lesson Overview

The online help facility does not really offer much along the lines of precise syntax charts. But it
can be useful in determining what methods are applicable to what objects, and to a lesser
degree the properties of the method itself. In this exercise we'll do just a little exploration of the
"help" facility.

Exercise: display contents of help() method

To see that the online help can display what information is available.Objective

� Get to a WSADMIN command prompt.

The option -conntype NONE works well for simple help exploration.Note:

� Issue the following command:

print Help.help()

You should get something like this (some preliminary output removed to save space):

attributes given an MBean, returns help for attributes

operations given an MBean, returns help for operations

constructors given an MBean, returns help for constructors

description given an MBean, returns help for description

notifications given an MBean, returns help for notifications

classname given an MBean, returns help for classname

all given an MBean, returns help for all the above

help returns this help text

AdminControl returns general help text for the AdminControl object

AdminConfig returns general help text for the AdminConfig object

WP101014 - WSADMIN z/OS V6.1 Primer

Section: Exploring the WSADMIN Objects
Version Date: Wednesday, September 10, 2008

- 40 -
© 2007, IBM Americas Advanced Technical Support
Washington Systems Center, Gaithersburg, MD

AdminApp returns general help text for the AdminApp object

AdminTask returns general help text for the AdminTask object
wsadmin returns general help text for the wsadmin script

 launcher
message given a message id, returns explanation and

 user action message

The ones in bold are what we'll explore now.

� Issue the following command:

print AdminControl.help()

You should get something like this (some preliminary output removed to save space):

completeObjectName

 Return a String version of an object name given a

 template name

getAttribute_jmx

 Given ObjectName and name of attribute, returns value of

 attribute

getAttribute Given String version of ObjectName and name of attribute,

 returns value of attribute

getAttributes_jmx

 Given ObjectName and array of attribute names, returns

 AttributeList

getAttributes Given String version of ObjectName and attribute names,

 returns String of name value pairs

getCell returns the cell name of the connected server

getConfigId Given String version of ObjectName, return a config id for

 the corresponding configuration object, if any.

getDefaultDomain

 returns "WebSphere"

getDomainName returns "WebSphere"

getHost returns String representation of connected host

getMBeanCount returns number of registered beans

getMBeanInfo_jmx

 Given ObjectName, returns MBeanInfo structure for MBean

getNode returns the node name of the connected server

getObjectInstance

 Given String version of ObjectName, returns

 ObjectInstance object that match.

getPort returns String representation of port in use

getType returns String representation of connection type in use

help Show help information

invoke_jmx Given ObjectName, name of method, array of parameters and

 signature, invoke method on MBean specified

invoke Invoke a method on the specified MBean

isRegistered_jmx

 true if supplied ObjectName is registered

isRegistered true if supplied String version of ObjectName is registered

makeObjectName Return an ObjectName built with the given string

queryNames_jmx Given ObjectName and QueryExp, retrieves set of ObjectNames

 that match.

queryNames Given String version of ObjectName, retrieves String of

 ObjectNames that match.

queryMBeans Given String version of ObjectName, returns a set of

 ObjectInstances object that match.

reconnect reconnects with server

setAttribute_jmx

 Given ObjectName and Attribute object, set attribute for MBean

 specified

setAttribute Given String version of ObjectName, attribute name and

 attribute value, set attribute for MBean specified

setAttributes_jmx

 Given ObjectName and AttributeList object, set attributes for

 the MBean specified

setAttributes Given String version of ObjectName, attribute name

WP101014 - WSADMIN z/OS V6.1 Primer

Section: Exploring the WSADMIN Objects
Version Date: Wednesday, September 10, 2008

- 41 -
© 2007, IBM Americas Advanced Technical Support
Washington Systems Center, Gaithersburg, MD

 and value pairs, set attributes for the MBean specified

startServer Given the name of a server, start that server.

stopServer Given the name of a server, stop that server.

testConnection Test the connection to a DataSource object

trace Set the wsadmin trace specification

Those are the various things you can do with the AdminControl object. We'll show
how the help facility can be used to drill down for more information. That's next.

Note:

� Let's pick the getCell method and see what the format of that command is. Issue the
following command:

print AdminControl.help('getCell')

You should see:

WASX7332I: Method: getCell

 Arguments: none

 Description: Returns the cell to which the scripting process is

 connected.

That particular method has no arguments. That means the format of the command
would be:

AdminControl.getCell()

That would return the cell long name. You could put that into a variable if you wished:

cell_long = AdminControl.getCell()

The help() method of any object can be used to provide more information on any one
of the other methods.

Note:

� Now let's look at the help() method on the other objects. Issue the following commands,
one after the other:

print AdminConfig.help()

print AdminApp.help()

print AdminTask.help()

You should see:

AdminConfig

attributes Show the attributes for a given type

checkin Check a file into the the config repository.

convertToCluster

 converts a server to be the first member of a

 new ServerCluster

create Creates a configuration object, given a type, a parent, and

 a list of attributes, and optionally an attribute name for the

 new object

createClusterMember

 Creates a new server that is a member of an

 existing cluster.

createDocument Creates a new document in the config repository.

createUsingTemplate

 Creates an object using a particular template type.

defaults Displays the default values for attributes of a given type.

deleteDocument Deletes a document from the config repository.

existsDocument Tests for the existence of a document in the config repository.

extract Extract a file from the config repository.

getCrossDocumentValidationEnabled

 Returns true if cross-document validation is enabled.

getid Show the configId of an object, given a string version of

 its containment

getObjectName Given a config id, return a string version of the ObjectName

 for the corresponding running MBean, if any.

WP101014 - WSADMIN z/OS V6.1 Primer

Section: Exploring the WSADMIN Objects
Version Date: Wednesday, September 10, 2008

- 42 -
© 2007, IBM Americas Advanced Technical Support
Washington Systems Center, Gaithersburg, MD

getSaveMode Returns the mode used when "save" is invoked

getValidationLevel

 Returns the validation used when files are extracted from the

 repository.

getValidationSeverityResult

 Returns the number of messages of a given

 severity from the most recent validation.

hasChanges Returns true if unsaved configuration changes exist

help Show help information

installResourceAdapter

 Installs a J2C resource adapter with the given rar

 file name and an option string in the node.

list Lists all configuration objects of a given type

listTemplates Lists all available configuration templates of a given

 type.

modify Change specified attributes of a given configuration object

parents Show the objects which contain a given type

queryChanges Returns a list of unsaved files

remove Removes the specified configuration object

required Displays the required attributes of a given type.

reset Discard unsaved configuration changes

save Commit unsaved changes to the configuration repository

setCrossDocumentValidationEnabled

 Sets the cross-document validation enabled mode.

setSaveMode Changes the mode used when "save" is invoked

setValidationLevel

 Sets the validation used when files are extracted from the

 repository.

show Show the attributes of a given configuration object

showall Recursively show the attributes of a given configuration

 object, and all the objects contained within each attribute.

showAttribute Displays only the value for the single attribute specified.

types Show the possible types for configuration

uninstallResourceAdapter

 Uninstalls a J2C resource adapter with the given

 resource adapter config id.

validate Invokes validation

AdminApp

deleteUserAndGroupEntries

 Deletes all the user/group information for all

 the roles and all the username/password information for RunAs

 roles for a given application.

edit Edit the properties of an application

editInteractive Edit the properties of an application interactively

export Export application to a file

exportDDL Export DDL from application to a directory

getDeployStatus Returns the combined Deployment status of the application

help Show help information

install Installs an application, given a file name and an option string.

installInteractive

 Installs an application in interactive mode, given a

 file name and an option string.

isAppReady Checks whether the application is ready to be run

list List all installed applications

listModules List the modules in a specified application

options Shows the options available, for a given file, application,

 or in general.

publishWSDL Publish WSDL files for a given application

searchJNDIReferences

 List application that refer to the given JNDIName on a given

node

taskInfo Shows detailed information pertaining to a given install task

 for a given file

uninstall Uninstalls an application, given an application name and

 an option string

update Updates an installed application

updateAccessIDs Updates the user/group binding information with accessID

WP101014 - WSADMIN z/OS V6.1 Primer

Section: Exploring the WSADMIN Objects
Version Date: Wednesday, September 10, 2008

- 43 -
© 2007, IBM Americas Advanced Technical Support
Washington Systems Center, Gaithersburg, MD

 from user registry for a given application

updateInteractive Updates an installed application interactively

view View an application or module,

 given an application or module name

AdminTask

help -commands list all the admin commands

help -commandGroups list all the admin command groups

help commandName display detailed information for

 the specified command

help commandName stepName display detailed information for

 the specified step belonging to the

 specified command

help commandGroupName display detailed information for

 the specified command group

There are various flavors to invoke an admin command. They are

commandName invokes an admin command that does not require

 any argument.

commandName targetObject invokes an admin command with the specified

 target object string, for example, the

 configuration object name of a resource

 adapter. The expected target object varies

 with the admin command invoked. Use help

 command to get information on the target

 object of an admin command.

commandName options invokes an admin command with the specified

 option strings. This invocation syntax is

 used to invoke an admin command that does

 not require a target object. It is also

 used to enter interactive mode if

 "-interactive" mode is included in the

 options string.

commandName targetObject options invokes an admin command with the

 specified target object and options

strings.

 If "-interactive" is included in the

options

 string, then interactive mode is

entered.

 The target object and options strings

 vary depending on the admin command

invoked.

 Use help command to get information

 on the target object and options.

That's a lot of information. Do not expect to know all the specifics of all those methods
right away. Most you will probably never use. We invoked the help() method so you
could see a listing of all the possible methods on the different objects.

Review

Exercise: drill down on the AdminApp object

To show that the online help can be used to explore deeper into commands.Objective

� Issue the following command:

print AdminApp.help('install')

This will give some information on the install() method. You should see:

WASX7096I: Method: install

 Arguments: filename, options

 Description: Installs the application in the file specified by

 "filename" using the options specified by "options". All required

WP101014 - WSADMIN z/OS V6.1 Primer

Section: Exploring the WSADMIN Objects
Version Date: Wednesday, September 10, 2008

- 44 -
© 2007, IBM Americas Advanced Technical Support
Washington Systems Center, Gaithersburg, MD

 information must be supplied in the options string; no prompting is

 performed.

 The AdminApp "options" command may be used to get a list of all

 possible options for a given ear file. The AdminApp "help" command

 may be used to get more information about each particular option.

In other words, the command syntax is:

AdminApp.install('filename', 'options')

The filename is easy -- it would be something like '/u/user1/myapp.ear'. The
options component is what's challenging. What options you supply depends on what
you're looking to do -- not all the possible options are required each time -- and what's in
the EAR file being installed. Next we'll see how we can learn a little more about the
possible options.

Note:

� Earlier (page 19) you put the SuperSnoopProj.ear file in the HFS and installed it with the
AdminApp.install command. Locate where you placed that EAR file. You'll need that
location for these exercises.

� Issue the following command:

print AdminApp.options('/aaaa/SuperSnoopProj.ear')

where aaaa is the location where the SuperSnoopProj.ear is located in the HFS. This
will report back all the AdminApp options that are applicable to the EAR file. You should
see something like this:

WASX7112I: The following options are valid for "/aaaa/SuperSnoopProj.ear"

MapModulesToServers

MapWebModToVH

CtxRootForWebMod

MapSharedLibForMod

JSPCompileOptions

JSPReloadForWebMod

GetServerName

preCompileJSPs

nopreCompileJSPs

distributeApp

nodistributeApp

useMetaDataFromBinary

nouseMetaDataFromBinary

deployejb

nodeployejb

createMBeansForResources

nocreateMBeansForResources

reloadEnabled

noreloadEnabled

deployws

nodeployws

processEmbeddedConfig

noprocessEmbeddedConfig

allowDispatchRemoteInclude

noallowDispatchRemoteInclude

allowServiceRemoteInclude

noallowServiceRemoteInclude

usedefaultbindings

defaultbinding.force

allowPermInFilterPolicy

noallowPermInFilterPolicy

verbose

update

update.ignore.old

update.ignore.new

installed.ear.destination

appname

reloadInterval

validateinstall

WP101014 - WSADMIN z/OS V6.1 Primer

Section: Exploring the WSADMIN Objects
Version Date: Wednesday, September 10, 2008

- 45 -
© 2007, IBM Americas Advanced Technical Support
Washington Systems Center, Gaithersburg, MD

filepermission

buildVersion

deployejb.rmic

deployejb.dbtype

deployejb.dbschema

deployejb.classpath

deployws.classpath

deployws.jardirs

defaultbinding.datasource.jndi

defaultbinding.datasource.username

defaultbinding.datasource.password

defaultbinding.cf.jndi

defaultbinding.cf.resauth

defaultbinding.ejbjndi.prefix

defaultbinding.virtual.host

defaultbinding.strategy.file

filepermission

target

server

node

cell

cluster

contextroot

custom

installed.ear.destination

Three important things to note:

1. That list is not necessarily the entire list of options available; it simply represents the
options that are applicable to that particular EAR file.

2. All those are not required. This is simply a listing of what is possible given the EAR
file that was pointed to.

3. There is a nice summary table of all these in the InfoCenter:

http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/index.js
p?topic=/com.ibm.websphere.zseries.doc/info/zseries/ae/rxml_ta
skoptions.html

Note:

� Issue the following command:

print AdminApp.taskInfo('/aaaa/SuperSnoopProj.ear','CtxRootForWebMod')

where aaaa is the location where the EAR file. This will give you specific information on the
usage of the CtxRootForWebMod option for the specified EAR file.

The "context root" is the value on the URL that follows the host and port. It is what tells
WebSphere which web module to invoke. The default context root for the SuperSnoop
application is /SuperSnoopWeb. But you can change that at deployment time using the
CtxRootForWebMod option on the AdminApp.install() command.

Note:

You should see something like this:

CtxRootForWebMod: Edit the Context root of web module

Context root defined in the deployment descriptor can be edited.

WASX7348I: ADMINAPP_TASKINFO=WASX7348I: Each element of the CtxRootForWebMod

task consists of the following 3 fields: "Web module", "URI", "ContextRoot".

Of these fields, the following are required and used as keys to locate the rows

in the task: "Web module" "URI" and the following may be assigned new values:

The current contents of the task after running default bindings are:

Web module: SuperSnoopWeb 1

URI: SuperSnoopWeb.war,WEB-INF/web.xml 2

ContextRoot: SuperSnoopWeb 3

WP101014 - WSADMIN z/OS V6.1 Primer

Section: Exploring the WSADMIN Objects
Version Date: Wednesday, September 10, 2008

- 46 -
© 2007, IBM Americas Advanced Technical Support
Washington Systems Center, Gaithersburg, MD

A little explanation is in order:

1. The taskInfo method is reporting back what it saw in the EAR file; namely, a single
web module with a name of SuperSnoopWeb. An EAR file may have multiple web
modules; this would report all it saw.

2. The "URI" is this output refers to a kind of unique identifier for the web module within
the EAR file. When an EAR file contains multiple web modules, it's important that any
WSADMIN script that looks to modify the properties of a web module points precisely
to the one to be changed. The "URI" is how a web module is uniquely specified.

3. This is the current context root for the web module, as defined in the web.xml
descriptor file inside the EAR.

Note:

We saw that the help() method can be useful for understanding the usage of some of
the options. In particular, it can be used to interrogate an EAR and report on what it sees
in the EAR.

Review

Lesson wrap-up and summary

Understanding the exact syntax of the options is perhaps the most challenging aspect of
learning WSADMIN. The help() function assists with this, as does the command assistance
as does the InfoCenter. So does a lot of testing and trial and error.

Topic: WSADMIN and application-oriented activities

The usage of fancy Jython techniques will be held to a minimum here. The objective is to
show the basics of WSADMIN usage. Once you learn that you can expand and wrapper it
with more complex Jython logic if you wish. The techdoc at:

http://www.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP100963

has many good examples of more advanced Jython scripting.

Note:

Lesson Overview

We'll cover some common application-oriented tasks. This will make use of the AdminApp
object mostly, but others as needed to complete the given task. We're going to use an
application called MyIVT.ear, which we supply in the ZIP file that accompanies the techdoc on
ibm.com/support/techdocs. MyIVT is a simple application consisting of a single servlet, a
JSP and a stateless session bean. It requires no connections to external data sources, so it
makes a nice application for simple testing and verification purposes.

Exercise: simple installation and listing of installed applications

This will illustrate the most basic useful task -- installing an application programmatically.Objective

� Start a telnet session. Switch users to your WebSphere Admin ID.

� Open a WSADMIN command prompt session connecting to your DMGR using the
-conntype SOAP or -conntype RMI option.

� Issue the command:

print AdminApp.list()

This will produce a listing of currently installed applications.

� Create a file on your workstation called app1.jy and add the following to it:

The file app1.jy is supplied as part of the ZIP file that accompanies the techdoc on
ibm.com/support/techdocs. So too is the MyIVT.ear file.

Note:

WP101014 - WSADMIN z/OS V6.1 Primer

Section: Exploring the WSADMIN Objects
Version Date: Wednesday, September 10, 2008

- 47 -
© 2007, IBM Americas Advanced Technical Support
Washington Systems Center, Gaithersburg, MD

server = 'aaaa'
node = 'bbbb'
ear = '/cccc/MyIVT.ear'
options = '[-node ' + node + ' -server ' + server + ']'
AdminApp.install(ear,options)
AdminConfig.save()
print AdminApp.list()

where:

� aaaa -- is the long name of the server into which the application will be installed
� bbbb -- is the long name of the node where the server resides
� cccc -- is the location in the z/OS file system where the EAR file will be placed

We saw this earlier in the document. A very simple construction of three string variables
and a list variable, then the invocation of the AdminApp and AdminConfig objects.

Note:

� FTP the MyIVT.ear file to the z/OS system in binary format. Place it in the same file
system location as you specified in the Jython script file. Make sure permissions permit the
file to be read ... 644 at a minimum.

� FTP the app1.jy file to the z/OS system in binary format. Make sure permissions permit
the file to be read ... 644 at a minimum.

You may store the Jython script file in EBCDIC on the z/OS system if you wish. You
must then make sure your WSADMIN session is invoked with the -javaoption as shown
back under "Exercise: ASCII vs. EBCDIC encoding of Jython file" on page 29. That
would make editing the file on z/OS easier.

For this document we're going to assume you compose your Jython scripts on the
workstation and FTP them to the host in binary so they're stored there in ASCII. By
default that's what WSADMIN expects.

Note:

� Invoke that Jython file with the following command:

execfile('/aaaa/app1.jy')

where aaaa is the location in the z/OS file system where you stored the file.

You should see something like this:

ADMA5016I: Installation of My_IVT_Application started.

ADMA5058I: Application and module versions are validated ...

ADMA5005I: The application My_IVT_Application is configured ...

ADMA5053I: The library references for the installed optional package created.

ADMA5005I: The application My_IVT_Application is configured ...

ADMA5001I: The application binaries are saved in ...

ADMA5005I: The application My_IVT_Application is configured ...

SECJ0400I: Successfuly updated the application My_IVT_Application ...

ADMA5011I: The cleanup of the temp directory for application is complete.

ADMA5013I: Application My_IVT_Application installed successfully.

BeCashAc

DefaultApplication

My_IVT_Application
ivtApp

query

wsadmin>

The application is installed and saved, but not synchronized and not started. So it can't
be used in its current state. We'll see how to do that next.

Note:

The script just shown is the basic application installation skeleton. You can use that as a
starting point and build it up with more Jython to do logic-related tasks if you wish.

Review

WP101014 - WSADMIN z/OS V6.1 Primer

Section: Exploring the WSADMIN Objects
Version Date: Wednesday, September 10, 2008

- 48 -
© 2007, IBM Americas Advanced Technical Support
Washington Systems Center, Gaithersburg, MD

Exercise: node synchronization

To show how to invoke node synchronization using WSADMIN.Objective

Node synchronization (and starting/stopping applications) is a funny thing. It's not a simple
command. It involves something called a "management bean" -- a Java object that's part of
WebSphere and commonly known by the short name "mBean." The act of synchronization
involves specifying the appropriate mBean and invoking a function on that bean. For
synchronization, the mBean is on the Node Agent. So we need to uniquely point to the
mBean on the Node Agent for the node we want to synchronize, then reach out and touch
that mBean and invoke the sync function.

Try to keep that in mind as you work through this exercise.

Note:

� The first thing we'll explore is something called the completeObjectname method on the
AdminControl object. This returns the unique name of the synchronization mBean object
in the node we wish to synchronize. This does not synchronize the node. This simply
captures the unique mBean name ... the "complete object name."

Issue the following command at the WSADMIN prompt:

x = AdminControl.completeObjectName('type=NodeSync,node=aaaa,*')

where aaaa is the long name of the node you wish to synchronize. This will place the
complete object name into the variable x.

What we're really doing there is use a kind wildcard search with just enough specified so
we can be assured to get a single hit on the mBean we need. By providing
type=NodeSync we narrow it down to just NodeSync mBeans. By specifying the node
long name we narrow it down further to just the NodeSync mBeans for a given node.
For any node there's only one NodeSync mBean. Therefore we get a single hit, and the
complete object name is placed into the variable.

Note:

There will be no response to this ... you will simple get the WSADMIN prompt back.

� Now print out the contents of the variable x:

print x

You should see something like this, with your cell and node names, not mine:

WebSphere:name=nodeSync,process=nodeagent,platform=common,node=fznodec,d
iagnosticProvider=true,version=6.1.0.4,type=NodeSync,mbeanIdentifier=nod
eSync,cell=fzcell,spec=1.0

� That is the unique name -- the completeObjectName -- of the nodeSync mBean
on the Node Agent. This is what we need to programmatically "touch" and invoke
the sync function. We'll do that next.

� What it have been possible to skip the programmatic retrieval of the complete object
name and just hard code the value? Yes, that is possible. But that's awkward and
somewhat inflexible.

Notes:

� With the node's NodeSync mBean complete object name stored in the variable x, we may
now invoke node synchronization. Issue the following command:

AdminControl.invoke(x,'sync')

When synchronization is complete WSADMIN will return 'true'. If that takes a short
period of time it means the node is already synchronized or the changes are relatively small
and synchronization completed quickly. If it takes a little longer, it means more needed to be
synchronized between the DMGR and the node.

WP101014 - WSADMIN z/OS V6.1 Primer

Section: Exploring the WSADMIN Objects
Version Date: Wednesday, September 10, 2008

- 49 -
© 2007, IBM Americas Advanced Technical Support
Washington Systems Center, Gaithersburg, MD

� Now let's combine all that into a single routine. Create a file on your workstation called
app2.jy and add the following to it:

myNodeName = 'aaaa'

beanName = AdminControl.completeObjectName('type=NodeSync,node=' + myNodeName + ',*')

AdminControl.invoke(beanName,'sync')

where aaaa is the long name of the node being synchronized.

� FTP that file to the z/OS file system in binary node and make sure the permissions allow
WSADMIN to access it.

� Invoke that Jython file with the following command:

execfile('/aaaa/app2.jy')

where aaaa is the location in the z/OS file system where you stored the file. You won't see
anything in response ... you'll just get the WSADMIN prompt back.

This synchronization routine is not perfect. It's missing two things:

1. It is for a single node and not all the nodes in the cell. It is possible to
programmatically get a list of the nodes in a cell and loop through, synchronizing
them all. We'll see that next.

2. It assumes the node agent is up so synchronization can actually take place. If the
node agent is not up the process will throw an error: WASX7025E: Error found
in String ""; cannot create ObjectName. We'll see how to work around
that next.

Note:

� Let's now see how to programmatically loop through all the nodes in a cell, synchronizing
each in turn. Create a file on your workstation called app3.jy and add the following to it:

The file app3.jy is supplied as part of the ZIP file that accompanies the techdoc on
ibm.com/support/techdocs.

Note:

1
import java.lang.System as sys

lineSeparator = sys.getProperty('line.separator')

node_ids = AdminConfig.list('Node').split(lineSeparator)

for node in node_ids:

 node_name = AdminConfig.showAttribute(node,'name')

 nodeSync = AdminControl.completeObjectName('type=NodeSync,node='\

 + node_name + ',*')

 if nodeSync != "":

 AdminControl.invoke(nodeSync,'sync')

2

3

4

5

6

7

There's much to explain with this sample. Notes:

1. The first two lines are housekeeping so we can use a make use of a Java utility to reformat
what the AdminConfig.list() command will return. See the next note.

2. Here we use the AdminConfig.list() command to get a list of all the nodes in the cell.
We extend the command with .split(lineSeparator), which we prepared for in the first
two lines. Without this the list return would be in one big blob; with this it separates each node
name out into a list variable we can then loop through. The list variable we place this in is
called node_ids. That's what we'll loop through next.

3. We enter our loop to process through the list of nodes. For each iteration of the loop, the
variable node is populated with the next node name from the list variable.

4. The AdminConfig.showAttribute() command is used to transform the node name
returned from AdminConfig.list() into what we normally think of as the "node long

WP101014 - WSADMIN z/OS V6.1 Primer

Section: Exploring the WSADMIN Objects
Version Date: Wednesday, September 10, 2008

- 50 -
© 2007, IBM Americas Advanced Technical Support
Washington Systems Center, Gaithersburg, MD

name." We do that because the next command we use here requires the traditional long
name format, not the format returned by AdminConfig.list().

5. We now get the "complete object name" for the first node in the list.. We need this because
the AdminControl.invoke() command, used to invoke synchronization, requires that
complete object name format. The backward slash at the end is a way to break a line and
continue it on the next line, as shown.

6. Now we check if the value returned from AdminControl.getCompleteObjectname() is
not null. If it is null, it means one of two things:

a. The node is a Deployment Manager node. We do not want to attempt to synchronize to a
DMGR node, or

b. The node agent for the node is not up. If no node agent, then synchronization can't occur,
so we don't even try

7. If the complete object name is not null, then we issue the AdminControl.invoke()
command to synchronize with the node.

� FTP that file to the z/OS file system in binary node and make sure the permissions allow
WSADMIN to access it.

� Invoke that Jython file with the following command:

execfile('/aaaa/app3.jy')

where aaaa is the location in the z/OS file system where you stored the file. You won't see
anything in response ... you'll just get the WSADMIN prompt back.

You now have a nice generic synchronization routine that will programmatically discover
and synchronize all the nodes in your cell. You can call this Jython routine from another
Jython file using the execfile() call. So if you have a WSADMIN script that requires
synchronization, you can either put this synchronization routine into the script, or just call
it using execfile().

Note:

Node synchronization involves programmatically touching the mBean of the Node Agent
and invoking the sync function. You can hard-code the way the Node Agent mBean is
located and invoked, or programmatically get a list of nodes and loop through that list.

Review

Exercise: starting and stopping an application

Installing an application is one step, but before it can be used it has to be started. This
can be done programmatically using WSADMIN.

Objective

This exercise assumes the application server is up and running.Note:

� Go to the Admin Console and look at the status of your applications. You should see MyIVT
there, but in a stopped state:

Red "X"

WP101014 - WSADMIN z/OS V6.1 Primer

Section: Exploring the WSADMIN Objects
Version Date: Wednesday, September 10, 2008

- 51 -
© 2007, IBM Americas Advanced Technical Support
Washington Systems Center, Gaithersburg, MD

� Create a file on your workstation called app4.jy and add the following to it:

1

2

3

app_srv = 'aaaa'

app_name = 'bbbb'

app_mgr = AdminControl.queryNames('type=ApplicationManager,process='\

 + app_srv + ',*')

AdminControl.invoke(app_mgr,'startApplication',app_name)

Notes:

1. Where aaaa is the long name of the server in which the application is deployed, and bbbb is
the display name of the application (for MyIVT, it would be My_IVT_Application). These
values are placed into variables.

2. The AdminControl.queryNames() command is used to extract the unique name of the
ApplicationManager mBean in the server and place it into the variable app_mgr. The
line was continued with the backslash, and the variable app_srv, set earlier, was used to
substitute in the server name.

3. The AdminControl.invoke() command was used to start the application. That takes
three attributes: the application manager mBean name (which is very long and complicated,
which is why we have it in a variable), the function you wish to invoke (startApplication
in this example) and the name of the application being started.

� FTP that file to the z/OS file system in binary node and make sure the permissions allow
WSADMIN to access it.

� Invoke that Jython file with the following command:

execfile('/aaaa/app4.jy')

where aaaa is the location in the z/OS file system where you stored the file. You won't see
anything in response ... you'll just get the WSADMIN prompt back.

� Go back to the Admin Console and check the status of the application. You may need to
click on the little "double-arrow" icon to the right of "Application Status" to refresh the screen
so the green arrow shows.

� If you have access to the SYSOUT of the servant region you can also see the
message "Application started".

� The application may now be used. The URL is:

http://<your_server>:<port>/MyIVT/index.html

Instructions for using the application is on that front HTML page.

Notes:

� To stop an application is very similar. Copy app4.jy to app5.jy. Then make the
following changes:

2

app_srv = 'aaaa'

app_name = 'bbbb'

app_mgr = AdminControl.queryNames('type=ApplicationManager,process='\

 + app_srv + ',*')

AdminControl.invoke(app_mgr,'stopApplication',app_name)

1

Notes:

1. Where aaaa is the long name of the server in which the application is deployed, and bbbb is

the display name of the application.

WP101014 - WSADMIN z/OS V6.1 Primer

Section: Exploring the WSADMIN Objects
Version Date: Wednesday, September 10, 2008

- 52 -
© 2007, IBM Americas Advanced Technical Support
Washington Systems Center, Gaithersburg, MD

2. The string start is changed to stop.

� FTP that file to the z/OS file system in binary node and make sure the permissions allow
WSADMIN to access it.

� Invoke that Jython file with the following command:

execfile('/aaaa/app5.jy')

where aaaa is the location in the z/OS file system where you stored the file. You won't see
anything in response ... you'll just get the WSADMIN prompt back.

� Go back to the Admin Console and check the status of the application. You may need to
click on the little "double-arrow" icon to the right of "Application Status" to refresh the screen
so the red X shows.

If you have access to the SYSOUT of the servant region you can also see the message
"Application stopped".

Note:

Like synchronization, the act of starting and stopping an application involved identifying the
management bean in the server and invoking a function on that bean.

Review

Exercise: uninstall application

To show how an application is uninstalled. We're going to combine a few things together
here to show how more and more of this process can be automated.

Objective

� Create a file on your workstation called app6.jy and add the following to it:

The file app6.jy (and all exercise scripts that are shown in this document) is supplied
as part of the ZIP file that accompanies the techdoc on ibm.com/support/techdocs.

Note:

--

Set variables

--

app_srv = 'aaaa'

app_name = 'bbbb'

sync_script = 'cccc'

--

Stop application

--

print 'Stopping application', app_name

app_mgr = AdminControl.queryNames('type=ApplicationManager,process='\

 + app_srv + ',*')

AdminControl.invoke(app_mgr,'stopApplication',app_name)

print 'Application', app_name, 'stopped'

--

Uninstall application

--

print 'Uninstalling application', app_name

AdminApp.uninstall(app_name)

AdminConfig.save()

print 'Application', app_name, 'uninstalled'

--

Invoking synchronization

--

print 'Invoking node synchronization'

execfile(sync_script)

print 'Synchronization complete'

1

2

3

4

5

WP101014 - WSADMIN z/OS V6.1 Primer

Section: Exploring the WSADMIN Objects
Version Date: Wednesday, September 10, 2008

- 53 -
© 2007, IBM Americas Advanced Technical Support
Washington Systems Center, Gaithersburg, MD

Notes:

1. We're showing the use of comments to make the scripts cleaner and easier to read.

2. Where aaaa is the long name of the server in which the application is deployed, bbbb is the

display name of the application, and cccc is the location and Jython file name of the script
that does node synchronization. In our exercises here, that was app3.jy. Remember, that
was generic enough to be used as a callable service for any script needing node
synchronization.

3. This is the same code we showed before to stop an application. If the application is already
down this code will be executed but have no real effect. We could programmatically check for
the status of the application, but doing this is easier and just as effective.

4. The actual uninstall code. We used the AdminApp.uninstall() command and provide
the name of the application ... here in the form of a variable we set at the top of the script. We
do not need to tell WebSphere what server it is in. Just the application name is all that's
needed.

This code example assumes the application exists in the application repository. If it
wasn't there, then you'd see the error WASX7280E: An application with
name "My_IVT_Application" does not exist. The script would end right
there.

If you wanted to programmatically check to see if the application was present before
attempting the uninstall, you could use AdminApp.list() and place the output into
a list variable. Then loop through the list checking for the application name. We
won't show that because that's really just more of the same kind of Jython
processing we showed earlier.

Note:

5. The use of execfile() to call the node synchronization script we created earlier. With this
we can start to see that WSADMIN scripts can be written as reusable modules.

� FTP that file to the z/OS file system in binary node and make sure the permissions allow
WSADMIN to access it.

� Invoke that Jython file with the following command:

execfile('/aaaa/app6.jy')

where aaaa is the location in the z/OS file system where you stored the file. You see the
following:

Stopping application My_IVT_Application
Application My_IVT_Application stopped
Uninstalling application My_IVT_Application
ADMA5017I: Uninstallation of My_IVT_Application started.
ADMA5104I: The server index entry for WebSphere:cell=fzcell,node=fznodec
is updated successfully.
ADMA5102I: The configuration data for My_IVT_Application from the
configuration repository is deleted successfully.
ADMA5011I: The cleanup of the temp directory for application
My_IVT_Application is complete.
ADMA5106I: Application My_IVT_Application uninstalled successfully.
Application My_IVT_Application uninstalled
Invoking node synchronization
Synchronization complete
wsadmin>

Uninstalling an application is quite simple with the AdminApp.uninstall() function.
We added more to that to show a more robust scripting example.

Review

WP101014 - WSADMIN z/OS V6.1 Primer

Section: Exploring the WSADMIN Objects
Version Date: Wednesday, September 10, 2008

- 54 -
© 2007, IBM Americas Advanced Technical Support
Washington Systems Center, Gaithersburg, MD

Exercise: combined installation, synchronization and application starting in one script

This is really a variation on the previous script. The order of the components inside the
script is a slightly different.

Objective

� Create a file on your workstation called app7.jy and add the following to it:

The file app7.jy (and all exercise scripts that are shown in this document) is supplied
as part of the ZIP file that accompanies the techdoc on ibm.com/support/techdocs.

Note:

--

Set variables

--

app_srv = 'aaaa'

app_node = 'bbbb'

app_ear = 'cccc'

app_name = 'dddd'

sync_script = 'eeee'

--

Install application

--

print 'Installing application', app_name

options = '[-node ' + app_node + ' -server ' + app_srv + ']'

AdminApp.install(app_ear,options)

AdminConfig.save()

print AdminApp.list()

--

Invoking synchronization

--

print 'Invoking node synchronization'

execfile(sync_script)

print 'Synchronization complete'

--

Start application

--

print 'Starting application', app_name

app_mgr = AdminControl.queryNames('type=ApplicationManager,process='\

 + app_srv + ',*')

AdminControl.invoke(app_mgr,'startApplication',app_name)

print 'Application', app_name, 'started'

1

2

3

4

Notes:

1. Where:

� aaaa -- is the long name of the server into which the application will be installed

� bbbb -- is the long name of the node where the server resides

� cccc -- is the location and file name of where the EAR file is stored in the HFS

� dddd -- is the "display name" of the application itself. You can see what that is by looking
in the application.xml file, which is in the root of the EAR file. Use some zip tool to
open the EAR and browse the application.xml file. Look for the <display-name> tag.
We need this to start the application.

� eeee -- is the location and script name of the node synchronization script you've
developed. In the earlier exercise it was app3.jy.

2. The installation of the application using AdminApp.install()

3. The invocation of the node synchronization script

4. The starting of the application using AdminControl.invoke()

WP101014 - WSADMIN z/OS V6.1 Primer

Section: Exploring the WSADMIN Objects
Version Date: Wednesday, September 10, 2008

- 55 -
© 2007, IBM Americas Advanced Technical Support
Washington Systems Center, Gaithersburg, MD

� FTP that file to the z/OS file system in binary node and make sure the permissions allow
WSADMIN to access it.

� Invoke that Jython file with the following command:

execfile('/aaaa/app7.jy')

where aaaa is the location in the z/OS file system where you stored the file. You see the
something like the following:

Installing application My_IVT_Application
ADMA5016I: Installation of My_IVT_Application started.
 :
ADMA5013I: Application My_IVT_Application installed successfully.
DefaultApplication

My_IVT_Application
ivtApp
query
Invoking node synchronization
Synchronization complete
Starting application My_IVT_Application
Application My_IVT_Application started
wsadmin>

This exercise showed how WSADMIN is like a set of building blocks. The install script was
very much like the uninstall script, just in a slightly different order.

Review

Background: AdminApp.install() options syntax and how to learn what to use

When you install an application through the Admin Console, you get the opportunity to do things
like change the application name, change the "context root" on web modules, and change JNDI
names for EJBs and JNDI references to those EJBs. You can do the same thing in WSADMIN,
but the command syntax requires that you know the module names and something called the
module "URI" (which is not the same thing as the URI used by browsers).

The values for those things is not intuitively obvious. And the application developer may or
many not know what you're referring to. But the AdminApp.taskInfo() function can query
an EAR file and report back the contents, giving you an inventory of those values in preparation
for the development of your WSADMIN script.

The bad news is that the AdminApp.taskInfo()takes two parameters: the EAR file (that's
easy), and the "taskName". What's the value for "taskName" that's related to mapping a JNDI
name to an EJB? The interactive help doesn't say.

But this is where the Admin Console's "command assistance" feature comes in very handy. If
you go through the motions of installing an application EAR by hand, modifying those
application attributes you want to code in your WSADMIN script, the command assistant feature
will provide a fairly clear idea of what those "taskName" values are.

We did that with the MyIVT.ear file. We did a "dummy" install of the application and modified
five things: the application name, the web module's context root, the web module's virtual host
mapping, the JDNI name applied to the EJB module, and the web module's JNDI reference to
the EJB. We provided names that we could easily pick out, such as New_App_Name, and
New_Context_Root. What the command assistance feature provided was this:

WP101014 - WSADMIN z/OS V6.1 Primer

Section: Exploring the WSADMIN Objects
Version Date: Wednesday, September 10, 2008

- 56 -
© 2007, IBM Americas Advanced Technical Support
Washington Systems Center, Gaithersburg, MD

AdminApp.install('/u/user1/MyIVT.ear', '[

-nopreCompileJSPs

-distributeApp

-nouseMetaDataFromBinary

-nodeployejb

-appname New_App_Name

-createMBeansForResources

-reloadEnabled

-reloadInterval 3

-nodeployws

-validateinstall warn

-noprocessEmbeddedConfig

-filepermission .*\.dll=755#.*\.so=755#.*\.a=755#.*\.sl=755
-noallowDispatchRemoteInclude

-noallowServiceRemoteInclude

-BindJndiForEJBNonMessageBinding [["My IVT EJB Module Display Name"

 My_IVT_EJB_Name MyIVTStatelessSession.jar,META-INF/ejb-jar.xml

 ejb/New_JNDI_Name]]

-MapEJBRefToEJB [[My_IVT_Webapp_Display_Name ""

 MyIVTWebApp.war,WEB-INF/web.xml ejb/ivtEJBObject

 com.ibm.websphere.ivt.ivtEJB.ivtEJBObject ejb/New_JNDI_Name]]
-MapWebModToVH [[My_IVT_Webapp_Display_Name

 MyIVTWebApp.war,WEB-INF/web.xml proxy_host]]

-CtxRootForWebMod [[My_IVT_Webapp_Display_Name

 MyIVTWebApp.war,WEB-INF/web.xml /New_Context_Root]]

]')

1

2

3

4

5

AdminApp.install('/u/user1/MyIVT.ear', '[

-nopreCompileJSPs

-distributeApp

-nouseMetaDataFromBinary

-nodeployejb

-appname New_App_Name

-createMBeansForResources

-reloadEnabled

-reloadInterval 3

-nodeployws

-validateinstall warn

-noprocessEmbeddedConfig

-filepermission .*\.dll=755#.*\.so=755#.*\.a=755#.*\.sl=755
-noallowDispatchRemoteInclude

-noallowServiceRemoteInclude

-BindJndiForEJBNonMessageBinding [["My IVT EJB Module Display Name"

 My_IVT_EJB_Name MyIVTStatelessSession.jar,META-INF/ejb-jar.xml

 ejb/New_JNDI_Name]]

-MapEJBRefToEJB [[My_IVT_Webapp_Display_Name ""

 MyIVTWebApp.war,WEB-INF/web.xml ejb/ivtEJBObject

 com.ibm.websphere.ivt.ivtEJB.ivtEJBObject ejb/New_JNDI_Name]]
-MapWebModToVH [[My_IVT_Webapp_Display_Name

 MyIVTWebApp.war,WEB-INF/web.xml proxy_host]]

-CtxRootForWebMod [[My_IVT_Webapp_Display_Name

 MyIVTWebApp.war,WEB-INF/web.xml /New_Context_Root]]

]')

The actual output from the command assistant feature was just a long blob of information.
We've formatted that slightly here to make it more clear.

Note:

Where:

1. Shows the option used when a new application name is provided.
2. Shows the option used when a new JNDI name is provided to a EJB module
3. Shows the option used when a web module references an EJB module's JNDI name
4. Shows the option used when a web module is bound to a non-default virtual host
5. Shows the option used when a web module is given a new context root

You could take that output and modify it for the installation of MyIVT.ear. But the specific
information in there -- such as MyIVTWebApp.war -- is unique to just that EAR file. What we
want to do is determine the appropriate values for any EAR file you're given. That's why
we're going to explore the use of AdminApp.taskInfo() next ... it'll allow us to query an
EAR and extract in a nice handy way the information we need to do some common things at
application installation time.

Note:

Background: syntax for our highlighted AdminApp.install() options

When looking at the output from the command assistant it's natural to wonder what all that stuff
is. The syntax for -appname is easy. But if we look at the option for the new context root, we
see:

-CtxRootForWebMod [
 [My_IVT_Webapp_Display_Name
 MyIVTWebApp.war,WEB-INF/web.xml
 /New_Context_Root]
]

WP101014 - WSADMIN z/OS V6.1 Primer

Section: Exploring the WSADMIN Objects
Version Date: Wednesday, September 10, 2008

- 57 -
© 2007, IBM Americas Advanced Technical Support
Washington Systems Center, Gaithersburg, MD

Again, the proper format is all on one line. We broke it across several lines to highlight that
the option has three attributes.

Note:

So, what are those attributes? Here's where the AdminApp.taskInfo() function comes in
handy. For the -CtxRootForWebMod option taskInfo()-- which we'll see how to use next --
provided this:

The current contents of the task after running default bindings are:

Web module: My_IVT_Webapp_Display_Name

URI: MyIVTWebApp.war,WEB-INF/web.xml

ContextRoot: /MyIVT

And there's our answer. The first attribute is the "Web module," the second is the "URI," and the
third is the "ContextRoot."

We now know the syntax of the -CtxRootForWebMod option:

-CtxRootForWebMod [[aaaa bbbb cccc]]

where aaaa is the web module name, bbbb is the URI and cccc is the context root value.

We come back to square one -- how do we know what the "web module" and "URI" values are
for an EAR file we've been given? We use the AdminApp.taskInfo() function. That's next.

Exercise: using taskInfo() to get information on contents of application EAR file

To see how the AdminApp.taskInfo() function can be useful to get information
about the contents of an EAR file.

Objective

� At the WSADMIN command prompt, issue the following command:

print AdminApp.taskInfo('/aaaa/MyIVT.ear','BindJndiForEJBNonMessageBinding')

where aaaa is the location in the z/OS file system where you stored.

This provides information for the JNDI name applied to the EJB. You should see this:

The current contents of the task after running default bindings are:

EJB module: My IVT EJB Module Display Name
EJB: My_IVT_EJB_Name
URI: MyIVTStatelessSession.jar,META-INF/ejb-jar.xml

Target Resource JNDI Name: ejb/My_IVT_Session_Bean_JNDI_Name

� At the WSADMIN command prompt, issue the following command:

print AdminApp.taskInfo('/aaaa/MyIVT.ear','MapEJBRefToEJB')

where aaaa is the location in the z/OS file system where you stored.

This provides information on the reference to the EJB JNDI from the web module. You
should see this:

The current contents of the task after running default bindings are:

Module: My_IVT_Webapp_Display_Name
EJB:

URI: MyIVTWebApp.war,WEB-INF/web.xml
Resource Reference: ejb/ivtEJBObject
Class: com.ibm.websphere.ivt.ivtEJB.ivtEJBObject
Target Resource JNDI Name: ejb/My_IVT_Session_Bean_JNDI_Name

See how "EJB" is null? When it comes to formatting the -MapEJBRefToEJB option the
attributes are positionally dependent. Therefore we have to account for that null. We'll
do so with "". Just be aware of those kinds of things.

Note:

WP101014 - WSADMIN z/OS V6.1 Primer

Section: Exploring the WSADMIN Objects
Version Date: Wednesday, September 10, 2008

- 58 -
© 2007, IBM Americas Advanced Technical Support
Washington Systems Center, Gaithersburg, MD

� At the WSADMIN command prompt, issue the following command:

print AdminApp.taskInfo('/aaaa/MyIVT.ear','MapWebModToVH')

where aaaa is the location in the z/OS file system where you stored.

This provides information on mapping the web module to a virtual host. You should see this:

The current contents of the task after running default bindings are:

Web module: My_IVT_Webapp_Display_Name
URI: MyIVTWebApp.war,WEB-INF/web.xml
Virtual host: default_host

� At the WSADMIN command prompt, issue the following command:

print AdminApp.taskInfo('/aaaa/MyIVT.ear','CtxRootForWebMod')

where aaaa is the location in the z/OS file system where you stored.

This provides information on specifying the context root. You should see this:

The current contents of the task after running default bindings are:

Web module: My_IVT_Webapp_Display_Name
URI: MyIVTWebApp.war,WEB-INF/web.xml
ContextRoot: /MyIVT

The purpose of this exercise was to cull from the MyIVT.ear file the current values for
things like "Web Module" and "URI" so we could format up the proper syntax for the
AdminApp.install() command. If we want to change the context root, for example,
we need to tell WSADMIN which web module to modify. MyIVT has only one web module,
but an EAR file might have many. That's the purpose of that attributes -- to uniquely
identify the component within the EAR that is to be modified at installation time.

Review

Exercise: change the application name and context root at installation time

We'll illustrate this process by changing two of the easier things: the application name
and the context root for the web module.

Objective

� Uninstall the MyIVT application from the cell. You may do this with the Admin Console, or
the WSADMIN uninstall script you created earlier. Be sure that you save the changes and
synchronize.

If you uninstall using the Admin Console, you may need to exit and reestablish your
WSADMIN prompt. There's some caching that goes on. A way to work around this is to
issue the AdminConfig.save() command from the WSADMIN prompt. That may
flush the cache and allow you to proceed without reestablishing the WSADMIN prompt.

Note:

� Create a file on your workstation called app8.jy and add the following to it:

The file app8.jy (and all exercise scripts that are shown in this document) is supplied
as part of the ZIP file that accompanies the techdoc on ibm.com/support/techdocs.

Note:

WP101014 - WSADMIN z/OS V6.1 Primer

Section: Exploring the WSADMIN Objects
Version Date: Wednesday, September 10, 2008

- 59 -
© 2007, IBM Americas Advanced Technical Support
Washington Systems Center, Gaithersburg, MD

--

Set basic variables

--

app_srv = 'aaaa'

app_node = 'bbbb'

app_ear = 'cccc'

app_name = 'dddd'

sync_script = 'eeee'

--

Set context root variables

--

web_mod = 'ffff'

web_uri = 'gggg'

web_ctx = 'hhhh'

--

Build interior context root option list

--

ctx_opt = '[[' + web_mod + ' ' + web_uri + ' ' + web_ctx + ']]'

print 'Value of context root interior option list:',ctx_opt

--

Build AdminApp.install() option list

--

options = '[-node ' + app_node +\

 ' -server ' + app_srv +\

 ' -appname ' + app_name +\

 ' -CtxRootForWebMod ' + ctx_opt + ']'

print 'Value of overall option list:',options

--

Install application

--

print 'Installing application', app_name

AdminApp.install(app_ear,options)

AdminConfig.save()

print AdminApp.list()

--

Invoking synchronization

--

print 'Invoking node synchronization'

execfile(sync_script)

print 'Synchronization complete'

--

Start application

--

print 'Starting application', app_name

app_mgr = AdminControl.queryNames('type=ApplicationManager,process='\

 + app_srv + ',*')

AdminControl.invoke(app_mgr,'startApplication',app_name)

print 'Application', app_name, 'started'

1

2

3

4

5

Notes:

1. Where these are the same basic variables as used before.

2. Where these are the values we discovered for the -CtxRootForWebMod task. web_mod is
the "Web Module"; web_uri the URI value; and web_ctx the context root you wish to apply
to the application. For example, the MyIVT.ear application would require:

WP101014 - WSADMIN z/OS V6.1 Primer

Section: Exploring the WSADMIN Objects
Version Date: Wednesday, September 10, 2008

- 60 -
© 2007, IBM Americas Advanced Technical Support
Washington Systems Center, Gaithersburg, MD

--

Set context root variables

--

web_mod = 'My_IVT_Webapp_Display_Name'

web_uri = 'MyIVTWebApp.war,WEB-INF/web.xml'

web_ctx = '/My_New_IVT'

You could build the options variable all at once. But when list variables are in use,
it's often best to build the interior list variables first, then piece together the outer
structure second. It's just a little less confusing.

Note:

2. Here we build the option list for the -CtxRootForWebMod task. It follows the syntax we
discovered from the command assistance dummy run we did earlier. The double square
brackets is not a mistake -- it requires two to open and two to close.

3. We build the overall option list, just as we did before. But this time we embed the "interior
option list" (the one for -CtxRootForWebMod option) using the ctx_opt variable.

4. The rest is identical to the installation script we created before.

� FTP that file to the z/OS file system in binary node and make sure the permissions allow
WSADMIN to access it.

� Invoke that Jython file with the following command:

execfile('/aaaa/app8.jy')

Where aaaa is the location of your script file. You should see output similar to the earlier
installation and uninstallation scripts.

With this exercise we're starting to see some of the more complex syntax structures of
WSADMIN. The -CtxRootForWebMod option has its own options, which means we
really had two option lists, one imbedded in the other.

Working out the syntax of these options is the challenge of WSADMIN. The command
assistance function helps. But ultimately it involves some hunting around and some trial
and error to get it to work.

Review

Exercise: change JNDI name relationships at installation time

This is very similar to what we just did, only with a different option. Rather than
-CtxRootForWebMod, we're going use -BindJndiForEJBNonMessageBinding (that
applies the JNDI name to the EJB module in MyIVT.ear) and the option
-MapEJBRefToEJB, which is what provides the web module the JNDI pointer to the
EJB.

We'll drop the -CtxRootForWebMod and -appname updates we made in the previous
exercise. That's just to keep the exercise from getting too big.

Objective

� Uninstall the MyIVT application from the cell. You may do this with the Admin Console, or
the WSADMIN uninstall script you created earlier. Be sure that you save the changes and
synchronize.

If you uninstall using the Admin Console, you may need to exit and reestablish your
WSADMIN prompt. There's some caching that goes on. A way to work around this is to
issue the AdminConfig.save() command from the WSADMIN prompt. That may
flush the cache and allow you to proceed without reestablishing the WSADMIN prompt.

Note:

� Create a file on your workstation called app9.jy and add the following to it:

The file app9.jy (and all exercise scripts that are shown in this document) is supplied
as part of the ZIP file that accompanies the techdoc on ibm.com/support/techdocs.

Note:

WP101014 - WSADMIN z/OS V6.1 Primer

Section: Exploring the WSADMIN Objects
Version Date: Wednesday, September 10, 2008

- 61 -
© 2007, IBM Americas Advanced Technical Support
Washington Systems Center, Gaithersburg, MD

--

Set basic variables

--

app_srv = 'aaaa'

app_node = 'bbbb'

app_ear = 'cccc'

app_name = 'dddd'

sync_script = 'eeee'

--

Set variables for -BindJndiForEJBNonMessageBinding

--

ejb_mod = '"My IVT EJB Module Display Name"'

ejb = 'My_IVT_EJB_Name'

ejb_uri = 'MyIVTStatelessSession.jar,META-INF/ejb-jar.xml'

ejb_jndi = 'ejb/New_JNDI_Name'

--

Set variables for -MapEJBRefToEJB

--

web_mod = 'My_IVT_Webapp_Display_Name'

web_ejb = '""'

web_uri = 'MyIVTWebApp.war,WEB-INF/web.xml'

web_res_ref = 'ejb/ivtEJBObject'

web_class_ref = 'com.ibm.websphere.ivt.ivtEJB.ivtEJBObject'

ejb_jndi_ref = ejb_jndi

--

Build -BindJndiForEJBNonMessageBinding option list

--

ejb_jndi_opt = '[[' + ejb_mod + ' ' + ejb +\

 ' ' + ejb_uri + ' ' + ejb_jndi + ']]'

print 'Value of ejb_jndi_opt:',ejb_jndi_opt

--

Build -MapEJBRefToEJB option list

--

web_jndi_ref_opt = '[[' + web_mod + ' ' + web_ejb +\

 ' ' + web_uri + ' ' + web_res_ref +\

 ' ' + web_class_ref + ' ' + ejb_jndi_ref + ']]'

print 'Value of web_jndi_ref_opt option list:',web_jndi_ref_opt

--

Build AdminApp.install() option list

--

options = '[-node ' + app_node +\

 ' -server ' + app_srv +\

 ' -BindJndiForEJBNonMessageBinding ' + ejb_jndi_opt +\

 ' -MapEJBRefToEJB ' + web_jndi_ref_opt + ']'

print 'Value of overall option list:',options

--

Install application

--

print 'Installing application', app_name

AdminApp.install(app_ear,options)

AdminConfig.save()

print AdminApp.list()

--

Invoking synchronization

--

print 'Invoking node synchronization'

execfile(sync_script)

print 'Synchronization complete'

--

Start application

--

print 'Starting application', app_name

app_mgr = AdminControl.queryNames('type=ApplicationManager,process='\

 + app_srv + ',*')

AdminControl.invoke(app_mgr,'startApplication',app_name)

print 'Application', app_name, 'started'

1

4

5

6

7

3

2
See notes

See
notes

--

Set basic variables

--

app_srv = 'aaaa'

app_node = 'bbbb'

app_ear = 'cccc'

app_name = 'dddd'

sync_script = 'eeee'

--

Set variables for -BindJndiForEJBNonMessageBinding

--

ejb_mod = '"My IVT EJB Module Display Name"'

ejb = 'My_IVT_EJB_Name'

ejb_uri = 'MyIVTStatelessSession.jar,META-INF/ejb-jar.xml'

ejb_jndi = 'ejb/New_JNDI_Name'

--

Set variables for -MapEJBRefToEJB

--

web_mod = 'My_IVT_Webapp_Display_Name'

web_ejb = '""'

web_uri = 'MyIVTWebApp.war,WEB-INF/web.xml'

web_res_ref = 'ejb/ivtEJBObject'

web_class_ref = 'com.ibm.websphere.ivt.ivtEJB.ivtEJBObject'

ejb_jndi_ref = ejb_jndi

--

Build -BindJndiForEJBNonMessageBinding option list

--

ejb_jndi_opt = '[[' + ejb_mod + ' ' + ejb +\

 ' ' + ejb_uri + ' ' + ejb_jndi + ']]'

print 'Value of ejb_jndi_opt:',ejb_jndi_opt

--

Build -MapEJBRefToEJB option list

--

web_jndi_ref_opt = '[[' + web_mod + ' ' + web_ejb +\

 ' ' + web_uri + ' ' + web_res_ref +\

 ' ' + web_class_ref + ' ' + ejb_jndi_ref + ']]'

print 'Value of web_jndi_ref_opt option list:',web_jndi_ref_opt

--

Build AdminApp.install() option list

--

options = '[-node ' + app_node +\

 ' -server ' + app_srv +\

 ' -BindJndiForEJBNonMessageBinding ' + ejb_jndi_opt +\

 ' -MapEJBRefToEJB ' + web_jndi_ref_opt + ']'

print 'Value of overall option list:',options

--

Install application

--

print 'Installing application', app_name

AdminApp.install(app_ear,options)

AdminConfig.save()

print AdminApp.list()

--

Invoking synchronization

--

print 'Invoking node synchronization'

execfile(sync_script)

print 'Synchronization complete'

--

Start application

--

print 'Starting application', app_name

app_mgr = AdminControl.queryNames('type=ApplicationManager,process='\

 + app_srv + ',*')

AdminControl.invoke(app_mgr,'startApplication',app_name)

print 'Application', app_name, 'started'

WP101014 - WSADMIN z/OS V6.1 Primer

Section: Exploring the WSADMIN Objects
Version Date: Wednesday, September 10, 2008

- 62 -
© 2007, IBM Americas Advanced Technical Support
Washington Systems Center, Gaithersburg, MD

Notes:

1. Where these are the same basic variables as used before:

� aaaa -- the application server long name
� bbbb -- the node long name
� cccc -- the location and name where you stored the MyIVT.ear file.
� dddd -- is the application name: My_IVT_Application for the MyIVT.ear file.

2. The values for the -BindJndiForEJBNonMessageBinding option. This is what applies
the JNDI name to the session bean in the MyIVT application. So that you may correlate the
variables names to the values in sample MyIVT.ear file, we left the actual values in the
sample above. The one difference is the ejb_jndi variable, which we're setting to
something different from what's default in the packaged EAR.

For the values you'd use from your EAR file you need to run the command:

print AdminApp.taskInfo('aaaa','BindJndiForEJBNonMessageBinding')

command to get the values you'd use to install your application. In this case aaaa is
the location and name of your EAR file.

Note:

3. The values for the -MapEJBRefToEJB option. The MyIVT application has one web module
which references the one EJB. This is what tells the web module what JNDI name to look up
to invoke the EJB. The values here what's found by default in the MyIVT.ear file. For your
application you would need to modify them to match the values found in your application. Use
the AdminApp.taskInfo() command and specify MapEJBRefToEJB as the option name.

Note how in this example we are using the JNDI name applied to the EJB to be the reference
made from the web module. We do that by assigning the value of ejb_jndi_ref equal to
the value of ejb_jndi.

4. The first interior option list variable is built.

5. The second interior option list variable is built.

6. The overall options variable is then built, which incorporates the two interior list variables and
the other options.

7. The application is installed, the nodes synchronized and the application started. This is the
same as has been shown before.

� FTP that file to the z/OS file system in binary node and make sure the permissions allow
WSADMIN to access it.

� Invoke that Jython file with the following command:

execfile('/aaaa/app9.jy')

Where aaaa is the location of your script file. You should see output similar to the earlier
installation and uninstallation scripts.

This exercise looked more complex because we were dealing with two options rather than
one. So we had to build to "interior" option list variables. It showed how that is done, and it
showed how the JNDI name for an EJB can be set and then have a reference to that JNDI
be done by another module.

Review

Exercise: map application to different virtual host at installation time

To show how a web module in an application can be bound to a different Virtual Host.
This is largely the same type of exercise as for the other options This exercise assumes
the new virtual host is already created ... this script does not create the new VH.

Objective

WP101014 - WSADMIN z/OS V6.1 Primer

Section: Exploring the WSADMIN Objects
Version Date: Wednesday, September 10, 2008

- 63 -
© 2007, IBM Americas Advanced Technical Support
Washington Systems Center, Gaithersburg, MD

� Uninstall the MyIVT application from the cell. You may do this with the Admin Console, or
the WSADMIN uninstall script you created earlier. Be sure that you save the changes and
synchronize.

If you uninstall using the Admin Console, you may need to exit and reestablish your
WSADMIN prompt. There's some caching that goes on. A way to work around this is to
issue the AdminConfig.save() command from the WSADMIN prompt. That may
flush the cache and allow you to proceed without reestablishing the WSADMIN prompt.

Note:

� Create a file on your workstation called app10.jy and add the following to it:

The file app10.jy (and all exercise scripts that are shown in this document) is supplied
as part of the ZIP file that accompanies the techdoc on ibm.com/support/techdocs.

Note:

--

Set basic variables

--

app_srv = 'aaaa'

app_node = 'bbbb'

app_ear = 'cccc'

app_name = 'dddd'

--

Set variables for -MapWebModToVH

--

web_mod = 'My_IVT_Webapp_Display_Name'

web_uri = 'MyIVTWebApp.war,WEB-INF/web.xml'

web_vh = 'proxy_host'

print 'Value of -MapWebModToVH option list:',options

--

Build -MapWebModToVH option list

--

web_vh_opt = '[[' + web_mod + ' ' + web_uri +\

 ' ' + web_vh + ']]'

print 'Value of web_vh_opt:',web_vh_opt

--

Build AdminApp.install() option list

--

options = '[-node ' + app_node +\

 ' -server ' + app_srv +\

 ' -MapWebModToVH ' + web_vh_opt + ']'

print 'Value of overall option list:',options

--

Install application

--

print 'Installing application', app_name

AdminApp.install(app_ear,options)

AdminConfig.save()

print AdminApp.list()

1

4

5

3

2

Notes:

1. Where these are the same basic variables as used before:

� aaaa -- the application server long name
� bbbb -- the node long name
� cccc -- the location and name where you stored the MyIVT.ear file.
� dddd -- is the application name after the application is installed.

2. The values for the -MapWebModToVH option. What you see are the attributes for that option

as reported by AdminApp.taskInfo() for option MapWebMobToVH for the MyIVT.ear file.
The value assigned to the variable web_vh is the new virtual host we wish to assign this
application's web module to.

WP101014 - WSADMIN z/OS V6.1 Primer

Section: Exploring the WSADMIN Objects
Version Date: Wednesday, September 10, 2008

- 64 -
© 2007, IBM Americas Advanced Technical Support
Washington Systems Center, Gaithersburg, MD

This script assumes the VH named by that string already exists.Note:

3. The list variable for the -MapWebModToVH option is built

4. The overall AdminApp.install() option list variable is built.

5. The application is installed and saved, as we've seen many times before.

This script does not synchronize the nodes or start the application. You could easily
do that as shown in the app9.jy file. We shortened this script to keep things a little
easier.

Note:

� FTP that file to the z/OS file system in binary node and make sure the permissions allow
WSADMIN to access it.

� Invoke that Jython file with the following command:

execfile('/aaaa/app10.jy')

Where aaaa is the location of your script file. You should see output similar to the earlier
scripts.

Mapping an application's web module to a different virtual host is very similar to any of the
other options. It's a matter of constructing the "interior" option list variable, then building
the outer option variable and invoking the installation.

Review

Example: map resource reference to connection factory JNDI

To illustrate how a resource reference in an application is mapped to the JNDI name of a
connection factory (CF) for a CICS, IMS or other non-relational connector.

Objective

This is an example, not an exercise. Providing a sample application that will work with your
CICS system is difficult. SuperSnoop and MyIVT had no data resource connections so they
were assured to work. Plus, by this point you should understand the basics of coding more
options on the AdminApp.install() function. This is more of the same, though it does
use a different task name.

Note:

� We ran a "dummy" installation of an application in the Admin Console and got from the
command assistance function the following for the resource reference binding to the
connection factory:

-MapResRefToEJB [[BeCashAcEJB BeCashAcSession
BeCashAcEJB.jar,META-INF/ejb-jar.xml CICSConnectionFactory
javax.resource.cci.ConnectionFactory CICSConnectionFactory "" ""]]

� Not sure of what all those things referred to, we ran AdminApp.taskInfo() against the
EAR file and supplied the MapResRefToEJB task name. We received the following:

The current contents of the task after running default bindings are:
Module: BeCashAcEJB
EJB: BeCashAcSession
URI: BeCashAcEJB.jar,META-INF/ejb-jar.xml
Resource Reference: CICSConnectionFactory
Resource type: javax.resource.cci.ConnectionFactory
Target Resource JNDI Name: CICSConnectionFactory
Login configuration name: null
Properties:

WP101014 - WSADMIN z/OS V6.1 Primer

Section: Exploring the WSADMIN Objects
Version Date: Wednesday, September 10, 2008

- 65 -
© 2007, IBM Americas Advanced Technical Support
Washington Systems Center, Gaithersburg, MD

This particular application uses the string CICSConnectionFactory in a
somewhat confusing way. We see it twice in the EAR file: for "Resource Reference"
and for "Target Resource JNDI Name."

The "Resource Reference" is the reference made in the application code itself. You
can think of this like a DDNAME -- a symbolic reference that is to be resolved outside
the source code. This application used the string CICSConnectionFactory as its
"DDNAME" reference. This is the string found in the <resource-ref> tag in the
deployment descriptor.

The application also resolved that reference to a connection factory JNDI name of
the same value: CICSConnectionFactory, which is what "Target Resource JNDI
Name" is referring to. The developer assumed the real CF would be given a JNDI
name of that string. This is the value we'll change to match our actual CF JNDI
value.

Note:

� From that we determined the syntax of the option is:

-MapResRefToEJB [[

 BeCashAcEJB

 BeCashAcSession

 BeCashAcEJB.jar,META-INF/ejb-jar.xml

 CICSConnectionFactory

 javax.resource.cci.ConnectionFactory

 CICSConnectionFactory

 ""

 ""

]]

Module

EJB

URI

Resource Reference

Resource type

Target Resource JNDI Name

Login configuration name

Properties

With "Target Resource JNDI Name" being the JNDI name of the Connection Factory to
which this resource reference is to be bound.

� Armed with this knowledge, we can build some Jython to construct this option:

--
Set -MapResRefToEJB variables
--
ref_mod = 'BeCashAcEJB'
ref_ejb = 'BeCashAcSession'
ref_uri = 'BeCashAcEJB.jar,META-INF/ejb-jar.xml'
res_ref = 'CICSConnectionFactory'

res_type = 'javax.resource.cci.ConnectionFactory'
CF_jndi = 'eis/CICS_Region_A' the CF's JNDI name

log_cfg = '""'
ref_props = '""'
--
Build -MapResRefToEJB context root option list
--
cf_ref_opt = '[[' + ref_mod + ' ' + ref_ejb +\
 ' ' + ref_uri + ' ' + res_ref + ' ' + res_type +\
 ' ' + CF_jndi + ' ' + log_cfg + ' ' + ref_props +\
 ']]'
print 'Value of -MapResRefToEJB interior option list:',cf_ref_opt
--
Build AdminApp.install() option list
--
options = '[-node ' + app_node +\
 ' -server ' + app_srv +\
 ' -MapResRefToEJB ' + cf_ref_opt + ']'

WP101014 - WSADMIN z/OS V6.1 Primer

Section: Exploring the WSADMIN Objects
Version Date: Wednesday, September 10, 2008

- 66 -
© 2007, IBM Americas Advanced Technical Support
Washington Systems Center, Gaithersburg, MD

� The structure of that is pretty much the same as we used for the other options, such
as the context root of the web module, or the JNDI name given to an EJB module.
The variable names were modified.

� Some may wonder if an EAR file could be programmatically queried for most of that
information so that the script could automatically fill in the specific information such as
the module and URI. The answer is yes -- you could use AdminApp.taskInfo()
and place the output into a list variable, then loop into the list and find the information.
That's just more advanced Jython, but not more WSADMIN. Here we've discovered
the syntax of the -MapResRefToEJB option, which was our objective.

Note:

We showed how the command assistance function of the Admin Console once again
proved useful in determining the basic syntax of the option. AdminApp.taskInfo()
against the EAR file provided the values for the key attributes. From there it was simply a
matter of coding Jython to construct the AdminApp.install() command.

Review

Example: map resource reference to JDBC data source

To illustrate how a resource reference in an application is mapped to the JNDI name of a
JDBC data source.

Objective

There's no difference between a resource reference to a connection factory JNDI name and a
reference to a JDBC data source JNDI name. Both use the -MapResRefToEJB option within the
AdminApp.install() command. The process to determine the values in the EAR are the
same as used for the CICS example just shown.

A JDBC data source is like a JCA connection factory in terms of JNDI lookup and
WSADMIN. If you understand one, you have the essence of the other.

Review

Lesson wrap-up and summary

We just ran through a rather length set of exercises to see how to modify different settings for an
application at installation time. They all involved essentially the same things:

� Using AdminApp.options() to query for the options applicable to a given EAR file.

� Using AdminApp.taskInfo() to query the contents of the EAR file so we could know how to
properly point to the artifact in the EAR to modify

� Using the "command assistance" feature of WAS V6.1's Admin Console to see what the particular
option's syntax looks like. That might not produce exactly what you need, but it'll be close. With
that you can modify the syntax to fit your needs.

� Constructing a list variable to contain that option's attributes

� Constructing the overall options list variable

� Invoking installation using AdminApp.install()

We saw how there is an opportunity to modularize the scripts. The node synchronization routine
we wrote, which is generic and will synchronize all nodes in a cell programmatically, can be
called with the execfile() routine. That saves embedding the same Jython code in each
application installation script file.

Topic: WSADMIN and configuration-oriented activities

Lesson Overview

This set of exercises revolves around the AdminConfig object. It relates to the configuration of
the WebSphere cell. With this you can do things like add a server, change the values for a
server. We'll also explore the AdminTask object, which is new with V6.1. The AdminTask
object makes doing certain things much easier than might otherwise be the case if done with
just the AdminConfig object.

WP101014 - WSADMIN z/OS V6.1 Primer

Section: Exploring the WSADMIN Objects
Version Date: Wednesday, September 10, 2008

- 67 -
© 2007, IBM Americas Advanced Technical Support
Washington Systems Center, Gaithersburg, MD

Exercise: listing configuration "types"

To see how to query WebSphere to report back regarding things within its configuration.
There are many configuration elements in a cell, not just nodes and servers. To change
or add something you first tell WSADMIN what part of the configuration to focus in on.

Objective

� At the WSADMIN command prompt, issue the following command:

print AdminConfig.types()

You should get back a very long list:

AccessPointGroup
ActivationSpec
ActivationSpecTemplateProps
ActivitySessionService
AdminObject
 :
WorkManagerInfo
WorkManagerProvider
WorkManagerService
WorkloadManagementServer

"Types" are configuration elements within the cell. As of this writing, there are 569 of
them. Changes to the configuration are made against types. If you scroll through that
list you'll see the more recognizable ones -- Server, Node, ClusterMember.

Note:

� Issue the following command:

print AdminConfig.list('Server')

For our test cell, we received back:

dmgr(cells/fzcell/nodes/fzdmnode/servers/dmgr|server.xml#Server_1)

fzsr01c(cells/fzcell/nodes/fznodec/servers/fzsr01c|server.xml#Server_1165007710549)

fzsr02c(cells/fzcell/nodes/fznodec/servers/fzsr02c|server.xml#Server_1165802936177)

nodeagent(cells/fzcell/nodes/fznodec/servers/nodeagent|server.xml#Server_1165008639793)

Two things are worth noting: one, this is all the servers in the cell, including the DMGR
and node agents; and two, the format of that name is longer than we normally use to
refer to servers. We'll use the AdminTask object to list just application servers; and the
AdminConfig.showAttribute() method can be used to return the more familiar
long name.

Note:

� Issue the following command:

print AdminConfig.list('Node')

You should get back a similar list, but for the nodes in your cell.

� Create a file called config1.jy and supply in it the following:

This file supplied in the ZIP that accompanies the Techdoc.Note:

list_servers = AdminConfig.list('Server').split("\n")

for i in list_servers:

 long_name = AdminConfig.showAttribute(i,'name')

 print 'The more familiar long name is',long_name

print 'Done!'

The .split("\n") suffix takes the output of AdminConfig.list(), which is a long
string, and splits it into elements in list variable. Then a simple loop processes through
the elements of the list variable. The AdminConfig.showAttribute() function
returns the more common "long name" of a configuration object, given its longer unique
name.

Note:

WP101014 - WSADMIN z/OS V6.1 Primer

Section: Exploring the WSADMIN Objects
Version Date: Wednesday, September 10, 2008

- 68 -
© 2007, IBM Americas Advanced Technical Support
Washington Systems Center, Gaithersburg, MD

� Save the file and FTP it to your system. Make sure the permissions allow WSADMIN to
read the file. Then issue the command:

execfile('/aaaa/config1.jy')

Where aaaa is the location of your script file. You should see something like this:

The more familiar long name is dmgr
The more familiar long name is fzsr01c
The more familiar long name is fzsr02c
The more familiar long name is nodeagent
Done!

� That was all the servers. Let's now look at how to get a list of just application servers in a
given node. Create a file called config2.jy and supply in it the following:

--
Set basic variables
--

node = 'aaaa'
server_type = 'APPLICATION_SERVER'
--
Build AdminTask.listServers() command option list
--
opt_list = '[-serverType ' + server_type + ' -nodeName ' + node + ']'
--
Create list variable with appservers in specified node
--
appsvr_list = AdminTask.listServers(opt_list).split("\n")
for i in appsvr_list:
 long_name = AdminConfig.showAttribute(i,'name')
 print 'Appserver long name is',long_name
print 'Done!'

where aaaa is the long name of the node for which you wish to list the application servers.

� Save the file and FTP it to your system. Make sure the permissions allow WSADMIN to
read the file. Then issue the command:

execfile('/aaaa/config2.jy')

Where aaaa is the location of your script file. You should see a list of the application
servers in your node. The format should be the familiar long name.

A brief tour of the AdminConfig.list() and AdminTask.listServers()
functions. The InfoCenter can provide additional examples.

Review

Exercise: add an application server

To show how a new application server can be added to a cell using WSADMIN. This will
make use of the new AdminTask object, which greatly simplifies the process over what
was required in the past. We determined the basic structure of the syntax using the
Admin Console and the "command assistance" feature.

Objective

� Create a file called config3.jy and supply in it the following:

This file supplied in the ZIP that accompanies the Techdoc.Note:

WP101014 - WSADMIN z/OS V6.1 Primer

Section: Exploring the WSADMIN Objects
Version Date: Wednesday, September 10, 2008

- 69 -
© 2007, IBM Americas Advanced Technical Support
Washington Systems Center, Gaithersburg, MD

--

Set basic variables

--

node = 'aaaa'

server_long = 'bbbb'

server_short = 'CCCC'

cluster_tran = 'DDDD'

template = 'defaultZOS'

--

Build AdminTask option list variable

--

options = '[-name ' + server_long +\

 ' -templateName ' + template +\

 ' -specificShortName ' + server_short +\

 ' -genericShortName ' + cluster_tran + ']'

--

Invoke AdminTask command

--

AdminTask.createApplicationServer(node,options)

AdminConfig.save()

1

3

2

Notes:

1. These are the basic variables needed by the command:

� aaaa -- the node long name where the server will be built
� bbbb -- the new server long name
� CCCC -- the new server short name. This is referred to as the "Server specific short name"

in the Admin Console. This must be upper-case.
� DDDD -- the new server's "cluster transition name." This is referred to as the "Server generic

short name" in the Admin Console. Also upper-case.

There is only one default z/OS template, and that's 'defaultZOS' as shown.
Other templates can be created, and if they're present they could be named
here. But first starting out, all you'll see if defaultZOS.

We could have hard-coded that into the script that constructed the options
variable. We decided to keep it as a basic variable.

Note:

2. We build the option list for the AdminTask.createApplicationServer() command.
We're using the variables set at the top of the script to populate the option list, and we're
using the backslash character to break the line as shown.

3. We then invoke the command, providing the node as one attribute to the command and the
list variable we just created as the second attribute. We then issue the AdminConfig.save()
command to save the changes.

� This script does not show the changes being synchronized. We've already shown
many examples of how a script can call another script which invokes synchronization
for the cell.

� The port assignments will be default, which means they most likely won't map to
your port allocation standards. We'll see how to change those in a bit.

� You may require additional RACF (or other SAF product) profiles under this server to
support starting it. Specifically, RACF STARTED, SERVER and CBIND profiles. This
document will not explore that. See WP100653 on ibm.com/support/techdocs
for more on RACF profiles that support starting a server.

Notes:

WP101014 - WSADMIN z/OS V6.1 Primer

Section: Exploring the WSADMIN Objects
Version Date: Wednesday, September 10, 2008

- 70 -
© 2007, IBM Americas Advanced Technical Support
Washington Systems Center, Gaithersburg, MD

� Save the file and FTP it to your system. Make sure the permissions allow WSADMIN to
read the file. Then issue the command:

execfile('/aaaa/config3.jy')

Where aaaa is the location of your script file. Go the Admin Console to verify that the server
is now present.

Again, it'll be saved but not synchronized. The ports are not yet remapped. And there
may not be sufficient RACF support under the new server definition to allow it to run. But
the Admin Console will still show the new server, which will verify the script performed its
function.

Note:

This exercise shows the power of the new AdminTask object. In past versions of the
product it would have taken a great deal more effort to create the server. This also
illustrated the value of the new "command assistance" feature of the Admin Console. We
saw the structure of the AdminTask syntax by creating a dummy server, capturing the
syntax, then discarding the new server before it was saved. From that we built the script.

Review

Exercise: remap a server's TCP ports

The creation of a server using WSADMIN will leave the server's ports at some default
setting. Here we'll see how to programmatically modify the server's ports and set them
to match your allocation method. Once again, we discovered the basic syntax of the
modifyServerPort method by using the Admin Console's "command assistance"
feature. We went into a server, changed a port value, captured the syntax, then
discarded the change.

Objective

What we're going to show you is a rather manual method of determining what all the
-endPointName values are for a server. There are fancy programmatic ways to list those
out and programmatically loop through. But for the sake of this document, we'll show the
more intuitive way.

Note:

� In the Admin Console, navigate to your new server and click on the "Ports" link, which is on
the right side of the screen, about a one page down. You should see something that looks
like this:

WP101014 - WSADMIN z/OS V6.1 Primer

Section: Exploring the WSADMIN Objects
Version Date: Wednesday, September 10, 2008

- 71 -
© 2007, IBM Americas Advanced Technical Support
Washington Systems Center, Gaithersburg, MD

1 32

Notes:

1. The "Port Name" column contains the names we need for the modifyServerPort
command's -endPointName option. What we'll do is capture them and code them into our
WSADMIN script.

2. The "Host" column contains information we need for the -host option. Notice that most
contain simply an asterisk, though some (BOOTSTRAP and SOAP) contain the specific host
value. For our remapping exercise we'll maintain the values that got assigned by default.

3. The "Port" column shows what's currently assigned. We'll use the -port option to remap the
value to our preferred value.

� Using the copy/paste facility of the browser, capture those "Port Name" values into a text
file.

WP101014 - WSADMIN z/OS V6.1 Primer

Section: Exploring the WSADMIN Objects
Version Date: Wednesday, September 10, 2008

- 72 -
© 2007, IBM Americas Advanced Technical Support
Washington Systems Center, Gaithersburg, MD

� Create a file called config4.jy and supply in it the following. Make sure the port name
values you just captured are all accounted for in the script:

This file supplied in the ZIP that accompanies the Techdoc.Note:

--

Set basic variable

--

svr = 'aaaa'

--

Create and invoke AdminTask command

--

AdminTask.modifyServerPort(svr,\

 '[-endPointName BOOTSTRAP_ADDRESS -port xxxx -modifyShared true]')

AdminTask.modifyServerPort(svr,\

 '[-endPointName SOAP_CONNECTOR_ADDRESS -port xxxx -modifyShared true]')

AdminTask.modifyServerPort(svr,\

 '[-endPointName WC_adminhost -port xxxx -modifyShared true]')

AdminTask.modifyServerPort(svr,\

 '[-endPointName WC_defaulthost -port xxxx -modifyShared true]')

AdminTask.modifyServerPort(svr,\

 '[-endPointName DCS_UNICAST_ADDRESS -port xxxx -modifyShared true]')

AdminTask.modifyServerPort(svr,\

 '[-endPointName ORB_SSL_LISTENER_ADDRESS -port xxxx -modifyShared true]')

AdminTask.modifyServerPort(svr,\

 '[-endPointName WC_adminhost_secure -port xxxx -modifyShared true]')

AdminTask.modifyServerPort(svr,\

 '[-endPointName WC_defaulthost_secure -port xxxx -modifyShared true]')

AdminTask.modifyServerPort(svr,\

 '[-endPointName SIP_DEFAULTHOST -port xxxx -modifyShared true]')

AdminTask.modifyServerPort(svr,\

 '[-endPointName SIP_DEFAULTHOST_SECURE -port xxxx -modifyShared true]')

AdminTask.modifyServerPort(svr,\

 '[-endPointName SIB_ENDPOINT_ADDRESS -port xxxx -modifyShared true]')

AdminTask.modifyServerPort(svr,\

 '[-endPointName SIB_ENDPOINT_SECURE_ADDRESS -port xxxx -modifyShared true]')

AdminTask.modifyServerPort(svr,\

 '[-endPointName SIB_MQ_ENDPOINT_ADDRESS -port xxxx -modifyShared true]')

AdminTask.modifyServerPort(svr,\

 '[-endPointName SIB_MQ_ENDPOINT_SECURE_ADDRESS -port xxxx -modifyShared true]')

AdminTask.modifyServerPort(svr,\

 '[-endPointName ORB_LISTENER_ADDRESS -port xxxx -modifyShared true]')

--

AdminConfig.save()

1

3

2

Notes:

1. For our purposes only one basic variable is needed -- the server long name.

2. Rather than try to come up with a complicated looping structure (which would be possible, but
more challenging), we opted to simply invoke the AdminTask command as many times as
the server had ports.

Change the xxxx in each line to the port value you wish for that endpoint.

The -modifyShared true parameter is there because some of the endpoints are
considered "shared" by WebSphere and can't be remapped unless that switch is present. Not
all endpoints need it, but having it on all lines is insurance.

It's not strictly necessary to break the line as we show here. We show that so the type size in
this document doesn't get too small.

3. The changes are saved.

WP101014 - WSADMIN z/OS V6.1 Primer

Section: Exploring the WSADMIN Objects
Version Date: Wednesday, September 10, 2008

- 73 -
© 2007, IBM Americas Advanced Technical Support
Washington Systems Center, Gaithersburg, MD

� Save the file and FTP it to your system. Make sure the permissions allow WSADMIN to
read the file. Then issue the command:

execfile('/aaaa/config4.jy')

Where aaaa is the location of your script file. Go the Admin Console to verify that the
server's ports have been remapped.

Saved but not synchronized. And if the server was up when that script was run, it'll need
to be stopped and restarted to pick up the change.

Note:

Changing a server's port values is tedious but not really that difficult. A looping structure
could have been built. But it would have required building list variables for the end point
names and the associated port values. What we showed here will work for nearly all new
servers created. You would need to modify it slightly for node agents, as they have
different ports.

Review

Background: change node host name and node system name reference

This is something desired by people who are doing disaster recovery testing and they want to
bring up their system image on a different Sysplex. But a WebSphere configuration will not
start if the host names and system names in the configuration XML don't match the actual
seen on the system. In the past this required some rather extensive manual modification of
the configuration XML files, which was difficult and prone to error. It has been made much
easier with AdminTask.

Note:

� See WP100792 at ibm.com/support/techdocs. It provides a complete explanation of
the process involved.

Exercise: create a new cluster across two nodes

To show how WSADMIN could be used to create a cluster consisting of two cluster
members across two nodes in a cell. It turns out this process is really a three step
process:

1. Create the cluster using the AdminTask.createCluster() function

2. Add the first member using the AdminTask.createClusterMember() function

3. Add the second member using AdminTask.createClusterMember() function
again, but with slightly different values

For this example we're showing the creation of a cluster where the initial server is brand
new. Another way to do it is to select and existing server to act as the initial server then
clone that to form the cluster. We're not going to show that, but the Jython would be very
similar. Use the "command assistance" feature if you want to see what the syntax of that
would look like.

Following that, you can use the modifyServerPort method we just looked at to remap
the default port assignments that are given to each of the members.

Objective

� First, take a look at what the "command assistance" feature returned when we built a
dummy cluster in the Admin Console (example shown next). We reformatted this to make it
more readable; in its original format it consisted of three long command lines. Try to get a
handle on structure of the options and the list variables. Don't worry about what all this stuff
actually does:

WP101014 - WSADMIN z/OS V6.1 Primer

Section: Exploring the WSADMIN Objects
Version Date: Wednesday, September 10, 2008

- 74 -
© 2007, IBM Americas Advanced Technical Support
Washington Systems Center, Gaithersburg, MD

AdminTask.createCluster('[-clusterConfig

 [-clusterName clustername -shortName FZSR04]]')

AdminTask.createClusterMember('[-clusterName clustername

 -memberConfig [-memberNode fznodec -memberName fzsr04c

 -memberWeight 2 -specificShortName FZSR04C]

 -firstMember [-templateName defaultZOS

 -nodeGroup DefaultNodeGroup

 -coreGroup DefaultCoreGroup]]')

AdminTask.createClusterMember('[-clusterName clustername

 -memberConfig [-memberNode fznoded -memberName fzsr04d

 -memberWeight 2 -specificShortName FZSR04D]]')

1

3

2

Notes:

1. The first command is AdminTask.createCluster() and it has within its parenthesis a set
of nested options: [-clusterConfig [options]]. When we get to the Jython you'll
see we build the inner list first, then the outer one. This simply creates an empty cluster with
no server members.

2. The second command is AdminTaskcreateClusterMember(), and this is used to create
the initial cluster member. This is comprised of two inner option lists nested inside of an outer
list:

[-clusterName xxx -memberConfig[options] -firstMember [options]]

We'll build each inner option list separately, then construct the overall outer option list after
that.

3. The first command is also AdminTaskcreateClusterMember(), but it only has one inner
option list. That's because it does not perform the -firstMember operation, but rather does
just the -memberConfig operation:

[-clusterName xxx -memberConfig[options]]

We'll build the inner option list just like in #2, and then wrapper it in the outer option list.

This is the nature of WSADMIN scripting. Objects and methods and options, with
some options having sub-options. Thankfully we have the "command assistance"
function, otherwise we'd have to hunt around for this syntax on our own. With
"command assistance" we can get a sample of the syntax and create our more
orderly Jython from that.

Please
Read

� Create a file called config5.jy and supply in it the following. Make sure the port name
values you just captured are all accounted for in the script:

This file supplied in the ZIP that accompanies the Techdoc.Note:

WP101014 - WSADMIN z/OS V6.1 Primer

Section: Exploring the WSADMIN Objects
Version Date: Wednesday, September 10, 2008

- 75 -
© 2007, IBM Americas Advanced Technical Support
Washington Systems Center, Gaithersburg, MD

--

Set basic variables for cluster itself

--

cluster_long = 'aaaa'

cluster_short = 'BBBB'

first_node = 'cccc'

second_node = 'dddd'

first_mem_long = 'eeee'

first_mem_short = 'FFFF'

second_mem_long = 'gggg'

second_mem_short = 'HHHH'

--

Set other default variables if necessary

--

template = 'defaultZOS'

node_group = 'DefaultNodeGroup'

core_group = 'DefaultCoreGroup'

first_mem_wgt = '2'

second_mem_wgt = '2'

--

Build createCluster option lists (one nested inside other)

--

cc_inner_opt = '[-clusterName ' + cluster_long +\

 ' -shortName ' + cluster_short + ']'

cc_outer_opt = '[-clusterConfig ' + cc_inner_opt + ']'

--

Build initial createClusterMember option lists -- two inner lists

nested inside a single outer list: [[inner] [inner]]

--

cm1_inner_opt1 = '[-memberNode ' + first_node +\

 ' -memberName ' + first_mem_long +\

 ' -memberWeight ' + first_mem_wgt +\

 ' -specificShortName ' + first_mem_short + ']'

cm1_inner_opt2 = '[-templateName ' + template +\

 ' -nodeGroup ' + node_group +\

 ' -coreGroup ' + core_group + ']'

cm1_outer_opt = '[-clusterName ' + cluster_long +\

 ' -memberConfig ' + cm1_inner_opt1 +\

 ' -firstMember ' + cm1_inner_opt2 + ']'

--

Build second createClusterMember option list -- one inner list

nested inside a single outer list: [[inner]]

--

cm2_inner_opt1 = '[-memberNode ' + second_node +\

 ' -memberName ' + second_mem_long +\

 ' -memberWeight ' + second_mem_wgt +\

 ' -specificShortName ' + second_mem_short + ']'

cm2_outer_opt = '[-clusterName ' + cluster_long +\

 ' -memberConfig ' + cm2_inner_opt1 + ']'

--

Build commands and invoke to create cluster

--

AdminTask.createCluster(cc_outer_opt)

AdminTask.createClusterMember(cm1_outer_opt)

AdminTask.createClusterMember(cm2_outer_opt)

AdminConfig.save()

1

3

2

4

5

6

Notes:

1. The basic variables for the cluster are set first. Recall that in this example we're building a
cluster with two members across two nodes. The basic variables reflect that. The variable
names are self-explanatory. Remember that short names must be in upper-case.

2. We include a set of variables that you probably won't need to change, but rather than
hard-coding the values down in the script, we exposed them as variables and set them apart
from the other variables you'll definitely change.

WP101014 - WSADMIN z/OS V6.1 Primer

Section: Exploring the WSADMIN Objects
Version Date: Wednesday, September 10, 2008

- 76 -
© 2007, IBM Americas Advanced Technical Support
Washington Systems Center, Gaithersburg, MD

3. The first command is AdminTask.createCluster(). As stated earlier, this has a nested
option list. Here we're building the option list variable for that command, though we don't
actually invoke the command until the end of the script.

If this is confusing, go back and take a look at the actual syntax offered by the
command assistance function. Mapping the Jython to the actual will help make
sense of what's going on in the script.

Note:

4. We create the nested option structure for the createClusterMember() method for the
initial server member. This is more complex than the second cluster member because it has
an additional inner option list.

5. We create the second createClusterMember() option list.

6. We construct the actual AdminTask commands and invoke. When done, we save.

� Save the file and FTP it to your system. Make sure the permissions allow WSADMIN to
read the file. Then issue the command:

execfile('/aaaa/config5.jy')

Where aaaa is the location of your script file. Go the Admin Console to verify that the
cluster has been created.

But no synchronization, and no remapping of the default port values. We've shown how
to do that elsewhere in this document.

Note:

The value of creating a script to create a cluster can be debated. Doing that in the Admin
Console might be quicker. However, if you have several cells you're trying to maintain as
mirrors of one another, creating scripts to add servers and clusters may be the way to
insure consistency.

The script we build was long and somewhat complicated. Again, that's the nature of
WSADMIN scripting. The command assistance function was invaluable in figuring out the
syntax of the command. The construction of the Jython was really just carefully taking the
output from command assistance, creating variables, and then substituting the variables
into the actual commands where our actual values were found.

Review

Lesson wrap-up and summary

In this section we spent some time with the AdminConfig and AdminTask objects. They are
the primary tools to create and modify configuration elements. In WebSphere, those
configuration elements are called "types," and there are over 500 different types available. You
can create or modify pretty much anything with WSADMIN. The only question is how much time
you want to spend investigating the syntax and creating/debugging the script.

But the command assistance feature of the Admin Console is valuable for this purpose. We
showed how we used it to get a feel for the basic syntax structure. Then we modified that so we
could use variable substitution and make the script more flexible.

AdminTask is new with V6 and is wonderful. They have taken things that required more
involved AdminConfig scripts and condensed them into powerful AdminTask functions. We
barely scratched the surface of the AdminTask object.

Topic: WSADMIN and operation-oriented activities

Lesson Overview

In this section we'll explore how to control the operations of the WebSphere cell using
WSADMIN. This involves using the AdminControl object. With this you can do things like
start and stop servers.

WP101014 - WSADMIN z/OS V6.1 Primer

Section: Exploring the WSADMIN Objects
Version Date: Wednesday, September 10, 2008

- 77 -
© 2007, IBM Americas Advanced Technical Support
Washington Systems Center, Gaithersburg, MD

Exercise: check the current state of a server

Let's say you want to programmatically check the status of a server process before you
try to do some other action ... for example, starting an application or issuing a START for
the server itself. You can use the AdminControl.completeObjectName() function
to see if the process is there or not. If the results are null, then the process isn't up. If
the results are greater than 0 bytes in length, then the process is present.

Objective

� At the WSADMIN command prompt, issue the following command:

comp_id = AdminControl.completeObjectName('type=Server,process=aaaa,*')

where aaaa is the long name of a server you know is up and running. You should get
nothing in return ... just the WSADMIN prompt.

To check the status of a Node Agent involves something slightly different. We'll see that
in the oper1.jy exercise coming next.

Note:

� Now issue:

print comp_id

You should get back the "complete ID" of the named server, which will look something like
this:

WebSphere:name=fzsr01c,process=fzsr01c,platform=proxy,node=fznodec,j2eeType=J2EE

Server,version=6.1.0.4,type=Server,mbeanIdentifier=cells/fzcell/nodes/fznodec/se

rvers/fzsr01c/server.xml#Server_1165007710549,cell=fzcell,spec=1.0,processType=M

anagedProcess

In other words, a big long string ... clearly longer than 0 bytes.

� Issue:

print len(comp_server)

That will produce the length of the variable, which will be somewhere in the neighborhood of
253 bytes long.

If the server was down the length of that variable would be 0.Note:

� Let's create a script that will check the status of any server or node agent. The format for a
server is slightly different than a node agent, so the script will need to be a bit more creative.
You can strip this back and make it simpler if you wish.

Create a file called oper1.jy and supply in it the following.

This file supplied in the ZIP that accompanies the Techdoc.Note:

WP101014 - WSADMIN z/OS V6.1 Primer

Section: Exploring the WSADMIN Objects
Version Date: Wednesday, September 10, 2008

- 78 -
© 2007, IBM Americas Advanced Technical Support
Washington Systems Center, Gaithersburg, MD

--

Set basic variables and choose 'type' ... 1=Server, 2=NodeAgent

--

node_name = 'aaaa'

process_name = 'bbbb'

process_type = 1

--

Create command and issue

--

if process_type == 1:

 type = 'Server'

elif process_type == 2:

 type = 'NodeAgent'

 process_name = 'nodeagent'

--

complete_id = AdminControl.completeObjectName('type=' + type +\

 ',node=' + node_name +\

 ',process=' + process_name +\

 ',*')

--

length_id = len(complete_id)

if length_id == 0:

 print 'Process',process_name,'is not started'

elif length_id != 0:

 print 'Process',process_name,'started'

1

2

3

4

Notes:

1. Where aaaa is the node long name where the process resides and bbbb is the server long
name if the process is a server.

If the process is a Node Agent, the value gets set down in the if-then-else block
under #2. Node Agents always have a fixed value for nodeagent for the process
name. We could have had you just code that on the variable at the top.

Note:

The variable process_type is set to either 1 or 2, depending on whether it's a server
process or Node Agent process.

The script is crude ... no error checking for "out of range" is done.Note:

2. An if-then-else is performed. It takes one branch if a server process and another if a node
agent process. The Type variable is set.

3. The variable complete_id is populated with the AdminControl.completeObjectName()
function. This looks complex because there's a lot of variable substitution going on.

4. The length of the variable complete_id is checked. If 0 it means the process is not up. If 1
it means it is.

� Save the file and FTP it to your system. Make sure the permissions allow WSADMIN to
read the file. Then issue the command:

execfile('/aaaa/oper1.jy')

Where aaaa is the location of your script file. It should report back the status of the process,
either 'not started' or 'started.'

This script could be made more intelligent. In particular, it could take parameters on
invocation and process them with sys.argv. This might be one way to make the
routine generic and pass in the server name, node name and process type.

Note:

This illustrated a way to determine if a process is started.Review

WP101014 - WSADMIN z/OS V6.1 Primer

Section: Exploring the WSADMIN Objects
Version Date: Wednesday, September 10, 2008

- 79 -
© 2007, IBM Americas Advanced Technical Support
Washington Systems Center, Gaithersburg, MD

Exercise: start and stop a server

Starting and stopping servers involves using the AdminControl.invoke() method.
To use this we need to specify the management bean (mBean) and issue the command
we want -- stop or launchProcess. To stop a server you touch the mBean of the
server itself; to start a server you must make contact with the mBean of the Node Agent,
which will then issue the start command.

Objective

� Create a file called oper2.jy and supply in it the following:

--

Stop a server - set basic variables

--

process_name = 'aaaa'

node_name = 'bbbb'

--

Get "complete ID" of the server process

--

id_string = 'type=Server,node=' + node_name +\

 ',process=' + process_name + ',*'

complete_id = AdminControl.completeObjectName(id_string)

--

Stop the server

--

print 'Stopping Server'

AdminControl.invoke(complete_id, 'stop')

1

2

3

Notes:

1. Where aaaa is the long name of the application server process you're trying to stop, and

bbbb is the long name of the node in which the server exists.

The node value is not strictly needed for stopping a server, but we have it in there
because it is needed to start a server. We'll have the two scripts -- stopping and
starting a server -- be similar to one another.

Note:

2. The string used to uniquely identify the server process is constructed and the
AdminControl.completeObjectName() function executed. This populates the variable
complete_id with the long string that WebSphere uses to uniquely identify a server.

3. The server is stopped with the AdminControl.invoke() function, which takes as input the
complete ID of the server to be stopped (we derived that in step #3) and the 'stop' keyword
string.

� Save the file and FTP it to your system. Make sure the permissions allow WSADMIN to
read the file. Then issue the command:

execfile('/aaaa/oper2.jy')

Where aaaa is the location of your script file. Then go and check to make sure the server
actually came down.

� Let's make a script to start a server. Create a file called oper3.jy and supply in it the
following:

WP101014 - WSADMIN z/OS V6.1 Primer

Section: Exploring the WSADMIN Objects
Version Date: Wednesday, September 10, 2008

- 80 -
© 2007, IBM Americas Advanced Technical Support
Washington Systems Center, Gaithersburg, MD

--

Start a server - set basic variables

--

process_name = 'fzsr01c'

node_name = 'fznodec'

--

Get "complete ID" of the Node Agent

--

id_string = 'type=NodeAgent,node=' + node_name +\

 ',process=nodeagent,*'

complete_id = AdminControl.completeObjectName(id_string)

--

Start the server

--

print 'Starting Server'

AdminControl.invoke(complete_id,'launchProcess','[' + process_name + ']')

1

2

3

Notes:

1. Where aaaa is the long name of the application server process you're trying to start, and

bbbb is the long name of the node in which the server exists.

2. Here we're getting the "complete ID" of the Node Agent that supports server to be started. It is
against the Node Agent that we issue the AdminControl.invoke() to start a server.

If the Node Agent is also down then you're out of luck. The Node Agent is one of
those basic pieces of the infrastructure that must be up for this stuff to work. There's
no way to start a Node Agent using WSADMIN.

Note:

3. The server is started with the AdminControl.invoke() function, which takes as input the
complete ID of the Node Agent, the string 'launchProcess' and the list variable that
contains the server process name, which we set up in #1.

The script we created was pretty basic ... it did almost no error checking and it didn't check
to see if the server was already up or down. But it is functional.

The AdminControl object has a startServer and a stopServer method. It would
achieve the same effect. We went with the AdminControl.invoke() process because
that's what the Admin Console's "command assistance" feature told us was used when we
started and stopped the server from it.

Review

Exercise: synchronize a node, multiple nodes, or whole cell

We've already done this. See "Exercise: node synchronization" on page 49. That script
synchronized all the nodes in a cell by getting a list of all nodes then looping through it. You
could modify the script to synchronize a specific node if you wished.

Lesson wrap-up and summary

We used the AdminControl function in several places throughout this document -- node
synchronization, starting and stopping applications, etc. Here we showed that it can be used to
start and stop servers themselves.

WP101014 - WSADMIN z/OS V6.1 Primer

Section: Exploring the WSADMIN Objects
Version Date: Wednesday, September 10, 2008

- 81 -
© 2007, IBM Americas Advanced Technical Support
Washington Systems Center, Gaithersburg, MD

Further Exploration of the AdminTask Object

In this section we'll shift away from the "primer" format and simply explore the AdminTask object a bit
more. The reason for this is because AdminTask supplies some remarkably powerful commands and
it's useful to be aware of them.

The objectives of this section are to help you understand:

� How to use the general "help" facility to find out what AdminTask commands are available, and

� How to use the help facility to determine the synatx and usage of the command

Jython or JACL?

For this section we'll use Jython. If you try to run these commands yourself, don't forget to put
-lang jython in the invocation string.

Listing all the different "command groups"

AdminTask "command groups" are simply logical groupings of different AdminTask. For example,
here are a few of the command groups and the short description that is offered by the help facility:

ClusterConfigCommands - Commands for configuring application server clusters and cluster members.

ServerManagement - A group of command that configure servers

PortManagement - A group of admin commands that help in managing WebSphere ports

And more ... that's just three of about 65 ... but those are three we suspect will contain the most
commonly used WSADMIN commands.

Where did that come from? By issuing the following command:

print AdminTask.help('-commandGroups')

What results is a long list of groups. By reading the command group names and their descriptions
you can get a sense for where the command your looking for might reside.

If you know the command you need, you can skip this command group thing. This is handy
when you're not sure what command might apply.

Note:

Listing the commands within a command group

Let's say you know the group and you want to see the commands within the group. For instance,
let's say the ServerManagement group caught your attention. Here's how you'd list all the
commands in that group:

print AdminTask.help('ServerManagement')

That produces a list of commands:

Commands:
changeClusterShortName - A command that can be used to change the cluster's short name.
changeServerGenericShortName - A command that can be used to change the server generic short name.
changeServerSpecificShortName - A command that can be used to change the server specific short name.
 :
 (middle of the list clipped to save space in this document)
 :
showServerInstance - Show Server Instance configuration. This command only applies to the z/OS platform.
showServerTypeInfo - Show server type information.
showTemplateInfo - A command that displays all the Metadata about a given template.

The InfoCenter has some of these. It's worth a check to see if the InfoCenter lists the command
you're interested in. If it's there, the information is has is excellent.

Note:

WP101014 - WSADMIN z/OS V6.1 Primer

Section: Exploring the WSADMIN Objects
Version Date: Wednesday, September 10, 2008

- 82 -
© 2007, IBM Americas Advanced Technical Support
Washington Systems Center, Gaithersburg, MD

Listing the help on a specific command

Let's explore two of those:

� changeServerSpecificShortName

The "specific short name" is a z/OS-only definition; it is the short name assigned to the application
server. (The "generic short name" is something different ... the generic short name is sometimes
known as the "cluster transition name," which is used by WebSphere as the WLM dynamic application
environment name.)

It looks like this in the Administrative Console, under the server's general properties:

� changeClusterShortName

The short name for a cluster is used as the WLM application environment for each of the server
members in the cluster. Here's what it looks like in the Administrative Console, under the cluster's
general properties:

changeServerSpecificShortName

Issuing AdminTask.help('changeServerSpecificShortName')yields:

Arguments:

 *serverName - The Server Name

 *nodeName - The Node Name

 *specificShortName - The server specific short name is applicable only on zOS

platforms. This represents the specific short name of the server. All

servers should have unique specific short name. This parameter is optional

and when it is not specified a unique specific short name is automatically

assigned. The value should be 8 chars or less and all upper case.

By itself that doesn't tell the syntax of the command. But based on other AdminTask commands
we have seen we found the syntax is this:

AdminTask.changeServerSpecificShortName('[-serverName aaaaa

-nodeName bbbbb -specificShortName ccccc]')

Where:
aaaaa - is the server long name you wish to work against
bbbbb - is the node long name in which the server resides
ccccc - is the server short name you wish to apply

It offers a null response -- two single quotes -- to indicate success.

Don't forget the AdminConfig.save() and the synchronization if this is a network
deployment configuration.

Note:

WP101014 - WSADMIN z/OS V6.1 Primer

Section: Exploring the WSADMIN Objects
Version Date: Wednesday, September 10, 2008

- 83 -
© 2007, IBM Americas Advanced Technical Support
Washington Systems Center, Gaithersburg, MD

changeClusterShortName

Issuing AdminTask.help('changeClusterShortName')yields:

Arguments:

 *clusterName - The cluster short name is applicable only on zOS platforms.

This represents the short name of the cluster. Every cluster should have

unique short name. This parameter is optional and when it is not specified a

unique short name is automatically assigned. The value should be 8 chars or

less and all upper case.

 *shortName - The cluster short name is applicable only on zOS platforms. This

represents the short name of the cluster. Every cluster should have unique

short name. This parameter is optional and when it is not specified a unique

short name is automatically assigned. The value should be 8 chars or less

and all upper case.

Again, by itself that doesn't tell the syntax of the command. But just like the server short name
command, we find the syntax here is similar:

AdminTask.changeClusterShortName('[-clusterName aaaaa -shortName ccccc]')

It offers a null response -- two single quotes -- to indicate success.

Don't forget the AdminConfig.save() and the synchronization if this is a network
deployment configuration.

Note:

What about the InfoCenter?

The inventory of AdminTask commands is being updated all the time, and sometimes additions
don't make their way into the InfoCenter. When that happens you should open a PMR and specify
that it is a defect in the documentation.

The two commands shown here, changeServerSpecificShortName and changeClusterShortName,
were two that for whatever reason didn't make it into the InfoCenter. A document APAR is now
open and that will get fixed ... in fact, when you read this it may well be fixed.

So, we would encourage you to look in the InfoCenter for command syntax because the InfoCenter
is an excellent source of information on these commands. For example, a search on
"ServerManagement" (one of the command group names) came up with this:

Hot links to sections within
the InfoCenter article on each

of the commands.

Very nice syntax charts
and command examples

are provided

WP101014 - WSADMIN z/OS V6.1 Primer

Section: Exploring the WSADMIN Objects
Version Date: Wednesday, September 10, 2008

- 84 -
© 2007, IBM Americas Advanced Technical Support
Washington Systems Center, Gaithersburg, MD

Security Related Exercises

Lesson Overview

Security is a broad and complicated topic. We can't cover ever aspect of it. But we will touch on a
few of the more common things people ask:

� May I use an ID other than the WebSphere Admin ID?

� May I invoke WSADMIN from a workstation and connect to WebSphere on z/OS?

� What is "fine grained security" and how do I use it?

Do not make any RACF (or SAF) changes without first reviewing them with your
security administrator. We strongly encourage you to be very careful with some of the
exercises we have in this section.

Important!

Exercise: use a different ID from WebSphere Admin ID

To show what happens when you use an ID, other than the WebSphere Admin ID, when
launching WSADMIN. There are potentially three levels of failure -- 1) file permission access
failure; 2) SSL connection establishment failure; 3) SOAP or RMI port access failure. We'll
show each one in turn.

We're going to run through several exercises here: we'll show the first failure, then correct it.
Then we'll show the second failure, and then correct it. Finally we'll show the last failure and
correct it as well. When you're through you'll have authorized your new ID to use WSADMIN.

Objective

Error: File permission access failure

� Choose some ID, other than the WebSphere Admin ID, which you wish to use for this
exercise. Perhaps your personal ID.

� Open up a telnet or OMVS prompt using the ID you chose.

� Change directories the following location:

/aaaa/DeploymentManager/profiles/default/bin

where aaaa is the mount point for the Deployment Manager node.

� Issue the whoami command to make sure you're operating as the ID you chose in the first
step.

� Now issue the following command:

./wsadmin.sh -conntype NONE

With -conntype NONE we remove from the equation the SSL connection and port
access considerations. This reduces the issue down to just file access.

Note:

After a bit you should see a big long list of problems, with something like this included:

!MESSAGE Error reading configuration:

/<mount>/DeploymentManager/profiles/default/configuration/org

.eclipse.osgi/.manager/.fileTableLock (EDC5111I Permission denied.)

(plus a long Java stack trace which we're not showing here)

and:

WASX7448E: The trace file cannot be written to location

/<mount>/DeploymentManager/profiles/default/logs/wsadmin.traceout .

Please specify a different location with -tracefile option.

� Understand the reason why this occurred:

You attempted to launch WSADMIN from the Deployment Manager's configuration directory.
That permissions on key files in that configuration directory typically have for "other" access

WP101014 - WSADMIN z/OS V6.1 Primer

Section: Security
Version Date: Wednesday, September 10, 2008

- 85 -
© 2007, IBM Americas Advanced Technical Support
Washington Systems Center, Gaithersburg, MD

either 0 (no access) or 5 (read and execute, but not write). The wsadmin.traceout file in
particular has permissions 775, which means "other" can't write to it.

When we launched WSADMIN earlier under the authority of the WebSphere Admin ID, that ID
was part of "group," not "other." Group access is 7, which is "read, write and execute."

The way to overcome this problem is to connect the new ID to the WebSphere "Configuration
Group" ID. We'll do that in an upcoming exercise.

Solution: File permission access failure

� Connect the ID to the WebSphere Configuration Group:

CONNECT aaaa GROUP(bbbb)

where:

� aaaa -- is the ID you're attempting to use; the one that is not the WebSphere Admin ID

� bbbb -- is the WebSphere Configuration Group. If you're not sure what that value is,
check to see what groups the WebSphere Admin ID is connected to. You'll see the
WebSphere Configuration Group listed. It'll probably have a name such as xxCFG,
where xx is your two-character cell identifier.

Connecting the ID to the WebSphere configuration group gives that ID authority your
security administrator may not be comfortable with. Review this with them before you
make the connection.

Note:

� Close out your telnet or OMVS session and reopen it.

Group associations are often cached at initialization time. By closing and reopening the
telnet or OMVS session you refresh the group association cache.

Why?

� Again, issue the following command from the telnet session:

./wsadmin.sh -conntype NONE

� You should see that proceed without trouble to the wsadmin> prompt.

� Issue the command quit to exit the WSADMIN session and return to the UNIX prompt.

� Understand why that fixed the problem:

By connecting the user to the WebSphere Configuration Group, you changed the access from
"other" to "group". "Group" has the authority to write the necessary files to support
WSADMIN; "other" did not.

Error: SSL connection establishment failure

� From the telnet or OMVS session, make sure you're still operating under the authority of the
ID that is not the WebSphere Admin ID. Issue the whoami command to verify you are not

the WebSphere Admin ID.

� Issue the following command (all on one line):

./wsadmin.sh -conntype SOAP -host aaaa -port bbbb

-user cccc -password dddd

where:

� aaaa is the host address where the DMGR can be reached
� bbbb is the SOAP port of the DMGR

� cccc is the WebSphere Admin ID

� dddd is the password for the WebSphere Admin ID

WP101014 - WSADMIN z/OS V6.1 Primer

Section: Security
Version Date: Wednesday, September 10, 2008

- 86 -
© 2007, IBM Americas Advanced Technical Support
Washington Systems Center, Gaithersburg, MD

Yes, continue to use the WebSphere Admin ID for the -user and -password
parameters. That's used to authorize access into the SOAP or RMI port. What we're
testing right now is the keyring/certificate/SSL issue. That relates to the ID under which
wsadmin.sh is operating.

Note:

You should something that looks like this:

*** SSL SIGNER EXCHANGE PROMPT ***
SSL signer from target host wsc3.washington.ibm.com is not found in
trust store safkeyring:///WASKeyring.FZCELL.

Here is the signer information (verify the digest value matches what
is displayed at the server):

Subject DN: CN=wsc3.washington.ibm.com, OU=FZBASEC, O=IBM
Issuer DN: CN=WAS CertAuth for Security Domain, OU=FZCELL
Serial number: 2
Expires: Fri Dec 31 22:59:59 EST 2010
SHA-1 Digest:
A6:07:53:38:CC:5E:48:6A:11:F2:13:20:CF:21:80:D7:8C:71:0A:BC
MD5 Digest: 11:AB:A5:79:82:7A:66:33:5F:5B:E1:DB:95:19:A1:E4

Subject DN: CN=WAS CertAuth for Security Domain, OU=FZCELL
Issuer DN: CN=WAS CertAuth for Security Domain, OU=FZCELL
Serial number: 0
Expires: Fri Dec 31 22:59:59 EST 2010
SHA-1 Digest:
A6:07:53:38:CC:5E:48:6A:11:F2:13:20:CF:21:80:D7:8C:71:0A:BC
MD5 Digest: 11:AB:A5:79:82:7A:66:33:5F:5B:E1:DB:95:19:A1:E4

Add signer to the trust store now? (y/n)

� Respond N to the prompt. WSADMIN does not have the ability to "add the signer to the trust
store" when the trust store is SAF and the keyring has not yet been created.

� You should see something like the following:

WASX7213I: This scripting client is not connected to a server process;

please refer to the log file:

/<mount>/DeploymentManager/profiles/default/logs/wsadmin.traceout

for additional information.

WASX8011W: AdminTask object is not available.

WASX7031I: For help, enter: "print Help.help()"

wsadmin>

It couldn't establish the SSL connection so it dropped back to a "conntype NONE"
mode.

Note:

� At the wsadmin> prompt, issue the command quit to exit WSADMIN. You should be back
at the UNIX prompt.

� Understand the reason why this occurred:

The establishment of an SSL connection requires that the client (WSADMIN, operating under
the non-Admin ID you're using for this exercise) have a "trust store" with the Certificate
Authority certificate that signed the DMGR's server certificate. The ID you're using may or
may not have a keyring; it most likely does not have the CA certificate.

Solution: SSL connection establishment failure

� We need to add a keyring to the ID and connect the CA certificate. If you know the values
for those to things, then skip to the step that reads "Define a keyring for your non-Admin ID."
on page 89. Otherwise, follow the instructions that follow here to capture that information:

� Log onto the Admin Console

WP101014 - WSADMIN z/OS V6.1 Primer

Section: Security
Version Date: Wednesday, September 10, 2008

- 87 -
© 2007, IBM Americas Advanced Technical Support
Washington Systems Center, Gaithersburg, MD

� Go to Security � SSL certificate and key management.

� Look the right of the screen and click on Key stores and certificates

� Click on the link CellDefaultKeyStore

� Now do the following:

Capture the keyring
name ... it's the value

that follows ///

Click on "Signer certificates"

1

2

Keyring Name
Value is case-sensitive

� You should see something like this under "Signer certificates". Do as indicated:

Look for the "WAS CertAuth"

1

Capture the "Alias" value

1

CertAuth Alias Name

� If you are using a real-world Certificate Authority rather than the WebSphere
CertAuth, then look for the real-world one you use.

� The "Alias" value will appear in all lower-case, but the value is in fact a
mixed-case value. What we will do with this value requires that we know the
exact case of the string. We're going to determine that next.

Notes:

� Go to ISPF Option 6 and issue the following RACF command to list all the certificates
associated with the WebSphere Admin ID. We'll do this to find the exact case for that
CertAuth certificate:

RACDCERT ID(aaaa) LISTRING(bbbb)

WP101014 - WSADMIN z/OS V6.1 Primer

Section: Security
Version Date: Wednesday, September 10, 2008

- 88 -
© 2007, IBM Americas Advanced Technical Support
Washington Systems Center, Gaithersburg, MD

where:

� aaaa -- is the WebSphere Admin ID
� bbbb -- is the Keyring name you captured a few steps back (case matters!)

You should see something like this:

Digital ring information for user FZADMIN

 Ring:

 >WASKeyring.FZCELL<

 Certificate Label Name Cert Owner USAGE DEFAULT

 -------------------------------- ------------ -------- -------

 WebSphereCA.FZ CERTAUTH CERTAUTH NO
 Verisign Class 3 Primary CA CERTAUTH CERTAUTH NO

 Verisign Class 1 Primary CA CERTAUTH CERTAUTH NO

 RSA Secure Server CA CERTAUTH CERTAUTH NO

 Thawte Server CA CERTAUTH CERTAUTH NO

 Thawte Premium Server CA CERTAUTH CERTAUTH NO

 Thawte Personal Basic CA CERTAUTH CERTAUTH NO

 Thawte Personal Freemail CA CERTAUTH CERTAUTH NO

 Thawte Personal Premium CA CERTAUTH CERTAUTH NO

 Verisign International Svr CA CERTAUTH CERTAUTH NO

� Look for the "Certificate Label Name" that corresponds to the "Alias" you captured from
the Admin Console. Capture the exact case here:

CertAuth Label Name:
In mixed case as seen

� Define a keyring for your non-Admin ID.. Use the following RACF command:

RACDCERT ADDRING(aaaa) ID(bbbb)

where:

� aaaa -- is the Keyring name for the cell. You captured this back on page 88.
� bbbb -- is the ID you're trying to enable to use WSADMIN

Check with your security administrator prior to creating a keyring for the ID.Note:

� Connect the "signer certificate" to the keyring. Use the following RACF command:

RACDCERT ID(aaaa) CONNECT (RING(bbbb) LABEL('cccc') CERTAUTH)

where:

� aaaa -- is the new ID you're trying to enable to use WSADMIN.
� bbbb -- is the Keyring name for the cell. You captured this back on page 88.
� cccc -- is the Certificate Authority label. You captured this on page 89.

Check with your security administrator prior to connecting the cert to the keyring.Note:

� Once again, issue the following command (all on one line):

./wsadmin.sh -conntype SOAP -host aaaa -port bbbb

-user cccc -password dddd

where:

� aaaa is the host address where the DMGR can be reached
� bbbb is the SOAP port of the DMGR

� cccc is the WebSphere Admin ID

� dddd is the password for the WebSphere Admin ID

WP101014 - WSADMIN z/OS V6.1 Primer

Section: Security
Version Date: Wednesday, September 10, 2008

- 89 -
© 2007, IBM Americas Advanced Technical Support
Washington Systems Center, Gaithersburg, MD

Yes, continue to use the WebSphere Admin ID for the -user and -password
parameters. That's used to authorize access into the SOAP or RMI port. What we're
testing right now is the keyring/certificate/SSL issue. That relates to the ID under which
wsadmin.sh is operating.

Note:

� If everything worked as designed, you should get:

WASX7209I: Connected to process "dmgr" on node <node> using SOAP

connector; The type of process is: DeploymentManager

WASX7031I: For help, enter: "print Help.help()"

wsadmin>

� Issue the command quit to exit WSADMIN.

� Understand why what you did fixed the problem:

By giving this other ID a keyring with the same name as the keyring used by the DMGR, and
by connecting to that ring the Certificate Authority label used to sign the DMGR's server
certificate, you allowed the SSL connection to work. Now the DMGR's server cert, when
presented to the WSADMIN client, can be verified. Before it could not because the new ID
had no keyring or certificate.

Error: SOAP or RMI port access failure

� Once again, issue the following command (all on one line):

./wsadmin.sh -conntype SOAP -host aaaa -port bbbb

-user cccc -password dddd

where:

� aaaa is the host address where the DMGR can be reached
� bbbb is the SOAP port of the DMGR
� cccc is the non-Admin ID
� dddd is the password for the non-Admin ID

� You should see the following:

WASX7209I: Connected to process "dmgr" on node <node> using SOAP

connector; The type of process is: DeploymentManager

WASX7031I: For help, enter: "print Help.help()"

wsadmin>

That's right. That's because earlier you connected that ID to the WebSphere
Config Group. The moment you did that, you inherited the authority of that
Group. One of the authorities that Group ID had was access to something
called EJBROLE.administrator. That's what controls administrative access
to the management interface.

When the WSADMIN client is on MVS along with the DMGR, it's somewhat
hard to create this SOAP or RMI access failure. We needed to connect the ID
to the Group ID to overcome the most basic problem, which was file permission
access. Once we did that, this problem went away.

If the WSADMIN client was on a remote workstation (which we discuss under
"Exercise: WSADMIN client on a remote workstation" on page 93), then we
could test the two things independently. How you grant an ID access to the
EJBROLE profile is discussed next.

No Error?

WP101014 - WSADMIN z/OS V6.1 Primer

Section: Security
Version Date: Wednesday, September 10, 2008

- 90 -
© 2007, IBM Americas Advanced Technical Support
Washington Systems Center, Gaithersburg, MD

Background: how WebSphere controls administrative authority

When someone presents themselves to WebSphere and seeks entry to use the administrative
services -- either through the Admin Console or WSADMIN -- they do so by presenting their
userid and password. WebSphere then determines whether they will be granted access and
how much authority they will have once they get in the front door.

There's actually two levels of access here -- authority to access the port, and authority to
access WebSphere administrative services. Access to the port is permitted (by default)
based on a valid RACF id and password. So any valid RACF ID should be able to do that.
But once inside the port, then access to WebSphere administrative services is based on
what we're going to describe next -- EJBROLE access.

Note:

When a WebSphere cell is created, five EJBROLE profiles are created:

administrator

monitor

configurator

operator

deployer

adminsecuritymanager

Each one has different levels of authorization. For example, monitor defines only the ability to
look at, but not change, the WebSphere configuration. operator is allowed to start and stop
things, but not deploy new applications. administrator has nearly full authority.

What defines what authority an ID has to do WebSphere tasks is which EJBROLE the ID has
been granted access to. Let's say you have a new ID of SMITH. You want SMITH to have the
authority of deployer, but nothing else. So what you'd do is "permit" SMITH access to the
EJBROLE:

PERMIT deployer CLASS(EJBROLE) ID(SMITH) ACCESS(READ)

Then when SMITH presents himself, WebSphere will check with RACF and see what EJBROLE
SMITH has access to. It'll find that SMITH has access to deployer. That tells WebSphere
what authority SMITH should be allowed.

When the WebSphere cell is first built, only two PERMIT operations are performed:

� The WebSphere Configuration Group ID is granted READ to administrator
� The WebSphere Admin ID is granted READ to adminsecuritymanager

It turns out that the Admin ID is also connected to the Configuration Group, which means the
Admin ID inherits the authority of the group. The Admin ID therefore has access to two
authorities: adminsecuritymanager, which it was granted explicitly; and administrator
which it inherits from its connection to the Configuration Group ID.

In the earlier exercise you granted the non-Admin ID access to the Configuration Group ID. By
doing that, you allowed that non-Admin ID to inherit the authority of the Group ID, which included
access to administrator. Therefore, what was your "non-Admin ID" became, in effect, an
Admin ID.

That's why using that ID on the -user and -password of the WSADMIN invocation worked.
When that ID presented its credentials to WebSphere, a check was made against RACF which
saw that the ID had access to the group, which meant it had access to administrator. That
was enough to be allowed access to the WSADMIN interface.

Determining the EJBROLE definitions created for a cell

WebSphere for z/OS provides a way to qualify the EJBROLE profiles with a prefix. It's
called a "Security Domain Identifier." For example, rather than merely administrator, it

WP101014 - WSADMIN z/OS V6.1 Primer

Section: Security
Version Date: Wednesday, September 10, 2008

- 91 -
© 2007, IBM Americas Advanced Technical Support
Washington Systems Center, Gaithersburg, MD

would be FZ.administrator, where FZ is the prefix used when the cell was created.
This is a way to differentiate the EJBROLEs used for one cell from another.

Before you can grant a new ID permission to use a cell's EJROLEs, you need to know what
domain identifier was used for a cell, if any was used at all. This can be done through the
Admin Console:

Do the following only if you want to find out the domain identifier for a cell. Do that only if
you're interested in granting another ID access to the EJBROLE profiles for a cell.

Note:

� In the Admin Console go to:

Security � Secure administration, applications, and infrastructure

� Then click on the link Custom properties, in the lower-right of the panel.

� At the bottom, click on the little arrow symbol to advance to page 2

� Near the bottom, locate the property security.zOS.domainName

� Note the value seen there, including the case:

Security Domain Identifier:

If the property doesn't appear, or appears with no value associated with it, then the
cell does not use a "Security Domain Identifier." That means the EJROLEs will be
just as listed before: administrator, monitor, configurator, etc.

Note:

Seeing what IDs have permission to an EJBROLE profile

� If you want to see what IDs have access to a given EJBROLE, you can issue the
following command:

RLIST EJBROLE aa.bbbbbb AUTH

where:

� aa -- is the security domain identifier for the cell. The value is case sensitive.
� bbbbbb -- is the EJBROLE profile, for example administrator. Also case sensitive.

For example:

RLIST EJBROLE FZ.administrator AUTH

Or, if no security domain identifier:

RLIST EJBROLE administrator AUTH

Down at the bottom of the listing you'll see something like this:

USER ACCESS ACCESS COUNT
---- ------ ------ -----
SYSADM1 ALTER 000000
FZCFG READ 000000

What that example is showing is that the FZCFG ID -- the configuration group ID for the
cell - has READ access to the FZ.administrator role. And as we mentioned before,
if you want to grant another ID access to the EJBROLE, and a group already has READ
access to it, simply connect the ID to the group ... the ID will then inherit the authority of
the group, including EJBROLE access.

Granting an ID permission to an EJBROLE profile

� You have two options for granting an ID access to an EJBROLE

WP101014 - WSADMIN z/OS V6.1 Primer

Section: Security
Version Date: Wednesday, September 10, 2008

- 92 -
© 2007, IBM Americas Advanced Technical Support
Washington Systems Center, Gaithersburg, MD

Check with your security administrator prior to making any changes to EJBROLE
access.

Note:

� Grant the ID direct access with the following command:

PERMIT aa.bbbbbb CLASS(EJBROLE) ID(cccc) ACCESS(READ)

where:

� aa -- is the security domain identifier for the cell. The value is case sensitive.
� bbbbbb -- is the EJBROLE profile, for example administrator. Also case sensitive.
� cccc -- is the ID you wish to grant access

� Grant some group ID access to the EJROLE, then connect the ID to the group:

PERMIT aa.bbbbbb CLASS(EJBROLE) ID(cccc) ACCESS(READ)

where:

� aa -- is the security domain identifier for the cell. The value is case sensitive.
� bbbbbb -- is the EJBROLE profile, for example administrator. Also case sensitive.

� cccc -- is the group ID you wish to grant access

then:

CONNECT aaaa GROUP(bbbb)

where:

� aaaa -- is the user ID

� bbbb -- is the group that you just granted access to the EJBROLE

Exercise: WSADMIN client on a remote workstation

The WSADMIN client does not need to be on the same MVS image as the Deployment
Manager. The options -conntype SOAP or -conntype RMI allow a network connection
to be made across a TCP network. Many people run the WSADMIN client from WebSphere
installed on their workstation, and connect to their z/OS-based DMGR.

But if security is enabled on the Deployment Manager, it means the workstation client needs
to be able to establish the SSL connection. That means the client on the workstation needs
to have the CA Certificate that was used to sign the DMGR's server certificate, which is what
flows down to the client during the first phases of SSL establishment. Providing the CA Cert
to the workstation client involves exporting the cert from RACF, bringing it down to the
workstation, and importing it into the TrustFile used by the client there.

This exercise will show how it's done.

Objective

Error: SSL establishment failure when workstation client doesn't have CA cert

� Locate a workstation that has WebSphere installed.

� Go to the \profiles\default\bin directory where WebSphere is installed.

� Issue the following command (all on one line):

wsadmin -conntype SOAP -host aaaa -port bbbb

-user cccc -password dddd

where:

� aaaa is the host address where the z/OS DMGR can be reached
� bbbb is the SOAP port of the z/OS DMGR
� cccc is the WebSphere Admin ID for the z/OS DMGR
� dddd is the password for WebSphere Admin ID for the z/OS DMGR

� You should see an error that looks something like this:

WP101014 - WSADMIN z/OS V6.1 Primer

Section: Security
Version Date: Wednesday, September 10, 2008

- 93 -
© 2007, IBM Americas Advanced Technical Support
Washington Systems Center, Gaithersburg, MD

Error creating "SOAP" connection to host "<host>"; exception information:

com.ibm.websphere.management.exception.ConnectorNotAvailableException:

[SOAPException: faultCode=SOAP-ENV:Client; msg=Error opening socket:

javax.net.ssl.SSLHandshakeException:java.security.cert.CertificateException:

Certificate not Trusted; targetException=java.lang.IllegalArgumentException:
Error opening socket: javax.net.ssl.SSLHandshakeException:

java.security.cert.CertificateException: Certificate not Trusted]

WASX7213I: This scripting client is not connected to a server process;
please refer to the log file wsadmin.traceout for additional information.

WASX8011W: AdminTask object is not available.

WASX7029I: For help, enter: "print Help.help()"

wsadmin>

The highlighted text tells the story -- the workstation client received the certificate from the
DMGR, but since it did not have the CA Cert available it couldn't verify that the "signature"
on the certificate could be trusted. Therefore, the SSL connection was disallowed.

The client drops back to a -conntype NONE mode, which means it is not operating against
the DMGR on the z/OS system.

� Issue the command quit at the wsadmin> prompt.

Background: what's involved with making CA cert available to workstation client

The following picture summarizes the steps involved:

1
RACF

Exported
CA Cert

FTP

Downloaded
DER file

IKEYMAN
tool

TrustStore file

ssl.client.props

file

2

3

4

Notes:

1. The CA Cert, which is in RACF on the z/OS system, is first exported to a sequential data set as a
"DER encoded PKCS7 certificate chain." The specifics of that is not important ... the key is to
get the certificate out of RACF into a format that'll be understood by the IKEYMAN tool. The DER
format will give us that.

2. The exported CA Cert is then downloaded in binary format to the workstation where you wish to
run the WSADMIN client. The file exists on the workstation as a "DER" file.

3. The IKEYMAN tool is used to create a Trust Store file and the CA Cert brought down from the
z/OS system is imported into the new Trust Store.

4. Finally, the ssl.client.props file is updated so the WSADMIN client knows to use the new
Trust Store file with the imported CA Cert.

Exercise: export CA cert from RACF and download to workstation

� Refresh your memory of the exact label on the CA Certificate. See page 89, where you
verified it earlier.

WP101014 - WSADMIN z/OS V6.1 Primer

Section: Security
Version Date: Wednesday, September 10, 2008

- 94 -
© 2007, IBM Americas Advanced Technical Support
Washington Systems Center, Gaithersburg, MD

� Issue the following RACF command (all on one line):

RACDCERT CERTAUTH EXPORT(LABEL('aaaa.bb'))

DSN('cccc') FORMAT(CERTDER)

where:

� aaaa -- is the CA Cert label, something like WebSphereCA
� bb -- is the Security Domain Identifier, if one was used. Something like FZ.
� cccc -- is the data set into which you want the exported certificate to go

Check with your security administrator prior to exporting the certificate.Note:

� On the workstation, create a directory where you'll store the downloaded certificate and
where you'll create the Trust Store file. For example, C:\wsadmin

� FTP the exported CA certificate data set down to the workstation in binary format. Store it in
the directory you created for this purpose, and give it an extension of der.

Exercise: use IKEYMAN to create new TrustFile and import CA cert

We're making the assumption that your workstation copy of WebSphere is using the
default key and trust store, and that it's okay if we replace them with the trust store
we create here. For a personal workstation that's probably okay. For a server
running WebSphere that may not be a good assumption. Be sure to back up the
properties file we ask you to change.

Important!

IKEYMAN is a tool found in the /profiles/default/bin directory of the WebSphere
configuration structure on the workstation. It provides a way to create the files that store the
certificates, and a way to import certificates into the file.

� From a command prompt or using Windows Explorer, navigate to the
/profiles/default/bin directory of the WebSphere configuration on your workstation.

� Invoke the ikeyman.bat file. You should see a screen that looks like this:

Note this pulldown ...
next step will refer to this

WP101014 - WSADMIN z/OS V6.1 Primer

Section: Security
Version Date: Wednesday, September 10, 2008

- 95 -
© 2007, IBM Americas Advanced Technical Support
Washington Systems Center, Gaithersburg, MD

� Change "Personal Certificates" to Signer Certificates

� Select Key Database File � New

� Do the following:

1

2

3

4

5

6

Notes:

1. Make sure "JKS" is the database type

2. Provide a name for the keystore. For example: fzcellTrustStore.jks, where in
fzcell is the name of the cell up on z/OS. (The first part of the name is not that
important; the jks extension is.)

TrustStore File Name:

3. Specify the location where you want the file created. For example: c:\wsadmin.
(Location not technically important. Directory must exist; tool won't create it.)

TrustStore Location:

4. Click on OK

5. Provide a password for the key file. It must be at least six characters long.

TrustStore password:

6. Click on OK

WP101014 - WSADMIN z/OS V6.1 Primer

Section: Security
Version Date: Wednesday, September 10, 2008

- 96 -
© 2007, IBM Americas Advanced Technical Support
Washington Systems Center, Gaithersburg, MD

� We're now ready to import the downloaded certificate file. Do the following:

1

2

3

4

5

Notes:

1. Click on the "Add..." button

2. Select "Binary DER data"

3. Use the "Browse..." button to navigate to and select the file you downloaded from the
z/OS system and gave an extension of der.

4. The "Location" field should be filled in for you based on the selection of your file

5. Click on the "OK" button.

� Specify the label for the CA Certificate:

1

2

Notes:

1. Go back to page 89 and recall the exact name of your Certificate Authority label,
including spelling and case. Please that value in this field.

2. Click on the "OK" button.

WP101014 - WSADMIN z/OS V6.1 Primer

Section: Security
Version Date: Wednesday, September 10, 2008

- 97 -
© 2007, IBM Americas Advanced Technical Support
Washington Systems Center, Gaithersburg, MD

� Close the tool

� Verify the JKS file is indeed in the directory you indicated it should go.

Exercise: update ssl.client.props file and wsadmin.properties file on workstation

� On the workstation, navigate to the /profiles/default/properties directory in the
WebSphere configuration from which you intend to invoke the WSADMIN client.

� Make backup copies of your existing ssl.client.props and wsadmin.properties files

� Open the original file ssl.client.props for edit.

� Scroll down and find the first instance of #KeyStore information, then do the following:

KeyStore information

com.ibm.ssl.keyStoreName=ClientDefaultKeyStore

com.ibm.ssl.keyStore=C:/wsadmin/fzcellTrustStore.jks

com.ibm.ssl.keyStorePassword=fzcell

#com.ibm.ssl.keyStoreType=PKCS12

com.ibm.ssl.keyStoreProvider=IBMJCE

com.ibm.ssl.keyStoreFileBased=true

TrustStore information

com.ibm.ssl.trustStoreName=ClientDefaultTrustStore

com.ibm.ssl.trustStore=C:/wsadmin/fzcellTrustStore.jks

com.ibm.ssl.trustStorePassword=fzcell

#com.ibm.ssl.trustStoreType=PKCS12

com.ibm.ssl.trustStoreProvider=IBMJCE

com.ibm.ssl.trustStoreFileBased=true

1

2

3

4

5

6

Notes:

1. Change the com.ibm.ssl.keyStore property to point to the JKS file you just created with
IKEYMAN. We asked you to capture the name and location back on page 96. Note the
forward slashes, not backwards slashes Windows would normally use.

2. Change the com.ibm.ssl.keyStorePassword property so it includes the password you
provided for your new JKS file. We asked you to capture the password back on page 96.

It is possible to "encode" the password, which makes it not "in the clear" in this file.
The PropFilePasswordEncoder.bat in the /profiles/default/bin
directory is used to do this. We're not going to show how to use that utility. It's a
little quirky to use. It is invoked with:

PropFilePasswordEncoder aaaaaa bbbbbb

where

� aaaaa is the location and file name of the properties file you want this utility to go
into and encode a password that's initially in the clear

� bbbbb is the password property within the file that you want this utility to go and
encode. For instance, com.ibm.ssl.keyStorePassword.

If you have multiple passwords in a properties file that you wish to encode -- the
example above has two password properties files -- it means running the utility twice,
specifying the same properties file each time, but giving a different property name
each time.

The utility also strips out all comments from the properties file. The resulting file
looks like it's not the same properties file, but it is. The utility makes a BAK copy.
Still, you should make a personal backup copy just to be certain.

Note:

WP101014 - WSADMIN z/OS V6.1 Primer

Section: Security
Version Date: Wednesday, September 10, 2008

- 98 -
© 2007, IBM Americas Advanced Technical Support
Washington Systems Center, Gaithersburg, MD

3. Comment out the com.ibm.ssl.keyStoreType= property. The file you created was not a
PKCS12 file.

4. Change the com.ibm.ssl.trustStore property to point to the JKS file you just created
with IKEYMAN. The same file as for the keyStore. We asked you to capture the name and
location back on page 96. Note the forward slashes, not backwards slashes Windows would
normally use.

5. Change the com.ibm.ssl.trustStorePassword property so it includes the password you
provided for your new JKS file. The same password as for the keyStore. We asked you to
capture the password back on page 96.

6. Comment out the com.ibm.ssl.trustStoreType= property. The file you created was not
a PKCS12 file.

� Save the file.

� Open the original file wsadmin.properties for edit.

� Change the com.ibm.ws.scripting.defaultLang= property so it reads jython, not
jacl.

The default script language is determined by the client, not the server. That's defined in
the wsadmin.properties file. Since the client here is now on the workstation, the
wsadmin.properties file on the workstation is what takes effect.

Note:

� Save the file.

Exercise: invoke workstation WSADMIN client and connect to DMGR on z/OS

� On your workstation, navigate to the /profiles/default/bin directory and issue the following
command (all on one line):

wsadmin -conntype SOAP -host aaaa -port bbbb

-user cccc -password dddd

where:

� aaaa is the host address where the z/OS DMGR can be reached
� bbbb is the SOAP port of the z/OS DMGR
� cccc is the WebSphere Admin ID for the z/OS DMGR
� dddd is the password for WebSphere Admin ID for the z/OS DMGR

� You should see something like this:

WASX7209I: Connected to process "dmgr" on node <node> using SOAP

connector; The type of process is: DeploymentManager

WASX7031I: For help, enter: "print Help.help()"

wsadmin>

Look carefully to make sure you actually established the session. An error might cause
it to drop back to a -conntype NONE mode. The next step is also one way to verify
you are actually connected to the z/OS DMGR.

Note:

� Issue the following command:

print AdminApp.list()

The list of applications you get back should be those deployed on the cell up on z/OS.

WP101014 - WSADMIN z/OS V6.1 Primer

Section: Security
Version Date: Wednesday, September 10, 2008

- 99 -
© 2007, IBM Americas Advanced Technical Support
Washington Systems Center, Gaithersburg, MD

The point of this exercise was to show how the WSADMIN client on the workstation. This
assumed you had WebSphere Application Server on your workstation, and thus the
wsadmin.bat file there. Invoking wsadmin.bat is easy; getting the SSL session established
is what this exercise was all about. To accomplish this, we exported the CA certificate from
z/OS RACF and brought it down to the workstation, then used IKEYMAN to create a new trust
store file with that CA cert. We then updated the ssl.client.props file to point to the new
trust store file. That's what allowed the WSADMIN client on the workstation to accept the
DMGR's server certificate and build the SSL session.

Review

Topic: fine grained security

Fine grained security is a new feature of V6.1 which allows the scope of authority for WSADMIN
actions to be limited based on the userid running WSADMIN. In other words, if you have a user,
"Fred," who you want to be able to install applications into a certain node, but do nothing else in the
cell, you can now do that.

This section borrows heavily from Mike Loos' paper on Techdocs:

http://www.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/TD103324

I encourage you to pull that paper if you want more details on the topic of fine grained security
and WSADMIN.

Note:

Background: evolution of access authority in WebSphere z/OS

Originally, WebSphere had only one level of access authority: if a user was allowed in the front
door, they could have full administrator rights.

Somewhere back in the V5.x days they addressed this by creating four levels of administrative
authority:

� Administrator -- full authority. The Admin ID was by default granted access to this.
� Monitor -- ability to look at the configuration, but not change anything
� Configurator -- ability to modify the configuration, such as install applications and add servers.
� Operator -- ability to start and stop servers, but little else.

In the z/OS world this access authority was controlled through the use of EJBROLE profiles in
SAF. Four EJBROLE profiles with these names were created, and if an ID was granted READ to
the role it had that authority. By default the Admin ID was granted READ to the administrator
role.

Dividing the access authority into four levels was good, but not perfect. Two shortcomings
existed: first, many customers wanted a role that allowed someone to deploy applications, but
nothing else. That role as "deployer" was seen as a needed role. Second, the EJBROLE
profiles were for the entire cell. If someone was given authority to be a configurator for the
cell MYCELL, for example, they would be a configurator for any part of the cell. There was a
desire to limit that authority so a user's access could be limited to some portion of a cell.

In Version 6.1 they've addressed both issues:

� A new EJBROLE has been created called deployer. That limits a user's authority to just
deploying and removing applications.

There's also a new role called adminsecuritymanager, which has the ability to turn
security on or off for a cell, and also is what gives an ID the authority to define all this fine
grained security definitions. The Admin ID has access to this by default.

Note:

� The "fine grained security" function was added, which provided a way to define what part of
a cell a given user could operate in. That user would have the authority of the EJBROLE

WP101014 - WSADMIN z/OS V6.1 Primer

Section: Security
Version Date: Wednesday, September 10, 2008

- 100 -
© 2007, IBM Americas Advanced Technical Support
Washington Systems Center, Gaithersburg, MD

they were given access to, and in addition the extent of their authority could be defined as
some subset of the entire cell.

Be aware that "fine grained security" applies only to WSADMIN access, not console.Note:

When you first set up a V6.1 cell, there is no "fine grained security" in effect ... the Admin ID is
granted access to both administrator and adminsecuritymanager, and there's nothing
defined initially to limit a user's access to some portion of the cell. It's the whole cell initially, just
as before.

Background: how fine grained security works, at a high level

Imagine a cell that looked like this ... a typical two-LPAR cell:

CR SR

AppServer

CR

Node Agnt

CR

Daemon

CR SR

DMGR

SYSA

CR SR

AppServer

CR SR

AppServer

CR

Node Agnt

CR

Daemon

SYSB

CR SR

AppServer

NodeA NodeB

Now imagine further that you have a userid called FRED you will use for WSADMIN, and you
want to limit that ID's authority so it can only do the deployer role, and you want to limit it to
only being able to do deployer role things in NODEA. Accomplishing that with fine grained
security involves the following:

CR SR

AppServer

CR

Node Agnt

CR

Daemon

CR SR

DMGR

SYSA

CR SR

AppServer

CR SR

AppServer

CR

Node Agnt

CR

Daemon

SYSB

CR SR

AppServer

NodeA NodeB

Authorization
Group

1

2

3

"Fred"

WP101014 - WSADMIN z/OS V6.1 Primer

Section: Security
Version Date: Wednesday, September 10, 2008

- 101 -
© 2007, IBM Americas Advanced Technical Support
Washington Systems Center, Gaithersburg, MD

Notes:

Do not execute these commands just yet. There's just a little more to it then we show here.
Try to get a feel for the concept here.

Note:

1. Creating an "Authorization Group" definition using the WSADMIN AdminTask object. For
instance, the command would be:

AdminTask.createAuthorizationGroup('[-authorizationGroupName Dep_NodeA]')

It's really little more than a collection point where the userid and resource can be associated with
one another.

2. A part of the cell is now assigned to the authorization group you just created::

AdminTask.addResourceToAuthorizationGroup('[

-authorizationGroupName Dep_NodeA -resourceName Node=NodeA]')

In this example the node NodeA is assigned to the authorization group.

3. The final piece of the puzzle is to assign FRED to the authorization group, and indicate what "role"
he has:

AdminTask.mapUsersToAdminRole('[

-authorizationGroupName Dep_NodeA -roleName deployer -userids FRED]')

In other words, "Grant FRED access to the authorization group named Dep_NodeA and give him
the deployer role." The scope of his access is limited to only those resources that have been
added to the authorization group. So far only NodeA has been added. So FRED has deployer
authority to NodeA only.

If you had someone else -- ETHEL -- who you wanted to be a deployer for just NodeB, you'd go
through a similar exercise:

� Create a second authorization group ... say Dep_NodeB.
� Assign NodeB to that authorization group
� Map ETHEL to that authorization group with the role deployer.

In essence what you've done is you've tied FRED as deployer to NodeA by using the
authorization group Dep_NodeA as the place where FRED and NodeA are joined. The same
holds for ETHEL, but using a different authorization group.

But that's not quite the whole story. There would also be two additional RACF EJBROLE
profiles, and READ access granted to those profiles:

aa.Dep_NodeA.deployer

aa.Dep_NodeB.deployer

FRED

ETHEL

The authorization group
names you created

And the picture is complete: when FRED tries to do something in WSADMIN, his ID is checked
to see if it's part of an authorization group. If so, then WebSphere checks RACF to make sure
FRED has the proper access to the associated EJBROLE. If it all checks out, he's allowed to
operate within the scope of the resources assigned to the authorization group, and do only those
things permitted by the role he has -- deployer in this example.

WP101014 - WSADMIN z/OS V6.1 Primer

Section: Security
Version Date: Wednesday, September 10, 2008

- 102 -
© 2007, IBM Americas Advanced Technical Support
Washington Systems Center, Gaithersburg, MD

Background: who is allowed to configure and manage the fine grain definitions

Only an ID that has access to the adminsecuritymanager EJBROLE has the authority to
issue the AdminTask commands needed to setup this fine grained security environment. By
default that means the WebSphere Admin ID has that authority because at cell creation that ID
was granted READ to that EJBROLE. Other IDs can be added, but by default the Admin ID has
the authority from the start.

Overview: fine grain security exercises

We're about to launch into a series of exercises on implementing fine grain security. This is a
challenge because the exercises rely on things being in place at your location:

� A WebSphere cell with at least two application servers

� An ID to use that is not the WebSphere Admin ID. This implies you've worked through the
exercises under "Exercise: use a different ID from WebSphere Admin ID" starting on page
85. In these exercises we'll use the ID FRED as an example.

What we'll do is create a single authorization group and assign one of the application servers to
it. Then we'll grant FRED deployer access to it. But we won't grant FRED access to the other
server. We'll test this by having FRED use WSADMIN to install SuperSnoop into one application
server then the other. It'll work for the one FRED has access to; it'll be rejected for the server
FRED does not have access to.

Exercise: create authorization group and assign resource and ID to it

To create the definitions within WebSphere to enable fine grained security for the
hypothetical ID FRED.

Objective

� Using the WebSphere Admin ID start a WSADMIN session by connecting to the
Deployment Manager.

Using the WAS Admin ID is critically important. That ID is by default granted access
to the adminsecuritymanager EJBROLE. Access to that is required to issue the
AdminTask commands that establish the fine grained security environment.

Note:

� At the WSADMIN command prompt, issue the following command:

print AdminTask.listAuthorizationGroups()

You should see nothing in return ... you have no authorization groups yet.

� Create a file called fg1.jy and include the following:

This file supplied in the ZIP that accompanies the Techdoc.Note:

WP101014 - WSADMIN z/OS V6.1 Primer

Section: Security
Version Date: Wednesday, September 10, 2008

- 103 -
© 2007, IBM Americas Advanced Technical Support
Washington Systems Center, Gaithersburg, MD

--

Set basic variables

resource_type = 'Server' 'Node' 'Cluster' 'Cell' 'Application'

role_name = 'administrator' 'configurator' 'operator'

'monitor' or 'deployer'

!! case matters -- type carefully !!

--

group_name = 'aaaa'

resource_type = 'bbbb'

resource_name = 'cccc'

role_name = 'dddd'

userid = 'eeee'

--

Construct commands and invoke

--

AdminTask.createAuthorizationGroup\

 ('[-authorizationGroupName ' + group_name + ']')

print 'Created authorization group'

AdminTask.addResourceToAuthorizationGroup\

 ('[-authorizationGroupName ' + group_name +\

 ' -resourceName ' + resource_type + '=' + resource_name + ']')

print 'Add resource to group'

AdminTask.mapUsersToAdminRole\

 ('[-authorizationGroupName ' + group_name +\

 ' -roleName ' + role_name +\

 ' -userids ' + userid + ']')

print 'Mapped user to group'

AdminConfig.save()

print 'Saved configuration changes'

--

Perform a 'refreshAll'

--

dmgr_id = AdminControl.queryNames\

 ('WebSphere:type=AuthorizationGroupManager,process=dmgr,*')

AdminControl.invoke(dmgr_id,'refreshAll')

print 'Performed refreshAll'

1

2

3

4

5

6

Notes:

1. Variables set:

� aaaa -- is the authorization group name you wish to create. For instance, in our
example we used TestGroup.

� bbbb -- the resource type. Options shown in the comments at the top of the
script. There may be others, but those are the most common ones. We set this
to Server for our example.

� cccc -- the resource name. This is related to the resource type you just set.
This would be the long name of the resource. For instance, we set the type as
Server. We set the name as fzsr01c.

� dddd -- the role name. Options shown in the comments at the top. For our
example we set this to deployer.

� eeee -- the userid we're granting access to. In our example, FRED.

2. The authorization group is created

3. The resource is added to the authorization group

4. The user is mapped to the authorization group

5. The configuration changes are saved

6. We perform a refreshAll, which is like tapping the DMGR on the shoulder and telling
it, "You have changes, be aware of them." Apparently this requires more than just a
configuration save.

WP101014 - WSADMIN z/OS V6.1 Primer

Section: Security
Version Date: Wednesday, September 10, 2008

- 104 -
© 2007, IBM Americas Advanced Technical Support
Washington Systems Center, Gaithersburg, MD

� Save the file and FTP it to your system. Make sure the permissions allow WSADMIN to
read the file. Then issue the command:

execfile('/aaaa/fg1.jy')

Where aaaa is the location of your script file. If things work out well, you should see:

Created authorization group
Add resource to group
Mapped user to group
Saved configuration changes
Performed refreshAll
wsadmin>

� At the WSADMIN command prompt, issue the following command again:

print AdminTask.listAuthorizationGroups()

It should report back with the single authorization group you've created.

With one script you've created an authorization group, assigned a resource to it and
then assigned a userid as well. We're almost ready to test this. But first, some RACF
work needs to be done.

Review

Exercise: create RACF EJBROLE

To see how the underlying RACF profiles are built that support of the fine grain
security structure.

Objective

Review these proposed changes with your security administrator.Note:

� Go back to page 92 and note the security domain identifier for your cell, if in fact one
was used.

� Issue the following RACF command:

RDEFINE EJBROLE aa.bbbbbb.cccccccc UACC(NONE)

where:
� aa -- is the "security domain identifier" for your cell. If your cell has no security domain

identifier, omit this, including the dot that follows. Case matters.
� bbbbb -- is the authorization group name you created in the script you just ran. For

example, we suggested our example was TestGroup. Case matters.
� ccccccccc -- is the role you granted the ID in the script you just ran. For example, we

suggested our example was deployer. Case matters.

For example: RDEFINE EJBROLE FZ.TestGroup.deployer UACC(NONE)

� Now issue the following RACF command:

PERMIT aa.bbbbbb.cccccccc CLASS(EJBROLE) ID(dddddd) ACCESS(READ)

where:
� aa, bbbbbb and cccccccc are the exact same values you used for the RDEFINE

command.
� dddddd is the userid. FRED was the example we were using.

For example:

PERMIT FZ.TestGroup.deployer CLASS(EJBROLE) ID(FRED) ACCESS(READ)

� Finally, issue the following:

SETROPTS RACLIST(EJBROLE) REFRESH

WP101014 - WSADMIN z/OS V6.1 Primer

Section: Security
Version Date: Wednesday, September 10, 2008

- 105 -
© 2007, IBM Americas Advanced Technical Support
Washington Systems Center, Gaithersburg, MD

You've created the RACF underpinnings to the authorization group definitions you
created with the fg1.jy script.

Review

Exercise: test fine grained security

To show that fine grain security is working. We'll do this in a very simple way: we'll
try to install SuperSnoop into the server our ID does not have authority for. We
granted FRED authority to deploy into fzsr01c. We'll try to install into fzsr02c.

Objective

You may want to shut down your entire WebSphere environment and restart it. It's not
necessarily required, but WebSphere does various caching of RACF stuff and some of
what you've done may or may not be in the cache. If you recycle your environment
(which we hope is a test environment and not your production environment), you'll be
fairly certain of a nice, clean test.

Note:

� Start a WSADMIN command prompt session using -conntype SOAP or RMI and pass
in the parameters -user and -password for the ID you're working with for this fine
grain security exercise. (It is FRED for us.)

� First, install SuperSnoop into the server you believe the ID does have authority. This will
validate the syntax of the installation command. Issue the command:

AdminApp.install('/aaaa/SuperSnoopProj.ear','[-node bbbb -server cccc]')

where:

� aaaa -- is the location where you have the SuperSnoopProj.ear file stored.
� bbbb -- is the long name of the node
� cccc -- is the long name of the server the ID does have authority to deploy into

You should see something like this:

ADMA5013I: Application SuperSnoop installed successfully.

You've verified that your new ID has at least deployer for the one server it should.Note:

� Now uninstall SuperSnoop:

AdminApp.uninstall('SuperSnoop')

� And tidy things up:

AdminConfig.save()

� Next, install SuperSnoop into the server you believe the ID does not have authority. This
will validate fine grain security. Issue the command:

AdminApp.install('/aaaa/SuperSnoopProj.ear','[-node bbbb -server cccc]')

where:

� aaaa -- is the location where you have the SuperSnoopProj.ear file stored.
� bbbb -- is the long name of the node
� cccc -- is the long name of the server the ID does not have authority to deploy into

You should see something like this:

ADMA0187E: Authorization failure. The user does not have permission
to install application cells/fzcell/nodes/fznodec/servers/fzsr02c.
The user must have deployer role or configurator role for the cell or
for the targets to install/redeploy the application.

Fine grained security worked. In our case, FRED could not install into server
fzsr02c, which is what we expected.

Note:

WP101014 - WSADMIN z/OS V6.1 Primer

Section: Security
Version Date: Wednesday, September 10, 2008

- 106 -
© 2007, IBM Americas Advanced Technical Support
Washington Systems Center, Gaithersburg, MD

Fine grain security only applies to the WSADMIN environment; not to the Admin
Console environment. It involves creating authorization groups using WSADMIN,
assigning a resource (or resources) to that group, then mapping users to the group.
This establishes the relationship that defines who is allowed to access what resources
and what authority they have.

It's an involved process. If you're comfortable having all your WSADMIN work done
under the authority of your Admin ID (which has administrator), then continue with that.
But if you have people you wish to restrict in their scope and authority, then fine
grained security provides it.

Again, for another treatment of this topic, see:

http://www.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/TD103324

Review

Lesson wrap-up and summary

In this lesson we've explored three aspects of security and WSADMIN

� Using an ID other than the WebSphere Admin ID

� Invoking WSADMIN from a distributed platform and connecting the DMGR on z/OS

� Implementing "fine grained security" to restrict a user to a subset of the entire cell

Security is a very complex topic. Always consult with your security administrator before making
security changes to your environment.

Suggestions For Improvement?

If you believe there is some aspect of WSADMIN not represented in this document, please send an
e-mail to:

dbagwell@us.ibm.com

and I'll consider it for update. I'm particularly interested in things related to application installation that
you believe will benefit others. The goal of this document is to introduce the reader to key concepts and
essential things, so let's not go too far from that objective. (In other words, let's not go too deep into
esoteric installation things.)

A near-term objective is to augment this document at some point with an appendix that contains a
library of useful Jython code examples. We've already provided a few in this document -- node
synchronization, application installation, cluster creation, port remapping. Mike Loos' white paper on
Jython scripting (WP100963) has other interesting stuff, such as changing a servant region's JVM heap
sizes. Suggestions as to what sorts of things might be good to show in such an appendix is
appreciated.

WP101014 - WSADMIN z/OS V6.1 Primer

Section: Security
Version Date: Wednesday, September 10, 2008

- 107 -
© 2007, IBM Americas Advanced Technical Support
Washington Systems Center, Gaithersburg, MD

Document Change History

Check the date in the footer of the document for the version of the document.

Added a section on "Further Exploration of the AdminTask Object." This was in
response to the discovery that some AdminTask commands were not in the InfoCenter
and it was requested they be documented here. A document APAR is now opened and
the InfoCenter will be updated. But adding the information here also gave us the
opportunity to show how a listing of the "command groups" is possible.

September 10, 2008

Added the number WP101014 to the document. Also added a URL reference to a tool
that will assist in converting JACL scripts to Jython.

May 08, 2007

Original document.May 07, 2007

Document Change History

End of Document WP101014

WP101014 - WSADMIN z/OS V6.1 Primer

Section: Document Change History
Version Date: Wednesday, September 10, 2008

- 108 -
© 2007, IBM Americas Advanced Technical Support
Washington Systems Center, Gaithersburg, MD

