
Server Selection in Large-scale Video-on-Demand 
Systems* 

NIKLAS CARLSSON and DEREK L. EAGER 

University of Saskatchewan, Canada 
 
________________________________________________________________________ 
 
Video-on-demand, particularly with user-generated content, is emerging as one of the most bandwidth-intensive 
applications on the Internet.  Owing to content control and other issues, some video-on-demand systems attempt 
to prevent downloading and peer-to-peer content delivery.  Instead, such systems rely on server replication, 
such as via third-party Content Distribution Networks, to support video streaming (or pseudo-streaming) to their 
clients.  A major issue with such systems is the cost of the required server resources. 
By synchronizing the video streams for clients that make closely-spaced requests for the same video, from the 
same server, server costs (such as for retrieval of the video data from disk) can be amortized over multiple 
requests.  A fundamental tradeoff then arises, however, with respect to server selection.  Network delivery cost 
is minimized by selecting the nearest server, while server cost is minimized by directing closely-spaced 
requests for the same video to a common server. 
This paper compares classes of server selection policies within the context of a simple system model.  We 
conclude that (i) server selection using dynamic system state information (rather than only proximities and 
average loads) can yield large improvements in performance, (ii) deferring server selection for a request as late 
as possible (i.e., until just before streaming is to begin) can yield additional large improvements, and (iii) within 
the class of policies using dynamic state information and deferred selection, policies using only “local” (rather 
than global) request information are able to achieve most of the potential performance gains. 
 
Categories and Subject Descriptors: C.4 [Computer Systems Organization]: Performance of Systems 

General Terms: Performance Analysis, Modeling 

Additional Key Words and Phrases: Video-on-demand, content distribution networks, server selection 
________________________________________________________________________ 
 
 

1. INTRODUCTION  

Popular video sharing systems, such as YouTube, are faced with enormous scalability 

problems.  For example, in June 2006 it was estimated that YouTube served over 100 

million video requests per day and stored over five million videos, with an additional 

65,000 videos being uploaded to the YouTube site each day [Gee 2006; USA Today 

2006]1.  YouTube currently employs server replication, including use of one or more 

Content Distribution Networks (CDNs), to handle this heavy load.  So as to maintain 

                                                           
* This work was supported by the Natural Sciences and Engineering Research Council of Canada. 
Authors' address: Department of Computer Science, University of Saskatchewan, Saskatoon, SK S7N 5C9, 
Canada, email: {carlsson, eager}@cs.usask.ca. 
Permission to make digital/hard copy of part of this work for personal or classroom use is granted without fee 
provided that the copies are not made or distributed for profit or commercial advantage, the copyright notice, 
the title of the publication, and its date of appear, and notice is given that copying is by permission of the ACM, 
Inc. To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific 
permission and/or a fee. 
© ACM, (2008). This is the author's version of the work. It is posted here by permission of ACM for your 
personal use. Not for redistribution. The definitive version will appear in ACM Transactions on Multimedia 

Computing, Communications, and Applications. 
1 A complete wild-card (*) search carried out in March 2008 found that approximately 78 million files were 
available at the site www.youtube.com. 



control of its content, YouTube aims to disallow downloading of videos, requiring users 

that wish to view the same video again to request it anew from a YouTube server. 

It is not clear as to what extent such an approach to large-scale video-on-demand can 

economically scale up with increasing popularity, quality, and/or duration of the videos 

being streamed.  YouTube, for example, imposes a 100 MB limit on video file size.  This 

is two orders of magnitude smaller than what would be required for a high-quality, full-

length movie. 

Server costs can be reduced by synchronizing the video streams for clients that make 

closely-spaced requests for the same video, from the same server, so that the server is 

delivering data from the same position in the video file at each point in time to each of 

the clients that have been so “batched” together [Aggarwal et al. 1996; Dan et al. 1994; 

Dykeman et al. 1986; Wong 1988].  This allows the cost of retrieving video data from 

disk, and other associated costs, to be amortized over multiple requests.  In particular, 

each block of video data needs to be fetched from disk only once to serve all of the 

clients in the batch.   In this paper, use of unicast network delivery is assumed, but if 

multicast (IP or application-level) was available and employed this approach could 

reduce network as well as server cost. 

Batching of client requests so as to reduce server costs complicates the task of 

deciding where to forward each client request.  Network delivery cost is minimized by 

selecting the nearest server, while server cost is minimized by directing closely-spaced 

requests for the same video to a common server (regardless of the diversity of locations of 

the requesting clients).  Intermediate policies might serve some requests at the closest 

server, and others at a common server along with other requests for the same video, 

depending on the current states of the servers and the currently pending requests. 

Prior work on the server selection problem in content delivery systems has assumed 

individual rather than batched service [Carter and Crovella 1997; Jamin et al. 2000 and 

2001; Johnson et al. 2006; Qui et al. 2001; Ratnasamy et al. 2002; Zegura et al. 2000], or 

has considered some form of batched service, but with multicast delivery [Almeida et al. 

2004; Fei et al. 2001; Guo et al. 2002].  Among these latter studies, Fei et al. [2001] 

consider systems in which a long-lived video stream is being multicast concurrently by 

replicated servers and the objective is to direct clients to servers so as to minimize the 

total network bandwidth usage.  They show that the server selection problem in this 

scenario is NP-complete, and compare a number of heuristic policies.  Guo et al. [2002] 

design and evaluate server selection techniques for replicated video-on-demand servers, 

each with a fixed number of channels.  Several heuristic techniques are proposed and 



shown to outperform a basic policy that always directs requests to the closest server.  

Unlike Fei et al. [2001] and Guo et al. [2002] (but similarly to the work in this paper), 

Almeida et al. [2004] assume that each server devotes varying resources, on-demand, to 

the service of interest, rather than statically allocating fixed resources.  They consider the 

problem of server placement and selection/routing with a weighted sum of network and 

server bandwidth usage as the objective function to be minimized, and show that, in the 

assumed context, use of multicast-based delivery techniques can result in optimal 

solutions that are very different from those for systems using non-batched, unicast 

delivery. 

Rather than proposing a specific server selection policy for the class of video-on-

demand systems of interest in this paper, we attempt only to determine the type of server 

selection policy likely to be the most suitable, recognizing that in practice the 

implemented policies are likely to have many details tailored to the specific system under 

consideration.  We compare different classes of policies in the context of a simple, very 

abstract system model that allows us to accurately delimit the performance that may be 

achievable with policies from each class. 

The policy classes considered range from those with simple policies, using very 

limited state information, to classes with more complex policies, requiring much more 

state information.  While it is obvious that policies with more state information should be 

able to outperform policies with less state information (at least, when neglecting the 

overhead of collecting such information), the magnitudes of the performance differences 

are not obvious a priori.  It is important to determine these magnitudes so that, in general, 

design and implementation efforts can be focused on the simplest policy classes that are 

able to yield most of the potential performance improvements. 

The first and most basic distinction that we consider is between server selection 

policies that use dynamic state information (for example, numbers of pending requests), 

and (simpler) policies that use only static (or semi-static) client-server proximity and 

average request rate information.  Our results indicate that use of dynamic state 

information has the potential to yield large reductions in client start-up delay, for fixed 

total delivery cost, in many cases by a factor of two or more. 

Among policies using dynamic state information, a second distinction can be made 

between policies that defer server selection decisions until just before streaming is to 

begin, and those (simpler) policies that make a server selection decision immediately 

upon request arrival.  We find that deferred selection can potentially yield substantial 



performance improvements, again by a factor of two or more in some cases, although 

only for fairly narrow ranges of model parameter values. 

Finally, among policies using dynamic state information and deferred selection, a 

third distinction is between “local state” policies that base their server selection and 

scheduling decisions on the currently outstanding “local” client requests, and “global 

state” policies that use information concerning all current requests. We find that 

relatively simple local state policies appear able to achieve most of the potential 

performance gains. 

The remainder of the paper is organized as follows.  Our system model is described in 

Section 2.  Section 3 addresses the question of whether use of dynamic state information 

can yield major performance improvements.  Section 4 considers the extent to which 

performance can potentially be improved in dynamic policies by deferring server 

selection decisions, rather than making such decisions immediately upon request arrival.   

Section 5 focuses on the class of policies using dynamic state information and deferred 

selection, and considers the extent to which polices using only “local” state information 

can realize the full potential of this policy class.  Supporting evidence for our 

conclusions, obtained using more detailed network topology models, is presented in 

Section 6.  Conclusions are presented in Section 7. 

 

2. SYSTEM MODEL 

We consider a video-on-demand system with N servers.  Clients are divided according to 

network location into M groups, such that all of the clients in a group can be considered 

to have approximately the same network proximity to each server.  For simplicity, in the 

following we assume that M = N.  Given this assumption, the client groups and servers 

are indexed such that for the clients of group i, the nearest server is server i.  Server i is 

called the “local” server for client group i, while all other servers are called “remote” 

servers for this group. 

Each of the N servers is assumed to use a batching technique wherein the video 

streams for clients that make closely-spaced requests for the same video are 

synchronized, so that the server is delivering data from the same position in the video file 

at each point in time to each of the clients in the batch.  This synchronization is achieved 

by delaying service to some clients.  A client cannot join a batch for which streaming of 

the video to the respective clients has already begun. 

We assume that each server devotes varying resources, on-demand, to video file 

delivery, rather than statically allocating fixed resources.  This allows us to consider only 



the requests for a single representative video, and to focus on the tradeoff between 

choosing the nearest server versus choosing a common server at which multiple requests 

for that video may be served concurrently, rather than additional load balancing issues.  

Requests for the representative video from the clients of each group i are assumed to be 

Poisson at rate λi, with the servers/groups indexed from 1 to N in non-increasing order of 

the group request rates.  Poisson arrivals have been observed in some measurement 

studies of video-on-demand systems (e.g., [Almeida et al. 2001]).  The performance of 

batching and related delivery techniques improves with more bursty arrival processes 

(e.g., [Eager et al. 2000]).  Therefore, performance models assuming Poisson arrivals will 

typically be conservative for burstier workloads. 

It is assumed that client requests are for the entire video, and that once delivery to a 

batch of clients has commenced, each stream is continued (with synchronization 

maintained) until the respective client has received the entire video.  Methods for 

handling situations where batches are broken apart (owing to client use of skip-ahead or 

fast-forward operations, for example), have been studied in prior work on batching [e.g., 

Dan et al. 1994 and 1995]; we do not expect that consideration of such complexities 

would fundamentally change our conclusions regarding the server selection problem.  It 

should also be noted that previous work has found VCR functionality to be used 

relatively infrequently by on-demand users in some contexts [Costa et al. 2004; Johnsen 

et al. 2007].  For example, Costa et al. [2004] observed that 89% of video clips, and 95-

98% of audio streams delivered by two of Latin America’s service and content providers 

did not require VCR operations at the server.  Similarly, Johnsen et al. [2007] found that 

99% of the news-on-demand sessions at Norway’s largest newspaper did not result in any 

VCR operations. 

The performance metrics that we consider are the maximum client start-up delay, 

denoted by D, and the total delivery cost per request, denoted by C.  The client start-up 

delay (or waiting time) is defined as the time from request generation until streaming 

begins.  We consider batching policies that impose a bounded client start-up delay, 

yielding the metric D.  The total delivery cost per request is given by the sum of the 

average server cost per request and the average network cost per request. 

The server cost of streaming the representative video to a batch of clients is modeled 

as consisting of two components.  One of these components includes costs such for 

retrieving the video data from disk, and is independent of the number of clients in the 

batch.  This component is denoted by L in the following.  The other component is 

assumed to be a per-client cost, and therefore scales linearly with the number of clients in 



the batch.  Since this second component is a function only of the request arrival rates, and 

is therefore the same for all of the server selection and batching strategies considered 

here, it is neglected in the following. 

The network cost of streaming the representative video to a group i client from a 

server j is given by cijL, where the constant cij expresses this cost relative to the per-batch 

server cost.  Use of batching does not reduce the network costs, since we assume unicast 

delivery.  For simplicity, in the following it is assumed, unless stated otherwise, that cii = 

0, and cij = c for some c such that 0 < c ≤ 1, for all ji ≠ .  With the server cost of serving 

a single batch equal to L, this condition is satisfied whenever the network cost of 

retrieving video data from a remote server is less than the server cost of streaming the 

video.  As evidenced in part by the growing interest in cloud/utility computing, for 

example, recent trends (such as the increasing importance of power expenditure - which 

could be expected to be much smaller for delivery over the current optical-fiber based 

wide-area networks, than for streaming video from disk at a server), suggest that this is a 

case of practical importance.  (Note that for c ≥ 1, it is always optimal to select the local 

server, while for c → 0 it is always optimal to select a common server.) 

Using the notation in Table I, the above definitions and assumptions yield 

λ/λλ/β
11

cLrLC
N

i
ii

N

i
i 





+





= ∑∑
==

, (1) 

where the first term gives the average server cost per request, and the second term gives 

the average network cost per request.  The average server cost is equal to the total rate at 

which batches are served in the entire system (i.e., ∑ =

N

i i1β ), times the server cost L 

associated with serving each batch, and divided by the total request rate λ.  Note that the 

rate βi that batches are served by a server i decreases the more requests are included in 

each batch.  Similarly, the average network cost is equal to the rate at which requests are 

served remotely (i.e., ∑ =

N

i iir1λ ), times the network cost cL associated with each such 

request, divided by the total request rate λ.  Here, ri is the fraction of requests from client 

group i that are served by a server other than server i. 

In Section 6, this model is generalized to cases in which the number of servers N may 

be less than the number of client groups M, and for general cij, resulting in the second 

term in equation (1) becoming ∑ ∑= =

M

i ij
N

j iji Lcr1 1λ)/(λ , where rij denotes the average 

fraction of requests from group i clients that are served by server j.  The first term in 

equation (1) remains the same. 



Note that there is a tradeoff between the maximum client start-up delay and the 

delivery cost.  This tradeoff arises from the fact that delivery cost is reduced with larger 

batch sizes, and that larger batches can be achieved by making clients wait longer for 

arrivals of other requests that can be served at the same time.  In particular, assuming a 

fixed request load, the rate at which batches need be served monotonically decreases with 

the maximum client delay.  Referring to equation (1), we note, for example, that if every 

request is served without delay at the local server, then C=1.  In this case βi = λi.  In 

contrast, with a maximum start-up delay D→∞, C→0 can be achieved by subjecting 

clients to arbitrarily long delays so as to create arbitrarily large batches of local requests 

at each server. 

In light of this tradeoff, policy comparisons can be carried out either by comparing 

maximum client start-up delays, for a fixed total delivery cost, or comparing total 

delivery costs, for a fixed maximum client start-up delay.  

Although we assume unicast delivery, and our network cost model is not able to 

capture the network cost reductions possible with multicast, our work may still be 

applicable for some multicast environments.  This is since the network cost reductions 

with multicast may be relatively small compared to the other cost components, owing to 

the relatively large number of non-shared links in a typical multicast delivery tree 

[Chuang and Sirbu 2001; Phillips et al. 1999; Fahmy and Kwon 2007]. 

3. DYNAMIC VS. STATIC POLICIES 

This section compares server selection policies that use dynamic state information (for 

example, numbers of pending requests), and (simpler) static policies that use only client-

server proximity and average request rate information in making server selection 

decisions.  In a static policy either all requests from a given client group are served by the 

same server (in general, dependent on the group), or server selection is probabilistic.  In 

Table I.  Notation 

Symbol Definition 

N Number of servers (assumed equal to the number of client groups) 
λi Video request rate from the clients of group i; groups indexed so that λi ≥ λj for i ≤ j  
λ Total request rate, summed over all client groups 
L Server cost for streaming the video to a batch of clients 
βi Rate at which batches of clients are served by server i 
c Network cost of streaming the video from server j to a group i client, i ≠ j, relative to the 

per-batch server cost 
ri Average fraction of requests from group i clients that are served by a server other than 

server i 
C Total delivery cost per request 
D Maximum client start-up delay (waiting time) 

 



either case, with Poisson requests from each client group, request arrivals at each server 

will also be Poisson.  Section 3.1 reviews prior analysis results for a single server with 

Poisson request arrivals.  In Section 3.2, these results are applied to determine a tight 

bound on the achievable performance with static policies.  Section 3.3 accurately delimits 

the achievable performance with dynamic policies.   Performance comparisons are 

presented in Section 3.4. 

3.1. Analysis for Single Server Systems 

For a fixed maximum client start-up delay (waiting time) D, the average server cost per 

request is minimized by a policy in which the server starts streaming to a batch of waiting 

clients whenever the waiting time of the client that has been waiting the longest reaches 

D.  Since the average time duration from the beginning of service of one batch until the 

beginning of service of the next is D + 1/λ with this policy, the average server cost per 

request is given by the following expression [Carlsson et al. 2006; Tan et al. 2002]: 

λ/
λ/1




+D

L
. (2) 

3.2. Delimiting the Achievable Performance with Static Policies 

Note that in expression (2), the average server cost per request is a monotonically 

decreasing, convex function of the request arrival rate at the server.  Thus, in a static 

policy, if all requests that are served by a remote server are served by the server with the 

highest rate of requests from its local client group (i.e., server 1), the average server cost 

per request will be minimized.  This fact is illustrated in Figure 1, which shows the rate at 

which batches of clients are served for two servers i and j, with original loads λi and λj, 

both before and after their request load is inflated by the requests from a client group k 

Fig. 1.  Server load example. 

 

0

20

40

60

80

100

0 2 4 6 8 10

Client Request Rate

R
a
te

 a
t 

w
h

ic
h

 B
a
tc

h
e
s
 o

f 
C

li
e
n

ts
 

a
re

 S
e
rv

e
d

Limit: 1/D 

λj λj+λk λi λi+λk 

  ∆β 

∆β 
    1 
1/λ+D 



with request rate λk.  Clearly, the rate at which batches are served (and thus the rate at 

which server cost is incurred) increases less at server i, with the higher original load. 

Furthermore, since we assume that cij = c for all ji ≠ , serving such requests at server 

1 incurs no greater network cost than serving them at any other remote server(s).  Finally, 

the convexity of expression (2), and our assumptions regarding network costs, imply that 

in an optimal static policy either all requests from a client group are served by a remote 

server (namely, server 1), or none are, and the former case can hold only if all requests 

from client groups with equal or lower request rate are also served remotely.  Thus, in an 

optimal static policy there is an index k (1 ≤ k ≤ N), such that all requests from group i 

clients, for i ≤ k, are served by the local server, while all requests from group j clients, for 

j > k, are served by server 1.  Note that for homogenous systems in which the client 

groups have identical request rates, in the optimal static policy either all requests are 

served by the local server, or all requests are served at a common server.  

Given the form of the optimal static policy as described above, from equation (1) and 

expression (2) a tight lower bound on the total delivery cost per request that is achievable 

with a static policy, for fixed D, is given by 

( ) 













+





+
+





++
∑∑∑ +==+=

=
λ/λλ/

λ/1
λ/

λλ/1
min

1211
,,2,1

N

ki
i

k

i i
N

ki i
Nk

Lc
D

L

D

L

L

. (3) 

Here, the first two terms (within the outer brackets) give the average server cost per 

request, and the third term gives the average network cost per request (as incurred owing 

to the requests from clients local to servers k+1 through N, which receive service 

remotely from server 1). 

3.3. Delimiting the Achievable Performance with Dynamic Policies 

Dynamic server selection policies use information about the current system state.  To 

delimit the performance of such policies, we are interested in the best possible 

performance by policies with global state knowledge.  Determining an optimal online 

dynamic policy (using a Markov Decision Process, for example) appears to be a difficult 

and perhaps intractable problem.  For example, suppose that there is a waiting request 

from some client group i, when there is a remote server j about to begin streaming to 

some batch of local clients.  The optimal choice between joining this batch and being 

served by the remote server, versus continuing to wait for a stream to be initiated at the 

local server, in general depends not only on the network cost c but also on the complete 

system state and on the statistics of the request arrival process.  We are, however, able to 

accurately delimit the achievable performance with dynamic policies through a 



combination of results for optimal offline performance, with a given number of servers 

and client groups, and results for optimal offline performance in a limiting case as the 

number of servers and client groups grows without bound. 

Consider first the problem of determining optimal offline performance with a given 

number of servers and client groups.  An algorithm is developed that takes as input a 

request sequence (indicating both the arrival time and the client group of each request) 

and a maximum client start-up delay D, and finds the minimum total delivery cost for 

serving all of the requests in the sequence.  This algorithm is based on the following 

observation.  Define the deadline of a request as the time at which the request waiting 

time would equal the maximum client delay.  Then, at any request deadline t, the 

minimum network cost incurred by the corresponding request is determined solely by the 

service initiations that occur within the interval [t–D, t], i.e., from the request arrival time 

to its deadline.   In particular, the minimum network cost is zero if and only if the local 

server starts service to a batch of clients during this interval, and otherwise is c. 

The above observation enables the following algorithm structure. First, a window of 

duration D is advanced through the given request sequence, with the right endpoint of the 

window moving at each advance to the next request deadline.  Second, each potential 

choice of batch service initiations within the current window defines a “state”.  When the 

window advances, the set of states changes, as earlier batch service initiations may now 

be outside of the window and some new batch service initiations may be added.  Each 

state has an associated minimum total delivery cost (that expresses the minimum cost to 

have reached that state, given the arrival sequence).  Third, the cost of a new state (as 

created when the window advances) is calculated as the minimum of the costs of the 

alternative prior states (before the advance of the window) that result in this new state, 

plus the “transition” cost to get from the prior state to the new state.  The transition cost 

between these two states consists of (i) the network cost associated with the request 

whose deadline defines the right endpoint of the new window (according to whether or 

not the local server begins service to a batch in the new state), and (ii) the server cost for 

any new batch service initiations (associated with the new state).  Finally, when the 

window advances to include the deadline of the last request in the request sequence, the 

minimum total delivery cost for the input request sequence and maximum client start-up 

delay is given by the minimum over all current states of the associated total delivery cost. 

The feasibility of this approach depends on being able to tightly constrain the 

potential choices of batch service initiation times and locations, and thus the number of 

states associated with the current window, in a manner that still allows discovery of the 



minimum total delivery cost.   Assuming Poisson arrivals, or any other arrival process for 

which no two events (request arrivals or deadlines) occur simultaneously, the constraints 

that we employ are as follows2:  

1. A server may begin service to a batch of clients at a time t, only if time t is a 
request deadline.   

2. Server i may begin service to a batch of clients at the deadline t of a client group 
i request, only if server i did not begin service to a batch of clients during the 
interval (t–D, t).   

3. Server i may begin service to a batch of clients at the deadline t of a client group 
j request, for i ≠ j, only if there is no server k (k may equal i or j) that began 
service to a batch of clients during the interval (t–D, t).     

4. Server i may begin service to a batch of clients at the deadline t of a client group 
j request, for i ≠ j, only if there have been at least two arrivals of client group i 
requests in the interval (t–D, t) (and that thus could belong to the served batch).   

5. Some server must begin service to a batch of clients at a request deadline t, if 
there have been no batch service initiations in the interval (t–D, t).   

6. A server may not begin service to a batch of clients at a request deadline t, if: (a) 
some server i previously began service to a batch of clients at the deadline t′ of a 
client group i request, with t–D < t′ < t; (b) at most 1/c arrivals of group i 
requests occurred in the interval [t′–D, t′); and (c) the batch service initiation 
prior to the one at time t′ occurred at a time t′′ with t–D < t′′ <  t′ < t.     

7. A server may not begin service to a batch of clients at a time t, if: (a) some 
server i previously began service to a batch of clients at the deadline t′ of a client 
group i request, with t–D < t′ < t; (b) the most recent deadline of a group i 
request previous to time t′ occurred at a time t′′ with t–D < t′′ < t′ < t; (c) at most 
one arrival of a group i request occurred in the interval (t′′, t′); and (d) no batch 
service initiation occurred at time t′′, but this was not prevented by the 
constraints (and thus, there is a state in which server i begins service to a batch 
of clients at time t′′ rather than at t′).     

Constraints (1)-(4) specify when a server may serve a batch of requests, and constraint 

(5) specifies when some server must begin service.  In the following we motivate why 

each of these constraints is valid.  First, any service initiation not satisfying constraint (1) 

could be postponed, with no greater delivery cost.  With respect to a schedule in which 

constraint (2) is violated, the request with deadline t could have been served with the 

earlier batch, and the new batch service initiation postponed, with no greater (and 

possibly reduced) total delivery cost.  Similarly, when constraint (3) is violated, the 

request with deadline t could have been served earlier by server k, and the batch service 

initiation at server i postponed, with no greater cost.   Constraints (1)-(3) imply that each 

server may begin service to a batch of clients at most once during any time period of 

duration D, and servers may begin service only at request deadlines.  Note that there is 

never a benefit to initiating streams at the same server more frequently.  When constraint 

                                                           
2 This list is followed by explanations of each of the constraints. 



(4) is violated, the batch could have been served by server j instead, with no greater total 

delivery cost.  Finally, constraint (5) ensures that the start-up delay of a client does not 

exceed D. 

Constraint (6) essentially says that the decision to begin service to a batch of clients at 

time t′ could be necessary in an optimal schedule (and thus the partial schedule including 

this batch service initiation possibly fruitful to pursue further), only if there is no batch 

service initiation at time t.  To see this, note that in comparison to a schedule with batch 

service initiations at times t′′, t′, and t, the cost would be no greater if the batch service 

initiation at time t′ had not occurred, and each of the requests that belonged to the batch 

served at time t′ were served instead with either the batch at time t′′ or a batch at time t, 

which is possible owing to the time separation of at most D between time t′′ and time t.  

This constraint is illustrated in Figure 2(a). 

Constraint (7) essentially says that beginning service to a batch of clients at server i at 

time t′ and not at time t′′ could be necessary in an optimal schedule only if there is no 

batch service initiation at time t.  To see this, note that in comparison to a schedule with 

 (b) Batch service initiations and deadlines distinguishing between the states involved in constraint (7).  
Again, state A cannot yield a lower cost than state B, but state C requires further exploration.   

 
Fig. 2.  Illustration of constraints (6) and (7) used by the offline algorithm.  Circles represent batch service 
initiations by server i; squares and diamonds represent batch service initiations by other servers.  Arrows 
are used to indicate with which batch each client i request is served.  The tail of each arrow indicates the 

time (or time interval) at which the request(s) arrived.  Any additional batch service initiations prior to time 
t that are not shown in the figures are identical for the compared states.  

(a) Batch service initiations and deadlines distinguishing between the states involved in constraint (6).  
State A cannot yield a lower cost than state B.  There is therefore no reason to explore state A further.   
State C, on the other hand, could result in a lower total cost, and must therefore be explored further. 

 

State A  

State B 

State C 

Current window 

 ≤ 1 

t’-D t-D t” t’ t t”-D 

* * The client 

arriving at time t” 

is served remotely    

 

State A  

State B 

State C 

Current window 

≤ 1/c 

t’-D t-D t” t’ t 



batch service initiations at times t′ and t but not at time t′′, the cost would be no greater if 

each of the requests that belonged to the batch served at time t′ and that arrived prior to t′′ 
are served instead by server i at t′′, and the other requests that belonged to this batch are 

served instead at time t.  This constraint is illustrated in Figure 2(b). 

Although constraints (6) and (7) are somewhat more complex than the others, they 

can greatly reduce the number of states that need to be considered.  This is illustrated in 

Table II, which shows 95% confidence intervals for the average number of states 

associated with the current window, and the observed maximum number, for algorithm 

variants using different subsets of the above constraints, with N = 16, c = 0.5, L = 1, λi = 

1 for all i, and various values of the maximum client delay D.3   For each algorithm 

variant and value of D, 10 runs were performed, each on a different randomly generated 

request sequence with 25,000 request arrivals.  

Although additional constraints are possible, at the cost of increased complexity in the 

implementation, constraints (1)-(7) were found to be sufficient to allow use of the optimal 

offline algorithm for a large portion of the parameter space.  The algorithm can become 

too costly when D is large and 1/c is not substantially greater than λiD (implying that 

there are many request deadlines, and thus many possible batch service initiation times, 

within a window, and that constraint 6 becomes less effective), and/or there are a large 

number of servers.  Fortunately, in those cases in which the algorithm is too costly, 

consideration of a simple limiting case yields a lower bound on the total delivery cost that 

is empirically tight.  To delimit the performance of dynamic policies we use a 

combination of the offline algorithm, described above, and this asymptotic bound.  

Our asymptotic bound is derived by consideration of the case in which there are a 

sufficiently large number of servers and client groups, that whenever it would be optimal 

                                                           
3 The particular algorithm implementation used for these results could accommodate 8,000,000 current states. 

Table II.  Average and Maximum Number of States using the Optimal Offline  

Algorithm (N = 16, c = 0.5, L = 1, λi = 1 for all i) 

D (C) 

Constraints 

(1)-(5) only 

Constraints 

(1)-(6) 

Constraints 

(1)-(5), (7) 

Constraints 

(1)-(7) 

0.1 (0.6526±0.0006) 
6.518±0.091 

2,300 
4.115±0.025 

69 
6.141±0.073 

1,285 
4.045±0.024 

63 

0.5 (0.4645±0.0006) 
2,040±190  
5,072,540 

98.6±1.1 
3,619 

666±21 
349,799 

86.86±0.85 
2,247 

1.0 (0.3999±0.0008) 
- 

> 8,000,000 
2,250±190 

475,843 
19,610±660 
1,661,760 

1,181±35 
106,531 

1.5 (0.3446±0.0007) 
- 

> 8,000,000 
- 

> 8,000,000 
- 

> 8,000,000 
13,940±460 
1,342,120 

 



for a request to be served from a server other than the local server, the corresponding 

client is always able to join a batch of clients about to begin service from some remote 

server (prior to the request deadline).  The minimum total delivery cost for this case can 

be determined with small computational cost by a variant of the optimal offline algorithm 

in which each server and its associated client group is considered in isolation, without 

explicit consideration of the remote servers.  Note that this lower bound on the total 

delivery cost is tight not only when there is a sufficiently large number of servers, but 

also when almost all requests would be served by the local server in an optimal policy. 

3.4. Performance Comparisons 

In this section, we apply the results from Sections 3.2 and 3.3 to compare the potential 

performance with static versus dynamic server selection policies.  Without loss of 

generality, the unit of cost is chosen to be the server cost of streaming the video to a 

batch of clients, and the unit of time is chosen to be the average time between requests 

from a client group when the total request rate is divided evenly among the client groups.  

With these choices of units, L = 1 and λ = N.  

We first consider the cost components for the optimal static policy separately, as these 

results will shed insight into our subsequent comparative results in which only total cost 

is considered.   Figures 3(a), (b), and (c) show the average server cost per request, the 

average network cost per request, and the total delivery cost per request, respectively, as 

functions of the maximum client start-up delay.  Note that with our choice of time unit, 

the latter is given relative to the average time between requests from a client group when 

request rates are homogeneous; i.e., a client delay of 2 means that the client delay is twice 

this average interarrival time.  Further, the total server load, as measured by batch service 

initiations per unit time, with our normalized units can be found by multiplying the 

values in Figure 3(a) by N; thus, curves for server load are identical (except for this 

scaling) to those shown in Figure 3(a).  Results are shown for a number of example 

scenarios.  The default scenario has N=16 servers, c=0.5, and equal request rate λ/N from 

all client groups.  Each other scenario differs in one characteristic.  Two of the scenarios 

have heterogeneous client group request rates, in which the request rates are Zipf 

distributed with parameter α and the request rate λi from client group i is equal to Ω/iα 

with the normalization constant Ω = )/1(/ 1∑ =
N
j jN

α . 

Note that for the homogeneous scenarios, either all clients or only group 1 clients 

receive service from server 1, and that in the former case the average network cost per 

request is c(N-1)/N.   The homogeneous scenario with c=0.7 has no values of the 



maximum client delay at which remote service is beneficial (with the optimal static 

policy).  For the heterogeneous scenarios, for some maximum client delay values, some 

client groups receive service remotely at server 1, while others do not.  For example, the 

curves for the scenario with α=1 include three plotted points where all clients receive 

service at server 1, and three plotted points where client groups 3 to 16, 5 to 16, and 10 to 

16, respectively, receive service remotely at server 1.  As illustrated in Figure 3(c), the 

heterogeneous scenario with α=2 achieves the lowest total delivery cost per request, 

owing to its highly skewed request rates; in particular, approximately 63% of the requests 

are from client group 1 in this scenario. 

Figure 4 compares the potential performance with static versus dynamic server 

selection policies.  Rather than considering the minimum total delivery cost potentially 

achievable with a given maximum client start-up delay, here we (equivalently) consider 

the lowest maximum client start-up delay potentially achievable with a given total 

delivery cost.  Specifically, this figure shows the lowest potentially achievable maximum 

client start-up delay for static policies expressed as a percentage increase over that with 

dynamic policies, as a function of the total delivery cost per request.  We have chosen 

this form for this and a number of subsequent figures, even though total cost is an output 

 (c) Total delivery cost per request. 

Fig. 3.  Delivery costs for example scenarios with the optimal static policy. 

 (a) Average server cost per request.   (b) Average network cost per request. 

1

0.8

0.6

0.4

0.2

0

10
-2

10
-1

10
0

10
1

10
2

T
o
ta

l 
D

e
liv

e
ry

 C
o
s
t 
p
e
r 

R
e
q
u
e
s
t

Maximum Start-up Delay

N=16, c=0.5, α=0
N=16, c=0.3, α=0
N=16, c=0.7, α=0

N=8, c=0.5, α=0
N=16, c=0.5, α=1
N=16, c=0.5, α=2

1

0.8

0.6

0.4

0.2

0

10
-2

10
-1

10
0

10
1

10
2

S
e
rv

e
r 

C
o
s
t 
p
e
r 

R
e
q
u
e
s
t

Maximum Start-up Delay

N=16, c=0.5, α=0
N=16, c=0.3, α=0
N=16, c=0.7, α=0
N=8, c=0.5, α=0

N=16, c=0.5, α=1
N=16, c=0.5, α=2

1

0.8

0.6

0.4

0.2

0

10
-2

10
-1

10
0

10
1

10
2

N
e
tw

o
rk

 C
o
s
t 
p
e
r 

R
e
q
u
e
s
t

Maximum Start-up Delay

N=16, c=0.5, α=0
N=16, c=0.3, α=0
N=16, c=0.7, α=0

N=8, c=0.5, α=0
N=16, c=0.5, α=1
N=16, c=0.5, α=2



of our models rather than an input parameter, since we believe it may be most natural to 

view the server selection problem as one in which the goal is to improve the client-

perceived performance (i.e., reduce the maximum start-up delay) under a given cost 

constraint.  This form is also most similar to that used in much prior resource scheduling 

work in which capacity or load is shown on the x-axis, with delay on the y-axis.      

For the case of dynamic policies, the optimal offline algorithm from Section 3.3 was 

run on 10 randomly generated request sequences, each with 25,000 request arrivals, and 

the results averaged, for each set of parameters for which this algorithm was found to be 

feasible.  For the other parameter sets, for which the optimal offline algorithm was not 

feasible, a similar methodology was followed, but using our asymptotic bound (in which 

each server and its associated client group is considered in isolation).4 

We use the same default scenario as before, with N=16 servers, c=0.5, and 

homogeneous client group request rates, and vary one characteristic at a time.  Figures 

4(a) and (b) show results for homogenous request rate scenarios, with 2 to 64 servers, and 

                                                           
4 In this case, owing to the relatively low execution cost, each of the 10 runs for each parameter set had 200,000 
request arrivals. 

250

200

150

100

50

0

 0  0.2  0.4  0.6  0.8  1

In
c
re

a
s
e
 i
n
 D

e
la

y
 (

%
)

Total Delivery Cost per Request

N=2
N=4
N=8

N=16
N=64

250

200

150

100

50

0

 0  0.2  0.4  0.6  0.8  1

In
c
re

a
s
e
 i
n
 D

e
la

y
 (

%
)

Total Delivery Cost per Request

α=0
α=0.5

α=1
α=2
α=4

 (c) Impact of load distribution λi = Ω/iα where Ω = )/1(/ 1∑ =
N
j jN

α . 

Fig. 4.  Best potential performance with static policies relative to that with dynamic policies.   
Default parameters: L = 1, c = 0.5, N = 16, λi = 1 (α=0).  

(a) Impact of the remote streaming cost c.  (b) Impact of the number of servers N. 

250

200

150

100

50

0

 0  0.2  0.4  0.6  0.8  1

In
c
re

a
s
e
 i
n
 D

e
la

y
 (

%
)

Total Delivery Cost per Request

c=0.1
c=0.3
c=0.5
c=0.7
c=0.9



c values between 0.1 and 0.9, respectively.  Figure 4(c) considers scenarios in which 

request rates are Zipf distributed with parameter α (i.e., λi ∝ 1/iα).  For the case of α=0, 

all client groups have the same request rate; for α=4, in contrast, 92% of the requests are 

from client group 1.    

The primary observation from these figures is that dynamic policies have the potential 

to yield substantially better performance than static policies over large regions of the 

parameter space.  In a substantial number of cases, the lowest potentially achievable 

maximum client start-up delay with static policies is over 100% higher than with 

dynamic policies; i.e., higher by more than a factor of 2.  These performance benefits are 

especially pronounced when c is between 0.3 and 0.7.  While the peak benefit grows with 

the number of servers N, even for scenarios with only 4 servers the minimum achievable 

maximum start-up delay with static policies is over 100% higher than with dynamic 

policies for a substantial region of the parameter space.  As can be expected, the 

performance differences are the smallest for the highly heterogeneous scenarios, since 

there is little scope for improvement with complex policies when most requests are from 

a single client group.  

Note the presence in many of the curves of a local maximum in the performance 

difference, at an intermediate value of the total delivery cost per request.  As can be seen 

from Figures 3(b) and (c) for those curves whose parameter set is also used in those 

figures, these peaks correspond to points where the optimal static policy changes between 

one in which all requests are served by the local server, and one in which all requests are 

served by some common server.  For the cases in which all client groups have the same 

request rate, the total delivery cost per request is approximately equal to the value of c at 

these points.5 

It is possible to obtain the asymptotic limits of the curves in Figure 4 as the total 

delivery cost per request (in our normalized units) approaches one from the left, since in 

this case the delay D is so small that the probability that a client could be batched with 

more than one other client becomes negligibly small.  The optimal static policy in this 

case is for each request to be served by the local server.  The optimal dynamic policy in 

this case is for each request to be served by the local server if no previous request is 

waiting for service at the time of arrival of the request.  In the rare event that there is such 

a previous request, the cost is minimized if the two clients are batched together.  In the 

                                                           
5 Note that these peaks occur in regions of the parameter space in which the optimal offline algorithm is 
feasible; only well to the left of each peak, did it became necessary to use the variant in which each server and 
its associated client group is considered in isolation.  



Appendix, these optimal policies are analyzed for the case of homogeneous client group 

request rates.  The asymptotic limit of the percentage increase in delay with the optimal 

static policy, in comparison to that with the optimal dynamic policy, is derived as (N–

1)(1–c) × 100%. 

Note that Figure 4 shows the potential performance improvements with dynamic 

policies, but that these improvements may not be practically realizable.  The next two 

sections consider the question of how complex a dynamic policy needs to be to achieve 

the full potential of this policy class.  

4. DEFERRED SELECTION VS. AT-ARRIVAL SELECTION 

A basic distinction among dynamic policies is whether server selection occurs 

immediately when a request is made (“at arrival”), or whether server selection may be 

deferred for some period of time (at most, by the maximum client start-up delay D).  Note 

that at-arrival server selection is a simpler approach, but deferred selection may offer the 

potential for improved performance, since server selection may take into account 

subsequent request arrivals.  This section considers the question of how much 

performance can potentially be improved by use of deferred server selection, rather than  

at-arrival selection. 

Section 4.1 determines an optimal at-arrival server selection policy, and a 

corresponding tight bound on the achievable performance with at-arrival server selection.  

Section 4.2 presents performance comparisons between these results and the results for 

general dynamic policies from Section 3.3. 

4.1. Delimiting the Achievable Performance with At-arrival Server Selection 

Policies 

Consider first the case in which all client groups have the same request rate λi = λ/N.  If 

there are one or more clients waiting for service by server i when a new request from 

client group i arrives, the new client should join this batch.  Suppose that there are no 

such waiting clients.  Since all groups have the same request rate, in an optimal at-arrival 

policy a remote server would never be selected for a newly-arriving request unless there 

is at least one client already waiting for service by that server, and thus the next client to 

begin waiting for service from server i can only be from group i.   Therefore, if a remote 

server is selected for the new request, the same state with respect to client group and 

server i (a newly-arriving group i request, and no waiting clients at server i) will be 

entered again after a time of expected duration (with Poisson arrivals) 1/λi, and a cost of 

cL will have been incurred.  On the other hand, if server i is selected, the same state (a 

newly-arriving group i request, and no waiting clients at server i) will be entered after a 



time of expected duration D + 1/λi (the expected cost is minimized if a batch is not served 

until time D after formation), and a cost of L will have been incurred.  Comparing these 

two scenarios, it is optimal to select the local server if and only if there is no remote 

server with at least one waiting client or (cL)/(1/λi) ≥ L/(D+1/λi), or equivalently c ≥ 

1/(λiD+1); otherwise, it is optimal to select such a remote server. 

With the optimal at-arrival policy as described above, if c ≥ 1/(λiD+1) all requests 

receive service from the local server, and the total delivery cost per request is given by 

L/(λiD+1).  If c < 1/(λiD+1), the total delivery cost per request is given by 

( )( )
1λ
λ/1

+

−+

D

DNNcLL
, where the numerator gives the expected total cost to serve all of 

the clients in a batch, and the denominator gives the expected number of such clients.  

This expression uses the fact that there is one batch served per renewal period (of average 

duration D + 1/λ), and a fraction (N–1)/N of all clients making requests during the time D 

(not including the client initiating the batch) receive service remotely. 

Consider now the general case in which client groups may have differing request 

rates.  Suppose that when a client group i request arrives there are no clients waiting for 

service by any server.  Recalling that servers/groups are indexed from 1 to N in non-

increasing order of the client group request rates, analogously to the optimal static policy 

there is an optimal index k (1 ≤ k ≤ N), such that for i ≤ k, the new client begins a batch 

that will receive service by the local server, while for i > k, the new client begins a batch 

that will receive service by server 1. 

For client groups i with 2 ≤ i ≤ k, the optimal server selection policy is as described in 

the case of homogeneous groups; i.e., decisions are based on the condition c ≥ 1/(λiD+1).  

For requests from group i with i > k, it is optimal to select a remote server that already 

has a waiting client (if any), and otherwise to select server 1.  Finally, consider requests 

from group 1.  If there is at least one client that is waiting for service by server 1, or if 

there are no clients waiting for service by any server, it is optimal to select server 1.  The 

case in which there are no previous clients that are waiting for service by server 1, but at 

least one client waiting for service by some remote server, is more complex than with 

homogenous groups, however, when k < N.  This added complexity is owing to the 

possibility of clients from other than group 1 beginning new batches to be served by 

server 1, which increases the desirability of selecting server 1 in this case.  Note though, 

that when k < N we must have 1+λiD < λ1D for some client group i (namely, each group i 

for i > k).  (This observation comes from the fact that it can only be desirable for a group 

i client to begin a new batch to be served by server 1, rather than by server i, if the 



expected number of group 1 clients that will be served in that batch exceeds the expected 

number of group i clients.)  The above observation implies that λ1D > 1, and therefore 

that c ≥ 1/(λ1D+1) for c ≥ 1/2.  Since it is even more desirable than with homogeneous 

groups to select server 1 for a newly-arriving request from group 1, in the event that there 

are no previous clients that are waiting for service by server 1 but at least one client 

waiting for service by some remote server, for c ≥ 1/2 (and k < N) we must have that it is 

optimal to select server 1 in this case.  For the results shown in Section 4.2 for client 

groups with differing request rates, we have chosen c = 1/2, and simulation is used to 

determine the optimal index k and the minimum total delivery cost according to the 

optimal policy as described above. 

4.2. Performance Comparisons 

Similarly as in Section 3.4, we first consider the cost components for the optimal at-

arrival policy separately, as these results will shed insight into our subsequent 

comparative results in which only total cost is considered.   Figures 5(a), (b), and (c) 

show the average server cost per request, the average network cost per request, and the 

total delivery cost per request, respectively, as functions of the maximum client start-up 

delay.  Again, the total server load, as measured by batch service initiations per unit time, 

 (c) Total delivery cost per request. 

Fig. 5.  Delivery costs for example scenarios with the optimal at-arrival policy. 

 (a) Average server cost per request.   (b) Average network cost per request. 

1

0.8

0.6

0.4

0.2

0

10
-2

10
-1

10
0

10
1

10
2

T
o
ta

l 
D

e
liv

e
ry

 C
o
s
t 
p
e
r 

R
e
q
u
e
s
t

Maximum Start-up Delay

N=16, c=0.5, α=0
N=16, c=0.3, α=0
N=16, c=0.7, α=0

N=8, c=0.5, α=0
N=16, c=0.5, α=1
N=16, c=0.5, α=2

1

0.8

0.6

0.4

0.2

0

10
-2

10
-1

10
0

10
1

10
2

S
e
rv

e
r 

C
o
s
t 
p
e
r 

R
e
q
u
e
s
t

Maximum Start-up Delay

N=16, c=0.5, α=0
N=16, c=0.3, α=0
N=16, c=0.7, α=0
N=8, c=0.5, α=0

N=16, c=0.5, α=1
N=16, c=0.5, α=2

1

0.8

0.6

0.4

0.2

0

10
-2

10
-1

10
0

10
1

10
2

N
e
tw

o
rk

 C
o
s
t 
p
e
r 

R
e
q
u
e
s
t

Maximum Start-up Delay

N=16, c=0.5, α=0
N=16, c=0.3, α=0
N=16, c=0.7, α=0

N=8, c=0.5, α=0
N=16, c=0.5, α=1
N=16, c=0.5, α=2



with our normalized units can be found by multiplying the values in Figure 5(a) by N.  

Results are shown for the same example scenarios used for Figure 3.  Comparing Figures 

3(b) and 5(b), it is interesting to note that the optimal at-arrival policy is able to fruitfully 

use remote service to achieve request batching for much smaller start-up delays, and for 

higher values of c (e.g., c=0.7), than is the optimal static policy. 

Figure 6 applies the results from Sections 4.1 and 3.3 to compare the potential 

performance with at-arrival versus general dynamic server selection policies, for the same 

scenarios used for Figure 4.  Figures 6(a) and (b) show results for scenarios with 

homogeneous client group request rates, while Figure 6(c) shows results for 

heterogeneous request rate scenarios.  It is apparent that use of deferred selection can 

potentially yield substantial performance improvements, by a factor of two or more in 

some cases, although only for fairly narrow ranges of model parameter values.  In 

particular, large potential performance improvements are seen only when the total 

delivery cost per request is approximately the same as the network cost when a request is 

served remotely, equal to cL.  In such regions, the potential performance improvements 

are maximized as the client groups become more homogeneous, as the number of servers 

 (c) Impact of load distribution λi = Ω/iα where Ω = )/1(/ 1∑ =
N
j jN

α . 

Fig. 6.  Best potential performance with at-arrival policies relative to that with general dynamic policies.   
Default parameters: L = 1, c = 0.5, N = 16, λi = 1 (α=0).  

(a) Impact of the remote streaming cost c.  (b) Impact of the number of servers N. 

150

120

90

60

30

0

 0  0.2  0.4  0.6  0.8  1

In
c
re

a
s
e
 i
n
 D

e
la

y
 (

%
)

Total Delivery Cost per Request

N=2
N=4
N=8

N=16
N=64

150

120

90

60

30

0

 0  0.2  0.4  0.6  0.8  1

In
c
re

a
s
e
 i
n
 D

e
la

y
 (

%
)

Total Delivery Cost per Request

α=0
α=0.5

α=1
α=2
α=4

150

120

90

60

30

0

 0  0.2  0.4  0.6  0.8  1

In
c
re

a
s
e
 i
n
 D

e
la

y
 (

%
)

Total Delivery Cost per Request

c=0.1
c=0.3
c=0.5
c=0.7
c=0.9



and client groups increases, and for values of c (in our normalized units) between 0.3 and 

0.7.  As shown in Figures 5(b) and (c), in the case of homogeneous client groups, the 

point at which the total delivery cost per request equals cL is exactly the point at which 

the optimal at-arrival policy changes between one in which all clients receive service 

from the local server, and one in which some clients are served by a remote server. 

5. LOCAL STATE VS. GLOBAL STATE 

Dynamic server selection policies use information about the current system state.  A key 

part of this information concerns what clients are waiting for service.  We define “local 

state” policies as those that make server selection decisions for client group i requests, 

and service scheduling decisions for server i, based on the currently outstanding group i 

requests.  “Global state” policies, in contrast, are defined as those that use information 

concerning the current requests from other client groups, in addition to the local group.  

Note that both types of policies may also use other types of state information, in 

particular concerning the times at which servers are scheduled to serve batches.  In 

general, local state policies require less state information and are simpler than global state 

policies.  For example, global state policies may require information about all requests in 

the system to be sent to a central scheduler, or to every server in the system.  In contrast, 

with the local state policy considered here, the other servers must only be informed about 

the time and server at which a batch service initiation has been scheduled.  This section 

considers the question of how much performance can potentially be improved by use of 

global state server selection policies, rather than local state policies. 

Section 5.1 describes a candidate local state server selection policy.  Section 5.2 

presents a candidate online global state policy.  Section 5.3 compares performance with 

the local state policy to the limits on achievable performance from Section 3.3, and to the 

performance with the candidate global state policy.  Section 5.3 concludes with a 

summary of our findings. 

5.1. Candidate Local State Policy 

In our candidate local state policy, server selection uses the following two rules.  First, 

when a server i initiates service of a batch, all currently waiting group i clients are served.  

Second, when a remote server initiates service of a batch at a time t, a waiting group i 

client that requested the video at a time ta receives this service if: (a) for each waiting 

group i client that requested the video at time ta′ ≤ ta, there are fewer than 1/c – λi(ta′+D–t) 

waiting group i clients with request times no earlier than ta′; and (b) there is no batch 

service initiation that has been scheduled (by time t) at any server within the time interval 

(t, ta+D].  This rule ensures that a group i client is served remotely only if it is unlikely 



that there will be at least 1/c local clients with which it can be served locally, at its 

deadline, and it can not defer its decision further without the risk of causing an additional 

batch service to be necessary.  With at least 1/c waiting local clients at the deadline it 

would be beneficial to serve a batch locally. 

A batch service initiation is scheduled (for a time possibly in the future) at a server i 

whenever one of the following events occurs:  (a) the waiting time of a group i client 

reaches the maximum duration D; (b) a request arrives from a group i client, and the 

number of group i clients waiting for service reaches at least 1/c; or (c) a request arrives 

from a group i client when there is no future batch service initiation that has been 

scheduled at any server, and the number of waiting group i clients reaches at least 

max[(2/3)(1/c), 2].  The motivation for scheduling a batch at the last of these events is to 

increase the likelihood that when batches are served with fewer than 1/c clients from any 

one client group, the server that serves the batch is one for which there are a relatively 

large number of clients from the local client group. 

When a server i schedules a batch service initiation, the time of this service initiation 

is chosen as ta+D, where ta denotes the earliest request time of the group i clients in the 

batch, if:  (a) there is a future batch service initiation that has been scheduled by some 

other server; (b) the most recent batch service initiation was by server i; or (c) the most 

recent batch service initiation occurred later than time ta.  Otherwise, the time of the 

batch service initiation is chosen as the maximum of the current time, and tlast + D, where 

tlast denotes the time of the last batch service initiation at any server.  While there is 

typically no advantage to initiating service of a batch earlier than at time ta+D, use of the 

above rule reduces the likelihood that some other server with fewer waiting local clients 

needs to start serving a batch to satisfy an earlier deadline. 

5.2. Candidate Online Global State Policy 

To give additional intuition for the potential performance differences between at-arrival 

policies and general dynamic policies, as well as between global state and local state 

policies, this section considers the performance achieved by online global state policies. 

The specific global state policy presented here assumes that either all, or none of, the 

waiting clients for a client group i are served whenever service commences for a new 

batch at some server.  Various policies in which some waiting group i clients are served 

as part of the batch, while other waiting group i clients are not, were investigated but not 

found to yield noticeable performance improvements. 

Service to a batch of clients is initiated only when some request deadline is reached.  

When server i initiates service of a batch at a time t, all currently waiting group i clients 



receive this service.  For any client group j with waiting clients at this time t, define tj to 

be the time at which the longest waiting client from this group requested the video.  All 

of the waiting group j clients are served as part of this batch if and only if, for each client 

group k with tk ≤ tj (including j) there are fewer than 1/c – λk(tk + D – t) waiting group k 

clients. 

Whenever the deadline of a group i client request is reached, if there are at least 1/c 

waiting group i clients in total then server i initiates service of a batch.  If there are less 

than 1/c waiting group i clients, the best candidates for the server that will serve a batch 

at this time (the second of these candidates may be server i) include: (i) server j, for j 

such that there are at least 1/c waiting group j clients, and among the waiting clients of 

such groups, a group j client is the one with the earliest upcoming deadline, and (ii) 

server k, for any k such that group k clients will receive service with this batch, and there 

is no other such client group with a greater number of waiting clients. 

A choice is made between these two candidates, when both exist (note that the second 

candidate must exist), by estimating which candidate would result in the smaller delivery 

cost.  With the first candidate, a batch that would otherwise have to be served by server j 

at a later point in time is served earlier, with the addition of other clients, and possibly 

reducing the total number of batches served at a cost saving of L.  On the other hand, 

clients that make requests after the new service initiation time, but prior to when the 

batch could have been served, will now have to be served as part of some other batch; the 

expected cost increase is approximated by δjCλ/N, where δj denotes the time until the 

earliest upcoming deadline of the waiting group j clients and where Cλ/N is the 

(measured) average per-server rate at which total delivery cost is incurred.  Also, if the 

first candidate is chosen rather than the second candidate, the nk waiting group k clients 

will receive service remotely rather than locally, with cost increase of nkcL.  The policy 

makes the first choice if the cost savings of L exceed the estimated cost increases, and 

otherwise makes the second choice. 

5.3. Performance Comparisons 

Figures 7(a), (b), and (c) show the average server cost per request, the average network 

cost per request, and the total delivery cost per request, respectively, as functions of the 

maximum client start-up delay, for the candidate local state policy.  The corresponding 

figures for the candidate global state policy are quite similar and are therefore omitted.  

Performance results for both policies were obtained by simulation, with the results for 

each parameter set taken as the average values over 10 simulation runs on randomly 

generated request sequences, each with 200,000 request arrivals. 



As illustrated in Figure 7(b), the extent of use of remote service varies much more 

gradually, without abrupt transition points, with these deferred selection dynamic policies 

than with the optimal static and optimal at-arrival policies.  This is due to the greater 

flexibility provided by use of dynamic, deferred selection.  For example, unlike with a 

static policy, some requests from a particular client group may be served locally while 

others are served remotely, and unlike with at-arrival policies, server choice may depend 

not only on just the at-arrival system states, but also on how state evolves over the near-

term future, while the server choice is being deferred. 

Figures 8 and 9 compare the performance of the candidate local state policy to the 

best potential performance with general dynamic policies, determined as described in 

Section 3.3, and to the performance of the candidate (online) global state policy, 

respectively.  The same example scenarios are used as for Figures 4 and 6. 

Interpretation of the results of Figure 8 is complicated by the fact that we delimit the 

best potential performance using the optimal offline performance.  Thus, this figure 

leaves open the question of what portions of the performance gaps illustrated in the figure 

are owing to use of local state vs. global state, and what portions are owing to use of 

online vs. offline policies.  Some insight into this question is provided by the results in 

 (c) Total delivery cost per request. 

Fig. 7.  Delivery costs for example scenarios with the candidate local state policy. 

 (a) Average server cost per request.   (b) Average network cost per request. 

1

0.8

0.6

0.4

0.2

0

10
-2

10
-1

10
0

10
1

10
2

T
o
ta

l 
D

e
liv

e
ry

 C
o
s
t 
p
e
r 

R
e
q
u
e
s
t

Maximum Start-up Delay

N=16, c=0.5, α=0
N=16, c=0.3, α=0
N=16, c=0.7, α=0

N=8, c=0.5, α=0
N=16, c=0.5, α=1
N=16, c=0.5, α=2

1

0.8

0.6

0.4

0.2

0

10
-2

10
-1

10
0

10
1

10
2

S
e
rv

e
r 

C
o
s
t 
p
e
r 

R
e
q
u
e
s
t

Maximum Start-up Delay

N=16, c=0.5, α=0
N=16, c=0.3, α=0
N=16, c=0.7, α=0
N=8, c=0.5, α=0

N=16, c=0.5, α=1
N=16, c=0.5, α=2

1

0.8

0.6

0.4

0.2

0

10
-2

10
-1

10
0

10
1

10
2

N
e
tw

o
rk

 C
o
s
t 
p
e
r 

R
e
q
u
e
s
t

Maximum Start-up Delay

N=16, c=0.5, α=0
N=16, c=0.3, α=0
N=16, c=0.7, α=0

N=8, c=0.5, α=0
N=16, c=0.5, α=1
N=16, c=0.5, α=2



Figure 9, which shows significantly smaller performance gaps between the candidate 

local state and candidate global state policies.  The performance gaps between the 

candidate local state policy and the optimal online performance will be intermediate in 

size to the gaps shown in Figures 8 and 9.  Based on these and other policy comparisons 

[Carlsson 2006], we conjecture that the performance gaps between the candidate local 

state policy and the optimal online performance are closer to those shown in Figure 9 

than to those of Figure 8. 

To summarize our findings thus far, performance comparisons among all of the 

various policy classes that we consider are presented in Figure 10, for various example 

parameter settings.  These settings correspond to a subset of the example scenarios 

already considered in Figures 4, 6 and 8.  Figures 10(a) and (b) show results for different 

network costs, Figures 10(c) and (d) for different numbers of servers, and Figures 10(e) 

and (f) illustrate the impact of heterogeneity.  Although there are substantial potential 

performance benefits to the use of dynamic rather than static server selection policies (as 

shown in Section 3), and deferred rather than at-arrival policies (as shown in Section 4), 

 (c) Impact of load distribution λi = Ω/iα where Ω = )/1(/ 1∑ =
N
j jN

α . 

Fig. 8.  Performance with local state policy relative to the best potential performance with general dynamic 
policies.  Default parameters: L = 1, c = 0.5, N = 16, λi = 1 (α=0).  

(a) Impact of the remote streaming cost c.  (b) Impact of the number of servers N. 

50

40

30

20

10

0

 0  0.2  0.4  0.6  0.8  1

In
c
re

a
s
e
 i
n
 D

e
la

y
 (

%
)

Total Delivery Cost per Request

N=2
N=4
N=8

N=16
N=64

50

40

30

20

10

0

 0  0.2  0.4  0.6  0.8  1

In
c
re

a
s
e
 i
n
 D

e
la

y
 (

%
)

Total Delivery Cost per Request

α=0
α=0.5

α=1
α=2
α=4

50

40

30

20

10

0

 0  0.2  0.4  0.6  0.8  1

In
c
re

a
s
e
 i
n
 D

e
la

y
 (

%
)

Total Delivery Cost per Request

c=0.1
c=0.3
c=0.5
c=0.7
c=0.9



within the class of deferred, dynamic policies, simpler local (vs. global) state policies 

appear able to achieve close to optimal performance. 

6. EVALUATION USING MORE DETAILED TOPOLOGY MODELS 

This section compares the policy classes defined previously using network topology 

models in which finer-grained proximity distinctions can be made than just “local” versus 

“remote”.  Specifically, we use the GT-ITM topology generator [Zegura et al. 1996] to 

generate transit-stub network topologies, on which we evaluate candidate server selection 

policies from the considered policy classes.   Each randomly generated topology consists 

of a transit (i.e., backbone) domain, and multiple stub domains.  While such topologies 

do not model all the complexity of the Internet, they have been found useful in previous 

work.  We associate one client group with each node located in a stub domain, and place 

either one or zero servers randomly within each stub domain.  The client groups are 

assumed to have equal request rates, which yields heterogeneity with respect to the total 

request rate from client groups within each stub domain, owing to their differing numbers 

of nodes.  

 (c) Impact of load distribution λi = Ω/iα where Ω = )/1(/ 1∑ =
N
j jN

α . 

Fig. 9.  Performance with local state policy relative to the performance with the candidate global state 
policy.  Default parameters: L = 1, c = 0.5, N = 16, λi = 1 (α=0).  

(a) Impact of the remote streaming cost c.  (b) Impact of the number of servers N. 

50

40

30

20

10

0

 0  0.2  0.4  0.6  0.8  1

In
c
re

a
s
e
 i
n
 D

e
la

y
 (

%
)

Total Delivery Cost per Request

α=0
α=0.5

α=1
α=2
α=4

50

40

30

20

10

0

 0  0.2  0.4  0.6  0.8  1

In
c
re

a
s
e
 i
n
 D

e
la

y
 (

%
)

Total Delivery Cost per Request

N=2
N=4
N=8

N=16
N=64

50

40

30

20

10

0

 0  0.2  0.4  0.6  0.8  1

In
c
re

a
s
e
 i
n
 D

e
la

y
 (

%
)

Total Delivery Cost per Request

c=0.1
c=0.3
c=0.5
c=0.7
c=0.9



We consider first scenarios in which each stub domain has exactly one server.  For 

this case, we can directly apply the static, at-arrival, local state, and online global state 

policies previously defined and used in our policy class comparisons, with the “local” 

server defined as the server in the same stub domain.  Note, however, that the policies 

that were optimal with our simple model, are no longer optimal in this more complex 

setting, and are considered simply as “representatives” of their policy class.   

Network costs depend on the distances between the servers and the client groups in 

(e) c = 0.5, N = 16, equal request rates          (f) c = 0.5, N = 16, λi ∝ 1/i (α=1) 
 

Fig. 10.  Best potential performance with static policies and with at-arrival policies, and actual performance 

with a local state policy, relative to the best potential performance for general dynamic policies. 

(a) c = 0.3, N = 16, equal request rates  (b) c = 0.7, N = 16, equal request rates 

(c) c = 0.5, N = 4, equal request rates      (d) c = 0.5, N = 64, equal request rates  

150

120

90

60

30

0

10.80.60.40.20

In
c
re

a
s
e
 i
n
 D

e
la

y
 (

%
)

Total Delivery Cost per Request

Static Policies
At-arrival Policies
Local State Policy

150

120

90

60

30

0

10.80.60.40.20

In
c
re

a
s
e
 i
n
 D

e
la

y
 (

%
)

Total Delivery Cost per Request

Static Policies
At-arrival Policies
Local State Policy

150

120

90

60

30

0

10.80.60.40.20

In
c
re

a
s
e
 i
n
 D

e
la

y
 (

%
)

Total Delivery Cost per Request

Static Policies
At-arrival Policies
Local State Policy

150

120

90

60

30

0

10.80.60.40.20

In
c
re

a
s
e
 i
n
 D

e
la

y
 (

%
)

Total Delivery Cost per Request

Static Policies
At-arrival Policies
Local State Policy

150

120

90

60

30

0

10.80.60.40.20

In
c
re

a
s
e
 i
n
 D

e
la

y
 (

%
)

Total Delivery Cost per Request

Static Policies
At-arrival Policies
Local State Policy

150

120

90

60

30

0

10.80.60.40.20

In
c
re

a
s
e
 i
n
 D

e
la

y
 (

%
)

Total Delivery Cost per Request

Static Policies
At-arrival Policies
Local State Policy



the generated topologies.  To capture the fact that routing across domain boundaries is 

typically more expensive than routing within domains, we assign a link cost for each 

intra-domain link that is one fourth of that for each inter-domain link.  Link costs are 

normalized so that the appropriate value of c when we apply our representative server 

selection policies is 0.5.  Of course, now c gives only an average value, since the paths 

between different client groups and servers will, in general, have different costs (as given 

by the sum of the costs of the links on these paths). 

For each of our representative policies, Table III shows the total delivery cost per 

request, average server cost per request (with L=1 as before), average network cost per 

request, maximum client start-up delay, and percent increase in start-up delay relative to 

the global state policy, for a number of scenarios in which each stub domain has exactly 

one server.  Each of the results for the “ts96/12/0.5” topology class is an averages from 

10 simulation runs using randomly generated topologies with M=96 client groups spread 

over 12 stub domains; for each run 1,000,000 request arrivals were simulated.  Similarly, 

each of the results for the “ts192/24/0.5” topology class is an average from 10 simulation 

runs using randomly generated topologies with M=192 client groups spread over 24 stub 

domains.  During each simulation run, binary search was used to adjust the value of the 

Table III.  Example scenarios with transit-stub topologies generated using the GT-ITM 

topology generator. 

Topology 

class Policy 

Total 

delivery cost Server cost 

Network 

cost 

Start-up 

delay 

Increase in 

delay (%) 

ts96/12/0.5 Static 0.3 0.231 0.069 3.22 12.98 
 At-arrival 0.3 0.237 0.063 3.11 8.88 
 Local state 0.3 0.231 0.069 2.86 0.19 
 Global state 0.3 0.230 0.070 2.85  - 
ts96/12/0.5 Static 0.5 0.389 0.111 1.23 117.36 
 At-arrival 0.5 0.226 0.274 0.939 65.69 
 Local state 0.5 0.227 0.273 0.599 5.64 
 Global state 0.5 0.229 0.271 0.567  - 
ts96/12/0.5 Static 0.8 0.337 0.463 0.165 164.34 
 At-arrival 0.8 0.563 0.237 0.0648 3.59 
 Local state 0.8 0.573 0.227 0.0643 2.85 
 Global state 0.8 0.573 0.227 0.0625  - 
ts192/24/0.5 Static 0.3 0.245 0.055 3.00 9.23 
 At-arrival 0.3 0.251 0.049 2.92 6.26 
 Local state 0.3 0.240 0.060 2.75 0.02 
 Global state 0.3 0.240 0.060 2.76  - 
ts192/24/0.5 Static 0.5 0.300 0.200 0.961 133.24 
 At-arrival 0.5 0.110 0.390 0.772 87.47 
 Local state 0.5 0.188 0.312 0.427 3.66 
 Global state 0.5 0.189 0.311 0.412  - 
ts192/24/0.5 Static 0.8 0.345 0.455 0.0821 157.66 
 At-arrival 0.8 0.562 0.238 0.0326 2.17 
 Local state 0.8 0.568 0.232 0.032 1.52 
 Global state 0.8 0.568 0.232 0.0319  - 

 



maximum client start-up delay (reported as an output of the simulation), so as to achieve 

the desired total delivery cost. 

The results shown in Table III are consistent with our previous conclusions.  For 

example, in the considered cases with “medium” (0.5) and “high” (0.8) total delivery 

costs, the static policy is significantly outperformed by the dynamic policies.  Also, there 

are cases with significant performance differences between the at-arrival policy and the 

policies that defer selection decisions, while the performance differences between the 

local state and global state deferred selection policies are quite small.  

We now consider scenarios in which not all stub domains have a server.  As before, a 

server is considered “local” if it is in the same domain as the client group, and “remote” 

otherwise.  However, there are now client groups that do not have any local server, 

requiring extensions of our representative policies to accommodate such groups.  In 

general we try to modify the policies as little as possible.  For client groups with a local 

server, server selection operates as before.  Server selection for each client group m 

without a local server is done quite similarly to that for the local client groups of the 

server closest to m. 

Specifically, with our extended candidate static policy, a request from a client group 

m with no local server is directed to the same server that would serve a client request 

from a local client group of the server closest to m.6  With our extended candidate at-

arrival policy, a request from such a client group m is served by the closest server that has 

committed to serve a batch at the time of the request arrival, if any.  If no such batch is 

scheduled, a batch is scheduled at the same server as would be chosen if the request was 

from a client group local to the server closest to m.  With our extended candidate local 

and global state policies, the request is served with the first batch whose service is 

initiated while the respective client is waiting for service, such that there is no other batch 

whose service has been scheduled at a server closer to the client group and at a time prior 

to the request deadline.  If there is no batch whose service is initiated while the client is 

waiting, the request is served at the request deadline by the same server as would be 

chosen if the request was from a client group local to the server closest to m.  Note that in 

the case of the local state policy this would be the closest server itself. 

 

                                                           
6 When using expression (3), the ordering of the servers is according to the request rates of the local client 
groups only, but the expression is evaluated with the request rate of each client group m without a local server 
added to the request rate of the client groups that are local to the server closest to m. 



Figure 11 shows performance comparisons among the candidate policies for scenarios 

in which either (i) all stub domains have a server, or (ii) only half of the domains have a 

server.  The same methodology and topology classes are used, as used to generate Table 

III.  With the exception that the cost to the closest server (and hence the minimum 

achievable delivery cost) increases for scenarios with fewer servers, and thus the 

performance differences among the policies decrease somewhat, the relative performance 

differences are similar to those observed previously.   We recognize that the transit-stub 

topologies used here are not as complex as the topology of the Internet; yet, these 

topologies model what is found in the real world closer than our abstract model, which 

incorporates only first-order location information (local vs. remote). 

7. CONCLUSIONS 

This paper has considered the server selection problem in large-scale video-on-demand 

systems employing both server replication and request batching.  Rather than proposing a 

specific server selection policy, different classes of policies are compared in the context 

of an abstract system model that allows us to accurately delimit the performance that may 

 (c) 192 client groups (200 nodes in total),  (d) 192 client groups (200 nodes in total), 
24 out of 24 domains have a server.   12 out of 24 domains have a server. 

 
Fig. 11.  Performance relative to the candidate global state policy, for example scenarios using the GT-ITM 

topology generator. 

(a) 96 client groups (100 nodes in total),  (b) 96 client groups (100 nodes in total), 
12 out of 12 domains have a server.  6 out of 12 domains have a server. 

150

120

90

60

30

0

1.10.90.70.50.30.1

In
c
re

a
s
e
 i
n
 D

e
la

y
 (

%
)

Total Delivery Cost per Request

Static Policy
At-arrival Policy

Local State Policy

150

120

90

60

30

0

1.10.90.70.50.30.1

In
c
re

a
s
e
 i
n
 D

e
la

y
 (

%
)

Total Delivery Cost per Request

Static Policy
At-arrival Policy

Local State Policy

150

120

90

60

30

0

1.31.10.90.70.50.3

In
c
re

a
s
e
 i
n
 D

e
la

y
 (

%
)

Total Delivery Cost per Request

Static Policy
At-arrival Policy

Local State Policy

150

120

90

60

30

0

1.31.10.90.70.50.3

In
c
re

a
s
e
 i
n
 D

e
la

y
 (

%
)

Total Delivery Cost per Request

Static Policy
At-arrival Policy

Local State Policy



be achievable with policies from each class.  The considered policy classes have differing 

complexities and require differing amounts of state information to be communicated 

between the servers.  While it is obvious that policies with more state information are 

able to outperform policies with less state information, our results provide insights 

regarding the magnitudes of the potential performance benefits of more complex policies. 

Our findings suggest that server selection using dynamic system state information 

(rather than only proximities and average request rates) can potentially yield large 

improvements in performance.  Within the class of dynamic policies, use of deferred 

rather than at-arrival server selection has the potential to yield further substantial 

performance improvements, although only for fairly narrow ranges of model parameter 

values.  Finally, within the class of deferred, dynamic server selection policies, “local 

state” policies appear able to achieve reasonably close to the best possible performance.  

(These results are summarized in Figure 10.)  Simulation results using Internet-based 

transit-stub topologies are provided as supporting evidence that these conclusions are 

more generally applicable. 

Open problems include determination of the true optimal “online” performance, and 

bounding the performance of the different policy classes under more complex proximity 

and cost models. 

REFERENCES 

Aggarwal C., Wolf, J., and Yu, P. 1996. On Optimal Batching Policies for Video-on-Demand Storage Servers. 
In Proceedings of ICMCS ’96, Hiroshima, Japan, June 1996, pp. 253--258. 

Almeida, J. M., Eager, D. L., Vernon, M. K., and Wright, S. J. 2004. Minimizing Delivery Cost in Scalable 
Streaming Content Distribution Systems. IEEE Transactions on Multimedia 6, 2 (Apr. 2004), pp. 356--
365. 

Almeida, J. M., Krueger, J., Eager, D. L., and Vernon, M. K. 2001. Analysis of Educational Media Server 
Workloads. In Proceedings of NOSSDAV ’01, Port Jefferson, NY, June 2001, pp. 21--30. 

Carlsson, N., Eager, D. L., and Vernon, M. K. 2006. Multicast Protocols for Scalable On-demand Download. 
Performance Evaluation 63, 8/9 (Oct. 2006), pp. 864--891.  

Carlsson, N. 2006. Scalable Download Protocols. Ph.D. Thesis, University of Saskatchewan, Saskatoon, SK, 
Canada, Dec. 2006. 

Carter, R. L., and Crovella, M. E. 1997. Server Selection Using Dynamic Path Characterization in Wide-area 
Networks. In Proceedings of IEEE INFOCOM ’97, Kobe, Japan, Apr. 1997, pp 1014--1021. 

Chuang, J., Sirbu, M. 2001. Pricing Multicast Communication: A Cost Based Approach. Telecommunication 

Systems 17, 3 (July 2001), pp. 281--297. 
Costa, C. P., Cunha, Í. S., Vieira, A. B., Ramos, C. V., Rocha, M. M., Almeida, J. M., Ribeiro-Neto, B. A. 

2004. Analyzing Client Interactivity in Streaming Media. In Proceedings of WWW ’04, New York, NY, 
May 2004, pp. 534--543. 

Dan, A., Shahabuddin, P., Sitaram, D., and Towsley, D. 1995. Channel Allocation under Batching and VCR 
Control in Video-on-Demand Systems, Journal of Parallel and Distributed Computing (Special issue on 

multimedia processing and technology) 30, 2 (Nov. 1995), pp. 168--179.  
Dan, A., Sitaram, D., and Shahabuddin, P. 1994. Scheduling Policies for an On-demand Video Server with 

Batching. In Proceedings of ACM Multimedia ’94, San Francisco, CA, Oct. 1994, pp. 15--23. 
Dykeman, H. D., Ammar, M. H., and Wong, J. W. 1986. Scheduling Algorithms for Videotex Systems under 

Broadcast Delivery. In Proceedings of ICC ’86, Toronto, ON, Canada, June 1986. 
Eager, D. L., Vernon, M. K. and Zahorjan, J. 2000. Bandwidth Skimming: A Technique for Cost-Effective 

Video-on-Demand. In Proceedings of MMCN ’00, San Jose, CA, Jan. 2000, pp. 206--215. 
Fahmy, S., Kwon, M. 2007. Characterizing Overlay Multicast Networks and Their Costs. IEEE/ACM 

Transactions on Networking 15, 2 (Apr. 2007), pp. 373--386. 



Fei, Z., Ammar, M. H., and Zegura, E. W. 2002. Multicast Server Selection: Problems, Complexity and 
Solutions. IEEE Journal on Selected Areas in Communications 20, 7 (Sept. 2002), pp. 1399--1413.  

Guo, M., Ammar, M. H., and Zegura, E. W. 2002. Selecting among Replicated Batching Video-on-Demand 
Servers. In Proceedings of NOSSDAV ’02, Miami Beach, FL, May 2002, pp. 155--163. 

Jamin, S., Jin, C., Jin, Y., Raz, D., Shavitt, Y., and Zhang, L. 2000. On the Placement of Internet 
Instrumentation. In Proceedings of IEEE INFOCOM ’00, Tel Aviv, Israel, Mar. 2000, pp. 295--304. 

Jamin, S., Jin, C., Kurc, A., Raz, D., and Shavitt, Y. 2001. Constrained Mirror Placement on the Internet. Proc. 

IEEE INFOCOM ’01, Anchorage, AK, Apr. 2001, pp. 31--40. 
Johnsen, F. T., Hafsøe, T., Griwodz, C., Halvorsen, P. 2007. Workload Characterization for News-on-Demand 

Streaming Services. In Proceedings of IPCCC ’07, New Orleans, LA, Apr. 2007, pp. 314--323. 
Johnson, K. L., Carr, J. F., Day, M. S., and Kaashoek, F. 2006. The Measured Performance of Content 

Distribution Networks. Computer Communications 24, 2 (Feb. 2001), pp. 202--206.  
Lee, G. 2006. Will All of Us Get Our 15 Minutes on a YouTube Video? The Wall Street Journal Online, Aug. 

30, 2006. 
Qiu, L., Padmanabhan, V. N., and Voelker, G. M. 2001. On the Placement of Web Server Servers. In 

Proceedings of IEEE INFOCOM ’01, Anchorage, AK, Apr. 2001, pp. 1587--1596.  
Phillips, G. Shenker, S., Tangmunarunkit, H. 1999. Scaling of Multicast Trees: Comments on the Chuang-Sirbu 

Scaling Law. In Proceedings of ACM SIGCOMM ’99, Cambridge, MA, Aug. 1999, pp. 41--51. 
Ratnasamy, S., Handley, M., Karp, R., and Shenker, S. 2002. Topologically-aware Overlay Construction and 

Server Selection. In Proceedings of IEEE INFOCOM ’02, New York City, NY, Jun. 2002, pp. 1190--
1199. 

Rost, S., Byers, J., and Bestavros, A. 2001. The Cyclone Server Architecture: Streamlining Delivery of Popular 
Content. In Proceedings of WCW ’01, Boston, MA, June 2001, pp. 147--163. 

Tan, H., Eager, D. L., and Vernon, M. K. 2002. Delimiting the Range of Effectiveness of Scalable On-demand 
Streaming. In Proceedings of Performance ’02, Rome, Italy, Sept. 2002, pp. 387--410. 

USA Today. 2006. YouTube Serves up 100 Million Videos a Day Online, July 16, 2006. 
Wong, J. W. 1988. Broadcast Delivery. IEEE 76, 12 (Dec. 1988), pp. 1566--1577. 
Zegura, E. W., Ammar, M. H., Fei, Z., and Bhattacharjee, S. 2000. Application-layer Anycasting: a Server 

Selection Architecture and use in a Replicated Web Service. IEEE/ACM Transactions on Networking 8, 4 
(Aug. 2000), pp. 455--466. 

Zegura, E. W., Calvert, K., Bhattacharjee, S. 1996. How to Model an Internetwork. In Proceedings of IEEE 

INFOCOM ’96, San Francisco, CA, Mar. 1996, pp. 594--602. 

 
 
Received April 2008; revised July 2008; accepted September 2008. 
 
 
APPENDIX:  ASYMPTOTIC ANALYSIS OF DYNAMIC VS. STATIC SERVER 
SELECTION 

Assuming that the probability that a client could be batched with more than one other 

client is negligibly small, the optimal static policy is for each client to be served by the 

local server.  Under this assumption, a client request for the video at a time t will result in 

a new batch that is served at time t + D, if and only if no other request for the video 

occurred within (t – D, t]; otherwise, the new client will be batched with the already 

waiting client.  Using this observation, the total delivery cost per request in a system with 

identical client group request rates (i.e., λi = λ/N) can be calculated as 

( ) 



−≈= −

D
N

LLeC
DN λ

1/λ , (A.1) 

where a Taylor expansion has been used to obtain the final expression. 

As described in Section 3.4, the optimal dynamic policy is for each request to be 

served by the local server if no other client is waiting for service at the time of the 

request.  In the rare event that there is such a waiting client, the cost is minimized if the 



two clients are batched together.  Similar to the above analysis, the total delivery cost per 

request can be calculated as 

( ) 



 


 −

−−≈
−

−+= −−
Dc

N

N
LcL

N

N
eLeC

DND 1
1λ1

1
)1( /λλ . (A.2) 

Using the asymptotic approximations in (A.1) and (A.2), the maximum client start-up 

delay D using the optimal static and the optimal dynamic policy, respectively, can be 

derived as  





−≈

L

CN
Dstatic 1

λ
; 




−
−−

≈
L

C

NNc
Ddynamic 1

)/)1(1λ(

1
. (A.3) 

The percentage increase in delay with the optimal static policy, in comparison to that 

with the optimal dynamic policy ((Dstatic - Ddynamic)/Ddynamic × 100%), can then be easily 

derived as (N–1)(1–c) × 100%. 

 
 


