
PUFs in Security Protocols: Attack Models and Security Evaluations

Ulrich Rührmair

Computer Science Department
Technische Universität München

80333 München, Germany
ruehrmair@in.tum.de

Marten van Dijk

CSAIL
MIT

Cambridge, Massachusetts
marten@mit.edu

Abstract—In recent years, PUF-based schemes have not
only been suggested for the basic security tasks of tamper
sensitive key storage or system identification, but also for
more complex cryptographic protocols like oblivious transfer
(OT), bit commitment (BC), or key exchange (KE). In these
works, so-called “Strong PUFs” are regarded as a new, fun-
damental cryptographic primitive of their own, comparable to
the bounded storage model, quantum cryptography, or noise-
based cryptography. This paper continues this line of research,
investigating the correct adversarial attack model and the
actual security of such protocols.

In its first part, we define and compare different attack
models. They reach from a clean, first setting termed the
“stand-alone, good PUF model” to stronger scenarios like the
“bad PUF model” and the “PUF re-use model”. We argue why
these attack models are realistic, and that existing protocols
would be faced with them if used in practice. In the second part,
we execute exemplary security analyses of existing schemes in
the new attack models. The evaluated protocols include recent
schemes from Brzuska et al. published at Crypto 2011 [1]
and from Ostrovsky et al. [18]. While a number of protocols
are certainly secure in their own, original attack models, the
security of none of the considered protocols for OT, BC, or KE
is maintained in all of the new, realistic scenarios.

One consequence of our work is that the design of advanced
cryptographic PUF protocols needs to be strongly reconsidered.
Furthermore, it suggests that Strong PUFs require additional
hardware properties in order to be broadly usable in such
protocols: Firstly, they should ideally be “erasable”, meaning
that single PUF-responses can be erased without affecting other
responses. If the area efficient implementation of this feature
turns out to be difficult, new forms of Controlled PUFs [8] (such
as Logically Erasable and Logically Reconfigurable PUFs [13])
may suffice in certain applications. Secondly, PUFs should be
“certifiable”, meaning that one can verify that the PUF has been
produced faithfully and has not been manipulated in any way
afterwards. The combined implementation of these features
represents a pressing and challenging problem, which we pose
to the PUF hardware community in this work.

Keywords-(Strong) Physical Unclonable Functions; (Strong)
PUFs; Attack Models; Oblivious Transfer; Bit Commitment;
Key Exchange; Erasable PUFs; Certifiable PUFs

I. INTRODUCTION

Today’s electronic devices are mobile, cross-linked and

pervasive, which makes them a well-accessible target for

adversaries. The well-known protective cryptographic tech-

niques all rest on the concept of a secret binary key: They

presuppose that devices store a piece of digital information

that is, and remains, unknown to an adversary. It turns

out that this requirement is difficult to realize in practice.

Physical attacks such as invasive, semi-invasive or side-

channel attacks carried out by adversaries with one-time

access to the devices, as well as software attacks like

application programming interface (API) attacks, viruses or

Trojan horses, can lead to key exposure and security breaks.

As Ron Rivest emphasized in his keynote talk at CRYPTO

2011 [21], merely calling a bit string a “secret key” does

not make it secret, but rather identifies it as an interesting

target for the adversary.

Indeed, one main motivation for the development of

Physical Unclonable Functions (PUFs) was their promise

to better protect secret keys. A PUF is an (at least partly)

disordered physical system P that can be challenged with so-

called external stimuli or challenges c, upon which it reacts

with corresponding responses r. Contrary to standard digital

systems, these responses depend on the micro- or nanoscale

structural disorder of the PUF. It is assumed that this disorder

cannot be cloned or reproduced exactly, not even by the

PUF’s original manufacturer, and that it is unique to each

PUF. Any PUF P thus implements a unique and individual

function fP that maps challenges c to responses r = fP (c).
Thereby the tuples (c, r) are usually called the challenge-
response pairs (CRPs) of the PUF.

Due to its complex internal structure, a PUF can avoid

some of the shortcomings of classical digital keys. It is usu-

ally harder to read out, predict, or derive PUF-responses than

to obtain digital keys that are stored in non-volatile memory.

The PUF-responses are only generated when needed, which

means that no secret keys are present permanently in the

system in an easily accessible digital form. Finally, certain

types of PUFs are naturally tamper sensitive: Their exact

behavior depends on minuscule manufacturing irregularities,

often in different layers of the IC. Removing or penetrating

these layers will automatically change the PUF’s read-out

values. These facts have been exploited in the past for

different PUF-based security protocols. Prominent examples

include identification [20], [9], key exchange [20], and vari-

ous forms of (tamper sensitive) key storage and applications

thereof, such as intellectual property protection or read-proof

2013 IEEE Symposium on Security and Privacy

1081-6011/13 $26.00 © 2013 IEEE

DOI 10.1109/SP.2013.27

286

memory [11], [15], [31].

In recent years, however, also the use of PUFs in more ad-

vanced cryptographic protocols together with formal security

proofs has been investigated. In these protocols, PUFs with

a very large challenge set and a freely accessible challenge-

response interface are employed. This type of PUF some-

times has been referred to as Physical Random Function [9]

or Strong PUF [11], [29], [28], [23] in the literature (see

also Appendix A). 1 The (Strong) PUF is used similar to a

“physical random oracle” in these protocols, which is passed

on between the parties, and which can be read-out exactly by

the very party who currently holds physical possession of it.

Its input-output behavior is assumed to be so complex that its

response to a randomly chosen challenge cannot be predicted

numerically and without direct physical measurement, not

even by a person who had physical access to the Strong

PUF at earlier points in time.

In 2010, Rührmair [22] showed that oblivious transfer

can be realized between two parties by physically trans-

ferring a Strong PUF in this setting. He observed that via

the classical reductions of Kilian [14], this implies PUF-

based bit commitment and PUF-based secure multi-party

computations. In the same year, the first formal security

proof for a Strong PUF protocol was provided by Rührmair,

Busch and Katzenbeisser [23]. They present definitions and

a reductionist security proof for Strong PUF based identifica-

tion. In 2011, Rührmair, Jaeger and Algasinger [26] discuss

an attack on a PUF-based session key exchange scheme

of Tuyls and Skoric [32], in which the scheme is broken

under the provision that it is executed several times and

that the adversary gains access to the PUF more than once.

Their attack motivated our PUF re-use model. At CRYPTO

2011 Brzuska, Fischlin, Schröder and Katzenbeisser [1]

adapted Canetti’s universal composition (UC) framework

[3] to include PUFs, giving PUF-protocols for oblivious

transfer (OT), bit commitment (BC), and key exchange (KE).

At CHES 2012, Rührmair and van Dijk [25] presented a

quadratic attack on Brzuska et al.’s OT- and BC-protocols,

showing that their security is not maintained if optical PUFs

or electrical PUFs with challenge length of 64 bits are

used in their implementation. Two very recent eprint papers

continue this general line of work: Ostrovsky, Scafuro,

Visconti and Wadia [18] 2 investigate the use of so-called

“malicious PUFs”, and furthermore extend Brzuska et al.’s

communication model in the UC framework.In independent

and simultaneous work, van Dijk and Rührmair proposed a

model equivalent to “malicious PUFs” under the name “bad

PUF model”, and a new attack model termed “PUF re-use

model”. The authors devise the first impossibility results for

1We stress that the Weak/Strong PUF terminology, which was originally
introduced by Guajardo, Kumar, Schrijen and Tuyls [11], is certainly not
meant or to be misunderstood in a judgemental or pejorative manner.

2This paper has been accepted at Eurocrypt 2013 very recently, but we
had only access to the eprint version [18] at the time of writing.

PUF-protocols in these two models [6].
While the body of work on (Strong) PUFs in crypto-

graphic protocols is obviously growing, most papers use

different implicit attack models, making it difficult to com-

pare their results. There are situations where practically

relevant attacks exist on protocols that are provably secure

in other, perhaps mainly theoretical models. This motivates

a comparative, systematic study of attack models.
Scope of this Work: This paper continues the above

line of research. It investigates the UC-models of Brzuska

et al. [1] and Ostrovsky et al. [18], and introduces several

other, practically relevant attack scenarios. These include the

“stand-alone, good PUF model”, the “bad PUF model”,

and the “PUF re-use model”:

1) In the stand-alone, good PUF model, we assume that

there is only one single, isolated protocol execution,

and that all parties faithfully generate and never ma-

nipulate PUF hardware.

2) In the PUF re-use model, we extend this setting, and

allow adversaries multiple access to PUFs. Its mildest

form is the so-called one-time posterior access model

(PAM), which allows one-time access to the PUF after

a given protocol, and delimits the adversary to mere

CRP-measurement on the PUF.

3) In the bad PUF model, we allow fraudulent parties and

adversaries to manipulate PUF hardware and to use so-

called “bad PUFs”. These are PUFs which look like a

normal PUF from the outside, having a standard CRP-

interface etc., but which have extra properties that

allow cheating. A scenario equivalent to the bad PUF

model has been introduced under the name “malicious

PUFs” by Ostrovsky, Scafuro, Visconti and Wadia in

an eprint paper [18], their work being independent and

simultaneous to the first publication of the bad PUF

model by van Dijk and Rührmair in another eprint [6].

In order to illustrate the effect of the new models, we

carry out exemplary security analyses of several protocols

of Brzuska et al. [1] and Ostrovsky et al. [18] in the bad

PUF and PUF re-use model.
Our Results: Our analyses of existing protocols show

the following outcome.

1) A recent BC-protocol of Ostrovsky et al. [18] (which

we give in Appendix D) can be successfully attacked

in its own attack model of “malicious” or “bad” PUFs.

The attack is presented in Section III-E.

2) A recent OT protocol of Brzuska et al. [1] is insecure

in the PUF re-use model and in the bad PUF model.

The attacks are presented in Sections III-A and III-B.

3) A recent KE-protocol of Brzuska et al. [1] is insecure

in the PUF re-use model and in the combined PUF

re-use, bad PUF model. The respective attacks are

presented in Sections III-C and III-D.

The above, exemplary security evaluations are carried out in

full detail. In addition to that, we observe that several other

287

known PUF-protocols are insecure in the bad PUF and the

PUF re-use model. Since the attacks are very similar to the

abovementioned, we merely sketch them for space reasons

in Section III-F. They include the following:

4) An early OT-protocol of Rührmair [22] and an early

KE-protocol by van Dijk [5] are insecure in the bad

PUF and the PUF re-use model (see Section III-F).

5) An OT-protocol of Ostrovsky et al. [18] is insecure in

the bad PUF and the PUF re-use model (see Section

III-F).

6) Two special BC-protocols of Ostrovsky et al. [18],

and consequently their construction for UC-secure

computation built on these two protocols, are inse-

cure in the bad PUF model, too (see Section III-F).

The attacks require the use of more complex bad

PUF constructions such as Communicating PUFs and

Marionette PUFs, though (see Section II-E for an

explanation of the latter two).

Two important aspects should not go unnoticed. First,

apart from the attack on Ostrovsky et al.’s BC protocol

mentioned in item 1 above, all of the presented attacks are

outside the original attack models of the respective papers.

However, we argue in great detail in Section II why the

new attack scenarios must be considered realistic, and why

the protocols would be faced with them in any practically

relevant settings.

Secondly, our attacks in the bad PUF model require only

very mild forms of bad PUFs. The attack in item 1 utilizes a

bad PUF that implements a simple linear function (see Sec-

tion III-E). Furthermore, the attacks of items 2 to 5 merely

require so-called Challenge-Logging PUFs and Simulatable

PUFs. The only exception is the attack mentioned in item

6: It requires a more sophisticated type of PUFs, namely

Communicating PUFs (or special variants of it, such as

Marionette PUFs); see Section II-E.

Besides the above new findings, two already published

results should be added to complete the picture:

7) A PUF-based session key exchange protocol by

Tuyls and Skoric [32] has already been attacked by

Rührmair, Algasinger and Jaeger [26] under conditions

similar to the PUF re-use model (without explicitly

using this term). Their attack partly motivated the

formal introduction of the PUF re-use model in this

paper.

8) There are quadratic attacks on the security of the OT-

and BC-protocol of Brzuska et al. [1] which have been

presented at CHES 2012 by Rührmair and van Dijk

[25]. They show that the security of these protocols

is not maintained if optical PUFs or electrical PUFs

with challenge length of 64 bits are used in their

implementation.

As indicated by the above items (1) to (8), our analysis

focuses on the impact of our attack models for “advanced”

PUF protocols like OT, BC and KE. The elementary PUF use

as internal key storage element and in simple identification

protocols [19], [20] appears less affected (see Section V).

Consequences: The findings of our analysis are some-

what alarming. They suggest that attack models and pro-

tocol design for “advanced” Strong PUF protocols should

be strongly reconsidered. As PUFs are hardware systems

that can have hidden extra features, new strategies become

necessary here.

One possible countermeasure is to (i) allow additional

computational assumptions in the protocols; (ii) assume that

the PUFs can be shielded during the course of the protocol

in order to prevent communication between the bad PUF

and malicious parties; and (iii) to use each PUF only once,

destroying it at the end of the protocol in order to prevent

access by adversaries after the protocol. This path is taken by

Ostrovsky et al. in their work [18]. However, there are some

downsides associated with this approach: The introduction

of additional computational assumption takes away some

of the appeal of Strong PUFs as a new, independent cryp-

tographic primitive. The effective shielding of PUFs until

their destruction is hard to achieve in concurrent, complex

environments. And, perhaps most importantly, the one-time

use and destruction of the used PUFs after each protocol

execution is extremely costly in practice. It constitutes a

theoretically viable, but practically and commercially essen-

tially infeasible measure.

A second option to encounter our attacks is to add two

new hardware features to Strong PUFs. Firstly, one can

require that Strong PUF’s responses should be “erasable”,

meaning that single responses can be “erased” (made unread-

able for good). Ideally this erasure should not affect other

responses; if this requirement is hard to realize in practice,

then also concept similar to the logical reconfigurability

of PUFs [13] may be applicable in certain settings (see

Section IV). This step immunizes Strong PUF protocols

against PUF re-use attacks. Secondly, Strong PUFs should

be “certifiable”, meaning that parties holding a Strong PUF

can verify that the PUF has been produced faithfully and has

not been manipulated in any way afterwards. This guarantees

security in the bad PUF model. The combination of both

features can fully restore the applicability of Strong PUFs

in concurrent, complex application environments without

further restrictions (such as the above one-time use of PUFs).

The implementation of these features, however, constitutes

a challenging open problem that we pose to the community

in this work.

Organization of this paper: In Section II we discuss

and introduce various attack models for Strong PUF proto-

cols. In Section III, we evaluate the security of many existing

protocols in the new attack models. Section IV discusses

the consequences of our work, in particular the need for

Erasable PUFs and Certifiable PUFs. Section V summarizes

the paper.

288

The appendix provides extra information: In Appendix A

we give background on Strong PUFs to the readers who are

not familiar with this concept. In Appendices B, C and D we

provide some of the analyzed PUF-protocols from Brzuska

et al. and Ostrovsky et al. for the convenience of the readers.

II. ATTACK MODELS FOR STRONG PUF PROTOCOLS

Building on the general description of Strong PUF pro-

tocols in the introduction and also in Appendix A, we will

now describe a number of attack scenarios for Strong PUF

protocols.

A. The Stand-Alone, Good PUF Model

In the stand-alone, good PUF model, we make the fol-

lowing assumptions:

1) The protocol is executed only once in a stand-alone

setting, meaning that the protocol is never re-run, also

not any (sub-)sessions of it. The employed PUF(s)

cannot be accessed or communicated with after the

end of the protocol.

2) The employed PUFs are all “good PUFs”, meaning

that are drawn faithfully from a previously specified

distribution of PUFs and are not modified in any

way afterwards, neither by malicious players nor by

external adversaries. They only have the properties

and functionalities expected by the honest protocol

participants.

It seems that several early Strong PUF protocols were

more or less implicitly designed for a stand-alone, good PUF

setting, for example van Dijk’s key exchange scheme [5]

and Rührmair’s OT protocol [22]. The stand-alone model

will neither be realistic nor efficiently realizable in most

practical PUF-applications, but makes a clean first scenario

for studying the security of PUF-protocols. For practical

appliances it needs to be extended, as described below.

B. The UC-Model of Brzuska et al.

In order to model the execution of multiple PUF proto-

cols, Brzuska, Fischlin, Schröder and Katzenbeisser [1], [2]

proposed one possible method how Canetti’s UC-framework

[3] can be adapted to PUFs. For a detailed treatment we refer

the readers to the original papers [1], [2], but summarize the

features of their model that are most relevant for us below.

1) It is assumed that all used PUFs are drawn faithfully

from a previously specified distribution of PUFs, a

so-called “PUF-family”, and are not modified in any

way afterwards, neither by malicious players nor by

external adversaries. They only have the properties and

functionalities that honest protocol participants expect

from them. This feature is in common with the above

stand-alone, good PUF model.

2) Only one PUF can be used per protocol session sid.

The PUF is bound to this protocol session and cannot

be used in another session.

3) The adversary does not have physical access to the

PUF between the different subsessions ssid of a

protocol.

For completeness we indicate where the above features

are specified in [2]: Features 1 and 2 directly follow from

the specification of the ideal PUF-functionality FPUF, in

particular the first and third dotted item of Fig. 2 of [2].

Regarding feature 2, the functionality initPUF specifies that

FPUF turns into the waiting state if the session sid already

contains a PUF. And the functionality handoverPUF specifies

that sid remains unchanged in the handover, i.e., the PUF

remains in the same session sid after the handover process.

Feature 3 follows from the treatment of the subsessions ssid

throughout their paper [2]. Examples include Figs. 3 to 8,

the protocols given in Figs. 3 and 7, or the proof of Theorem

7.1, where the adversary is only allowed to access the PUF

in the set-up phase, but not during or between the different

subsessions.

Please note that the above features are not rudimentary

aspects of the model of [1], [2], but are central to the security

of their protocols and the validity of their security proofs.

C. The UC-Model of Ostrovsky et al.

Ostrovsky, Scafuro, Visconti and Wadia modify the UC-

model of Brzuska et al. in a number of aspects in a recent

eprint [18]. Among other things, they suggest an attack

scenario termed “malicious PUFs”. It is equivalent to the

“bad PUF model” proposed independently by van Dijk and

Rührmair [6], which is detailed in Section II-E of this paper;

both models seem to have been developed independently and

simultaneously.

The two author groups use their equivalent models for

different purposes, though: Ostrovsky et al. give several

protocols that are purportedly still secure under use of

malicious/bad PUFs. Most of their constructions employ

three extra assumptions: (i) they use additional, classical
computational assumptions alongside with PUFs; (ii) they

assume that the bad PUFs do not communicate with the

malicious parties (compare Section II-E); and (iii) they

assume that the PUFs are used only once, and can be kept

away for good from the adversary or destroyed afterwards.

On the other hand, van Dijk and Rührmair show that if one

wants to design PUF-protocols that solely rest on the security

of the employed PUFs, i.e., without additional computational

assumptions, then the existence of malicious/bad PUFs leads

to hard impossibility results.

We remark that in practice, the above assumption (iii)

would have to be realized by destroying the PUF after each

protocol, or by locking it away for good. In commercial

applications, such a measure would probably be too costly

and economically infeasible. The PUF re-use model in the

next Section II-D investigates the consequences if it cannot

be realized in practice.

289

D. The PUF Re-Use Model

Let us now step by step extend the model of Brzuska et

al. [1], [2], and partly also of Ostrovsky et al. [18]. One

implicit assumption of Brzuska et al. is that the adversary

cannot access the PUF between different (sub-)sessions, and

that the PUF is never re-used in another protocol session (see

Section II-B). However, this assumption seems difficult to

guarantee in many natural PUF appliances.

To see this, consider the well-established application

scenario of a PUF on a bank card, which has been issued

by a central authority CA and is subsequently used in

different terminals [20], [19]. To be more concrete, let us

assume that the PUF is repeatedly employed for a session

key exchange between the CA and the smart-card/terminals.

Since an adversary could set up fake terminals, add fake

readers to the card slots of terminals, or gain temporary

possession of the bank card when it is employed in different

contexts (for example when the user is paying with it), a

realistic assumption is that an adversary will have repeated
temporary physical access to the PUF between the different

key exchange (sub-)sessions. However, such access is not

foreseen in the models and protocols of Brzuska et al.

The example illustrates that in practice, adversaries and

malicious players may gain access to the PUF at least oc-

casionally between different (sub-)sessions. This constitutes

a new, relevant attack point and motivates an extension of

the model of Brzuska et al. [1]. Ostrovsky et al. [18] deal

with this observation in their own manner: As described

in Section II-C, they implicitly assume a one-time use of

the PUF. Such one-time use, and subsequent destruction

or locking away of the PUF, results in substantial practical

costs, however. It constitutes a theoretically acceptable, but

at the same time commercially somewhat infeasible measure.

These considerations motivate the following attack model:

The PUF Re-Use Model: We assume that at least a

subset of the PUFs employed in the original protocol is used

on more than one occasion, i.e., not all PUFs are used only

once and destroyed immediately afterwards. The adversary

or malicious parties have access to the PUF more than once,

for example before, after or between different protocols or

protocol (sub-)sessions (if there are any).

The description leaves some detail open, the simple reason

being that many differing variants of the PUF re-use model

are possible. For example, one can distinguish between the

type of adversarial access: (i) full physical access, where the

adversary can attempt arbitrary actions on the PUF, including

arbitrary measurements or active physical modification of

the PUF, or (ii) CRP access, where the adversary’s actions

are limited to the mere measurement of CRPs. One can also

differentiate the number of occasions on which access is

possible; or the relative time of the access, such as before

or after the attacked protocol; or the number of CRPs the

adversaries can read out during his access time. One can

further distinguish between different types of re-use: Is the

PUF re-used by the same parties in another instance of

the same protocol, or by entirely new parties in a different

protocol? Instead of declining through all possible scenarios

formally here, we suggest that such differentiation should

be made in the respective security analyses directly.

There is only one specific instantion we would like to

define explicitly here, since it has special relevance for us.

The One-Time Posterior Access Model (PAM): In the

PAM, we assume that the adversary has got access to at

least a subset of all PUFs employed in the original protocol

on exactly one occasion after the end of the protocol (or

protocol (sub-)session, if there are any), and is furthermore

limited to the measurement of standard CRPs.

Please note that the PAM is arguably the mildest possible

form of the PUF re-use model. Still, it suffices to success-

fully attack many existing schemes (see Section III).

E. The Bad PUF Model

One other central assumption in the UC-model of Brzuska

et al. is that the players are not allowed to use “bad”, fraud-

ulent PUF-hardware with properties beyond the expected

PUF functionality. This assumption can again be difficult

to uphold in practice, as has been observed independently

by Ostrovsky et al. [18] (see Section II-C).

To motivate bad PUFs, consider once more the earlier

smart-card example. Let us assume that the CA issues the

card that carries the PUF, and that the CA and the smart-

card/terminals want to run an OT protocol in this setting.

We must assume that the CA is not fully trusted by the

smart-card/terminals (note that if the CA was fully trusted,

then the smart-card/terminals would not require an OT

implementation). However, a malicious CA can cheat easily

in this scenario by putting a malicious PUF-hardware (a “bad

PUF”) instead of a normal PUF on the smart card. To name

one example, the CA could replace the normal PUF by a

pseudo random function (PRF) or a pseudo-random number

generator (PRNG) with a seed s known to the CA. If the

PRF will have the same, digital input-output interface as

the normal PUF, such a step will remain unnoticed. Still, it

enables the CA to simulate and predict all responses of this

“bad PUF” without being in physical possession of it, and

breaks one of the essential security features of the purported

“PUF” on the bankcard, namely its unpredictability. It is not

too difficult to see that under the assumption that the CA
replaces the PUF by a PRF with a seed known to the CA,

the well-known OT protocols of Rührmair [22] and Brzuska

et al. [1] are no longer secure. If the CA acts as OT-receiver,

for example, it can learn both bits of the OT-sender (see

Section III-B for details).

Abstracting from this specific example, the general prob-

lem is that in a typical two-party protocol, one of the parties

can fabricate the PUF, while the other party may only

290

use the PUF “from the outside” via a (digital) challenge-

response interface. It is hard to verify that there is no

unexpected, malicious functionality on the other side of the

interface. From a practical perspective, this observation is

most severe for electrical Strong PUFs, which are the most

widely distributed Strong PUFs today. But it also holds for

integrated optical PUFs as given by Tuyls and Skoric [32].

This motivates a systematic study of bad PUF attacks.

Generally, we denote by the term “bad PUF” a hardware

system that looks like a proper PUF from the outside,

exhibiting a input-output behavior indistinguishable from a

proper PUF, but which possesses secret, additional properties

that allow cheating. Its assumed similar input-output behav-

ior shall make it infeasible to distinguish a bad PUF from

a proper PUF by digital challenge-response measurements.

In order to detect bad PUFs, honest parties would need to

physically open the PUF-hardware and to inspect it thor-

oughly, as a regular and dedicated step of the protocol. While

detection of bad PUFs would not even be guaranteed by such

a step (adversaries would presumably develop obfuscation

techniques), it would surely destroy the opened PUF, even

if it was non-manipulated. In addition, the inspection step

would be beyond the capabilities of an average user.

This makes bad PUFs a very simple and effective way to

cheat. From an abstract perspective, bad PUFs exploit the

fact that PUFs are real physical objects. Unlike the clean bi-

nary strings exchanged in classical cryptographic protocols,

these objects may bring about unwanted properties. They can

act as real, physical “Trojans” and other malicious hardware.

Even though there is a practically infinite number of possi-

bilities how Strong PUFs can act, two types of bad PUFs that

we focus on in this paper are (i) PUFs that are numerically

simulatable by their manufacturer (but by no one else),

and (ii) bad PUFs that “log” or record all challenges that

have been applied to them. Both are particularly easy to

implement, but suffice for attacks on existing protocols.

Simulatable Bad PUFs (SIM-PUFs): A simulatable

PUF (or SIM-PUF, for short) is a hardware system that looks

like a PUF, having a challenge-response interface etc., but

which possesses a simulation algorithm Sim. Sim takes as

input any challenge c, and computes in polynomial time the

corresponding response r. It is assumed that Sim has been

derived during the fabrication of the simulatable PUF via

the special construction of the PUF. External parties who

merely have access to the simulatable PUF after fabrication

are not able to derive a simulation model.

In practice there are several possibilities for implementing

simulatable PUFs. A straightforward and very efficient way

is to use a trapdoor one-way permutation or pseudo random

function gs based on a short digital seed s. The hardware

of the simulatable PUF simply implements gs. Whenever

the PUF is interrogated over the digital interface with a

challenge c, the hardware outputs the response r = gs(c).
The party who manufactured the PUF knows both g as

well as seed s and can easily simulate the input-output be-

havior of the PUF. Furthermore, if a cryptographically hard

pseudo-random function is used, it is practically infeasible

for the honest parties to distinguish the bad PUF from a

proper PUF with a real, random output. 3

Challenge-Logging Bad PUFs (CL-PUFs): A second

feature that bad PUFs may possess is challenge-logging.

A challenge-logging PUF (CL-PUF for short) with secret

challenge c∗, also called the access challenge, is a malicious

piece of hardware that looks like a proper PUF from the

outside (with a challenge-response interface etc.), but which

possesses the following properties:

1) Except for one input challenge c∗, the challenge-

response behavior of a CL-PUF is exactly like that of

an underlying, “normal” PUF. Whenever a challenge

c unequal to c∗ is applied to the CL-PUF via its

interface, the challenge is passed on to the underlying

PUF. The corresponding response r is obtained from

the latter, and the CL-PUF uses this response r as its

output.

2) The CL-PUF has a non-volatile memory (NVM) mod-

ule in which it automatically records all challenges that

have been applied to it.

3) When challenge c∗ is applied to the CL-PUF, it

does not pass on this challenge to the underlying

PUF as usual. Instead, the CL-PUF outputs the entire

content of the non-volatile memory module (i.e., all

challenges that have previously been applied to it)

via the challenge-response interface, and erases the

content of the NVM module.

If the PUF has a large, preferably exponential challenge

set, then the probability that someone by chance inputs c∗

and detects the challenge-logging feature is negligibly small.

Please note that many alternative ways for activating the

output mode of the challenge-logger are conceivable, such

as radiowave triggering etc., and even entirely other forms

of logging and read-out “modes” of the logger are possible

(see below).

CL-PUFs can be implemented particularly easily in any

integrated optical or electrical PUFs. But even for Pappu’s

optical, non-integrated PUF [20] challenge logging appears

feasible. Imagine a special, transparent, additional layer on

top of Pappu’s light scattering token, which is altered by

the incoming laser light. The alteration of the layer would

3The replacement of the internals of a PUF by a pseudo-random
function is particularly hard to detect for any integrated PUFs (be they
optical or electrical), since they communicate with external parties only
via their integrated, digital CRP-interface; the PUF is never measured
directly by the external parties. Such integrated PUFs constitute the clear
majority of currently investigated PUFs. But even for Pappu’s optical PUF,
simulatability can be an issue: It is by no means ruled out that the adversary
builds a light scattering token that has a particular, well-ordered structure,
which leads to simple and simulatable outputs. Current protocols would not
even detect if the adversary used an “empty” plastic token, which did not
contain any scatterers at all, and which was trivially simulatable.

291

not necessarily be visible by the sheer eye, but could reveal

itself only under UV-light or other special illumination. Such

a sensitive layer would indicate the point of incidence (and

perhaps even the angle) of the challenge, i.e., it would show

some form challenge logging.

Finally, we observe that there are two fundamentally

different types of CL-PUFs: PUFs that have been malicously

constructed with a challenge-logger from the start; and CL-

PUFs where a logger-module has been added externally

by malicious parties after their construction. The former

seem yet more easy to implement, but also the second type

is a viable attack strategy. In any way, CL-PUFs act as

real, physical Trojans: They record and store security-critical

information and pass it on to the adversary when he holds

possession of the PUF again.

Discussion of Potential Countermeasures: A straight-

forward countermeasure against bad PUFs seems to “authen-

ticate” or “certify” the PUF in one way or the other in order

to detect bad PUFs. For example, a trusted authority (TA)

could send a list of CRPs as a “fingerprint” of a genuine

PUF to the players before any protocol execution. On closer

inspection, however, this countermeasure turns out to be very

problematic, and pretty much falls apart.

First of all, the use of a TA that needs to be called in

every single protocol session would make the use of PUFs in

security protocols obsolete. The aspired functionalities could

then be implemented in a much simpler fashion directly

via the TA, avoiding the significant effort of physically

transferring a PUF during the protocol. Secondly, CRP-based

authentication does not rule out externally added malicious

hardware, such as external challenge loggers. The latter do

not affect the CRP-behavior of an existing (and previously

certified) PUF.

Meaningful “certification” of a PUF hence requires not

only to “identify” a PUF. It also must (i) exclude that

external parts have been added to the PUF or that the

PUF-hardware has been manipulated; and (ii) it should

work offline, i.e., it must avoid calling a central TA in

every execution of the protocol. Currently, no protocols

or PUF implementations that realize these two properties

have been considered in the literature. Given the current

state of the field, it seems hard to design such methods,

even more so at low costs. Physical inspection of the inner

configuration of the PUF as a regular protocol step seems no

viable possibility, as discussed in the previous paragraphs.

Furthermore, if efficient methods for certifying the integrity

of (PUF-)hardware existed, then the same methods could be

applied to protect security modules built on classical keys,

making PUFs obsolete. Once more, this makes bad PUFs a

realistic and efficient method to cheat.

Brzuska et al. [1] indeed assume certification of the PUF,

but do not give protocols or methods how it can be achieved.

For the above reasons, we believe that efficient certification

is currently infeasible in practice. This holds even more

if malicious players, and not only external adversaries,

generate and use manipulated PUFs. We comment that in

a typical two-party protocol, a PUF originating from a

malicious party must be considered as nothing else than an

untrusted piece of hardware that stems from the adversary.

Advanced Bad PUFs: How “bad” can a PUF be?

Having focused on simple features in the last section (which

still suffice to attack many existing protocols), we will play

with a number of more sophisticated properties now. The

purpose of our discussion is to complement the picture; we

will not fully work out every construction in detail.

To start with, it is of course possible to imagine bad

PUFs that communicate information (e.g., wirelessly) to

the malicious party. Such a “Communicating PUF” could

transmit the challenge, the response, or both, to fraudulent

parties. The transmission could be carried out in real time, or

may be delayed to later, when the PUF is released from the

control of the honest parties. It is relatively straightforward

that such a feature destroys the security of all existing

protocols. Necessary, but also very costly countermeasures

were shielding the PUF during the protocol and destroying

them immediately afterwards.

Another advanced bad PUF example is a PUF which

transmits all challenges to the malicious party in real-time;

waits for the malicious party to individually select and return

a response Rbad; and then outputs Rbad (as if it was the

natural response of the PUF itself). The latter type of PUF

could be called the Marionette PUF for obvious reasons.

It seems clear that there is no security benefit of using

PUFs in cryptographic protocols if the adversary can use

Marionette PUFs. Their employment makes PUFs useless,

in the sense that for any protocol that uses PUFs and which

securely implements a task T even if Marionette PUFs are

employed, there will be a protocol that securely implements

T and does not use the (Marionette) PUFs at all. Therefore

the existence and use of Marionette PUFs must be ruled

out in most advanced Strong PUF protocols such as OT,

BC and KE by whatever means. One potential, but again

costly countermeasure to prevent Marionette PUFs would

be the shielding of the PUF during the entire course of the

protocol.

A third example are bad PUFs that adapt or alter their

response behavior over time. This adaption could be a func-

tion of the challenge that is applied to them, or a function

of all previous challenges. Other variants of adaptive bad

PUF behavior include the following: (i) The PUF could

automatically alter its response behavior after a certain time

period t0. This means that the malicious party can influence

the protocol by delaying the protocol; note that this is

explicitly allowed in the UC-model. (ii) The PUF could

change its CRPs upon a wireless triggering signal it receives.

(iii) The PUF could even change upon a certain, triggering

challenge that is applied to it. This allowed the malicious

party to influence the bad PUF even while it is not in her

292

possession, simply by causing the honest party to apply a

certain challenge to the PUF.

A final example are bad PUFs that implement arbitrary

digital functions f with special, fraudulent properties. Sim-

ulatable PUFs (where f is simulatable and the simulation

code is known to the malicious party) are one special case

of this approach. But the function f could have other handy

properties for the adversary. For example, it might be a

function for which the computation of inverses is simple.

This case is actually relevant for our attack in Section III-E.

Many other examples of advanced bad PUFs are conceiv-

able. Actually, any such bad PUF types have to be taken

into consideration when the security of a PUF protocol is

analyzed. But since the earlier, simpler types of SIM-PUFs

and CL-PUFs already suffice for attacking many protocols,

we will not deal too much with advanced bad PUFs further

in this paper.

A Final Thought on Bad PUFs: Let us conclude this

section by a general thought. Why are bad PUFs so power-

ful? Consider the following line of thought: Suppose that a

PUF-protocol utilizes some property P of the employed PUF

to achieve its security. Then there will (almost with certainty)

be a bad PUF which is hard to recognize from the outside,

but which does not possess the property P . The security of

the protocol and the validity of the proof will no longer be

guaranteed if the adversary uses this bad PUF not possessing

P . This makes bad PUF a broadly applicable method of

cheating. The cost of implementing the imagined bad PUF

type determines how practically relevant the resulting attack

is; we focused on relatively easily implementable variants

of bad PUFs in this paper.

III. SECURITY EVALUATIONS IN THE PUF RE-USE AND

BAD PUF MODEL

We will now conduct three detailed, exemplary security

analyses in the new attack models. We selected the PUF-

based OT- and KE-protocol of Brzuska et al. from Crypto

2011 [1] and the recent BC-protocol by Ostrovsky et al. [18]

to this end. The protocols are given in a simplified form in

Appendices B, C and D for the convenience of the readers.

The notation employed in our attacks actually refers to these

appendices. We would like to stress that the first two protocol

by Brzuska et al. are secure in their own, original attack

model (apart from a recent attack on Brzuska’s OT-Protocol

by Rührmair and van Dijk [25]). But, as argued earlier, the

protocols would likely be faced with the PUF re-use model

and the bad PUF model once they were used in practice.

In opposition to this, the BC-protocol of Ostrovsky et al.

is actually attacked in their own, original “malicious” PUF

model.

A. OT-Protocol of Brzuska et al. in the PUF Re-Use Model

We start by analyzing the OT-Protocol of Bruzska et al.

[1] (see Protocol 1 in Appendix B) in the PUF re-use model,

or, to be more precise, in the mildest form of the PUF

re-use model, the PAM. Our attack rests on the following

assumptions:

1) After the initialization phase of the OT-Protocol 1, dif-

ferent subsessions of the protocol are run. We assume

that there is a subsession ssid with the following

properties:

• Eve was able to eavesdrop the binary communi-

cation between the sender and the receiver in the

subsession ssid.

• Eve can read-out CRPs from the PUF after the

end of the subsession ssid, for example before

a new subsession ssid′ is started. (Note that this

assumption is derived from the PAM.)

Under these provisions, Eve can learn both bits s0 and s1
used by the sender in subsession ssid. This breaks the

security of this subsession. The attack works as follows:

1) When the subsession ssid is run, Eve eavesdrops the

messages in Steps 3, 4 and 6. She therefore learns

the values x0, x1, v (:= c⊕ xb), S0 (:= s0 ⊕ r0) and

S1 (:= s1 ⊕ r1). Thereby r0 and r1 are the responses

to the challenges c0(:= v ⊕ x0) and c1(:= v ⊕ x1).
2) When Eve has got physical access to the PUF after the

subsession ssid, she computes the challenges c0 :=
v ⊕ x0 and c1 := v ⊕ x1 herself. She applies these

challenges to the PUF, and obtains the responses r0
and r1.

3) Eve derives s0 and s1 by computing the values S0⊕r0
= s0⊕ r0⊕ r0 = s0 and S1⊕ r1 = s1⊕ r1⊕ r1 = s1.

This breaks the security of the subsession ssid.

Please note that the role of Eve can also be played by a

malicous receiver. Interestingly, an attacker cannot learn the

receiver’s choice bit b by a similar attack, since the secrecy

of the choice bit is unconditional and does not rest on the

employed PUF.

B. OT-Protocol of Brzuska et al. in the Bad PUF Model

Let us now describe an attack on the OT-Protocol of

Brzuska et al. [1] (see Protocol 1 in Appendix B) in the

bad PUF model, which works under the following single

assumption:

1) The receiver can hand over a simulatable bad PUF

instead of a normal PUF in the initialization phase,

and furthermore possesses a simulation algorithm for

this PUF.

The attack itself works as follows:

1) The receiver follows Protocol 1 as specified, and

carries out a subsession sid.

2) When the subsession is completed, the receiver com-

putes the two challenges c0 := v⊕x0 and c1 := v⊕x1.

He can do so since he knows v, x0 and x1 from earlier

protocol steps.

293

3) The receiver uses his simulation algorithm in order

to compute the two responses r0 and r1 which corre-

spond to the challenges c0 and c1.

4) The receiver derives both values s0 and s1 by com-

puting S0 ⊕ r0 = s0 ⊕ r0 ⊕ r0 = s0 and S1 ⊕ r1 =
s1⊕r1⊕r1 = s1. He can do so since he knows S0, S1

from step 6 of the OT-protocol.

The Sender hence learns both strings s0 and s1, breaking the

security of the protocol. We comment that the attack only

requires the use of simulatable PUFs by the receiver, which

are particularly easy to implement.

C. KE-Protocol of Brzuska et al. in the PUF Re-Use Model

We describe below how the KE-Protocol of Brzuska et al.

[1] (see Protocol 2 in Appendix C) can be attacked in the

PUF re-use model, or more, precisely, in its mildest form,

the PAM. The attack is quite straightforward and rests on

the following assumptions:

1) After the initialization phase of Protocol 2, different

subsessions of the protocol are run. We assume that

there is a subsession ssid with the following proper-

ties:

• Eve was able to eavesdrop the binary commu-

nication between the Alice and the Bob in the

subsession ssid.

• Eve can read-out CRPs from the PUF after the

end of the subsession ssid, for example before a

new subsession ssid′ is started.

Under these provisions, Eve can learn the exchanged key K.

The attack is relatively obvious and works as follows:

1) When the subsession ssid is run, Eve eavesdrops step

2 and learns the values c and d.

2) When Eve has got physical access to the PUF after

subsession ssid, she applies the challenge c to the

PUF, measures the (noisy) response r′, and derives

the secret st from r′ by the help of d.

As st = K in subsession ssid, this breaks the security of

this subsession.

D. KE-Protocol of Brzuska et al. in the Combined PUF Re-
Use and Bad PUF Model

Let us continue examining the security of the KE-Protocol

of Brzuska et al. [1] (Protocol 2 in Appendix C). Since in a

simple stand-alone scenario neither Alice nor Bob have an

incentive to use bad PUFs, this is a welcome opportunity to

illustrate the impact of a combined attack model: namely a

combination of the PUF re-use and the bad PUF model.

We make the following assumptions:

1) The KE protocol is executed between Alice and Bob

(including an initialization phase and an arbitrary

number of subsessions), and later between Bob and

Claire (again including an initialization phase with the
same PUF and later subsessions).

2) Alice plays maliciously, and uses a challenge-logging

PUF in her initialization phase.

Under this assumption, Alice can learn the key exchanged

by Bob and Claire as follows:

1) When the PUF is in transition from Bob to Claire

in step 3 of the initialization phase of their protocol,

Alice gains physical access to the PUF.

2) Alice reads out the last previously applied challenge

c, applies it to the PUF, and obtains response r.

3) In the next subsession phase, Alice intercepts the

helper data d that is sent from Bob to Claire in step

2.

4) Alice utilizes her knowledge of r and d to infer st =
K.

Alice hence learns the key K exchanged by Bob and

Claire, breaking the protocol. Let us mention a few simple

modifications of the attack: Alice could alternatively use a

simulatable PUF (instead of a CL-PUF), leading to a similar

attack. If the PUF is obtained by Alice from a third party

manufacturer, then the manufacturer can mount the same

attack by using CL- or simulatable PUFs. Finally, if an

external adversary Eve is able to add a challenge logger

while the PUF is in transit from Alice to Bob, then she

can derive both Alice’s and Bob’s key as well as Bob’s and

Claire’s key by reading out the challenge logger when the

PUF is in transit from Bob to Claire. The details of these

variants are similar to the attack above and are left to the

reader.

E. An Unconditional BC-Protocol of Ostrovsky et al. in the
Bad PUF Model

Ostrovsky et al. [18] describe an unconditional BC-

protocol (i.e., one that does not use any additional compu-

tational assumptions) in Fig. 6 of their paper (see Protocol

3 in Appendix D). The protocol is purportedly secure under

the use of malicious/bad PUFs. However, we describe below

a very simple bad PUF type that allows cheating. The bad

PUF is not even required to communicate with the malicious

party.

Our attack makes the following assumption:

1) The committer Cuncon uses/initializes a bad PUF in

step 1 of the protocol (instead of a good PUF). The bad

PUF has the following feature: Instead of outputting

essentially random and unpredictable responses, it

implements a linear function in its challenge-response

behavior: For a fixed value X , it maps every challenge

C to the output R := C ⊕X .

The attack then proceeds as follows:

1) The committer Cuncon initializes the above bad PUF

in step 1 of the protocol.

2) In order to open to bit b = 0 in the decommitment

phase, the committer sends the challenge st ⊕ X . In

294

order to open to bit b=1, the committer sends the

challenge r ⊕ st⊕X .

In the first case, the (bad) PUF outputs st⊕X⊕X =
st, meaning that the receiver accepts the opening phase

for b = 0.

In the second case, the (bad) PUF outputs r ⊕ st ⊕
X ⊕ X = r ⊕ st, implying that the receiver accepts

the opening phase for b = 1.

This breaks the security of the protocol under the assump-

tion that bad/malicious PUFs can be used. The attack does

not require elaborate bad PUF behavior (such as communi-

cation between the PUF and the malicious party), as already

remarked above, but can be implemented relatively simply.

Instead of using the specific linear function mentioned

above, the attack can also be built on any other bad PUF

that implements an arbitrary, efficiently invertible function

f in its challenge-response behavior.

F. Security of Other Protocols in the PUF Re-Use Model
and Bad PUF Model

For reasons of brevity, we focused on the three above

protocols in our detailed security analysis. Other Strong PUF

protocols for OT, BC or KE can be attacked in similar

manners. Since the attacks are analog to the work in the

above sections, we merely sketch and summarize them in

the following list:

1) The OT-protocol of Rührmair [22] is no longer secure

in the bad PUF and PUF re-use model, and similar

considerations hold for the key exchange protocol of

van Dijk [5]. This can be seen relatively easily, since

the attacks are essentially equivalent to the attacks in

the last subsetions on Brzuska et al.’s OT and KE

protocol.

2) It is not too difficult to see that the unconditional OT-

protocol of Ostrovsky et al. for honest PUFs (see Fig.

7 of [18]) is not secure in the PUF re-use model. If the

receiver of the protocol gets access to the used PUFs

after the end of the protocol, he can learn both strings

s0 and s1.

Furthermore, if the sender uses bad, challenge-logging

PUFs instead of honest PUFs as sidS1, . . . , sid
S
2k, then

he can obviously learn the value of the bi, which

allows him to derive the the choice bit b from the

values b′ij which he receives in step 4 of the protocol.

Actually, even something weaker suffices: If only one

of the PUFs sidSj for j ∈ S is challenge logging, then

b is revealed. Since S ⊂ [2k] is a randomly chosen

subset of size k, the latter condition can be enforced

by merely making k + 1 of the 2k PUFs challenge

logging. In other words, the attack also works if only

a strict subset of all PUFs are bad.

3) The statistically hiding, straight-line extractable bit

commitment scheme of Fig. 10 of Ostrovsky et al.

[18], and the statistically binding, straight-line ex-

tractable equivocal commitment scheme of Fig. 11 of

the same paper, can be attacked by communicating

bad PUFs, which maliciously transfer the challenges

applied to the PUF in the commit phase to the receiver.

This allows the receiver to learn the committed bit

before the reveal phase.

We stress once more that Ostrovsky et al. seem to

implicitly assume that there is no communication

between the malicious party and the PUF, i.e., we are

again extending the original attack model of Ostrovsky

et al. here. However, as discussed earlier, Communi-

cating PUFs seem hard to prevent in certain settings. If

they are considered realistic, then also the construction

for UC-secure computation of Ostrovsky et al., which

is built on the commitment schemes in Figs. 10 and

11 of [18], breaks down.

G. Summary of Our Security Discussion

To summarize, all Strong PUF protocols for OT, BC and

KE examined in this paper can be attacked in variants of the

PUF re-use model, the bad PUF model, or the combined

PUF re-use, bad PUF model. Only one of these attacks

(see item 3 of Section III-F above) requires Communicat-

ing PUFs, which are somewhat complex. The majority of

attacks, however, can be carried out in simple variants of

the bad PUF model, using simulatable or challenge-logging

PUFs, or straight away in the ordinary PUF re-use model.

We stress again that most of the attacks work outside the

attack scenarios and communication models of the original

papers, but we argued in Section II why we consider the

new models realistic. One notable exception is the attack

on Ostrovsky’s unconditional bit commitment scheme in the

malicous PUF model (see Section III-E), which actually

works in the original attack model of Ostrovsky et al.

The authors of this paper are not aware of any PUF

protocols for OT, BC or KE which can withstand all

said attack models, and in which (i) plain Strong PUFs

with no additional hardware properties are used, (ii) no

additional assumptions (set-up assumptions, classical com-

putational assumptions, etc.) apart from the security (i.e.,

unpredictability) of the Strong PUF are made. This illustrates

the acuteness of re-thinking current PUF protocol design.

IV. CONSEQUENCES, OR: THE NEED FOR ERASABLE

AND CERTIFIABLE PUFS

What are the consequences of the observations of the last

sections? The first and foremost implication is that attack

models for PUF protocols should be reconsidered. PUFs are

different from other cryptographic primitives in that they are

real pieces of hardware that can have all kinds of malicious

properties. Future protocol design and security analyses must

take this into account.

295

One potential route to evade some of our attacks has

been considered by Ostrovsky et al. in [18]. They combine

three steps to construct secure PUF-protocols in the presence

of malicious/bad PUFs: (i) They allow additional, standard

computional assumptions in the protocols. (ii) They assume

that the PUF cannot communicate with the malicious party,

in particular, that the PUF is no Marionette PUF and no

Communicating PUF. (iii) They assume a strict one-time

use of the PUF; potentially malicious parties must be kept

away from the PUF after it has been used. Measures (ii)

and (iii) essentially must be realized by effectively shielding

the PUF continuously until it is destroyed at the end of

its one-time use. These are certainly very costly and non-

trivial measures. They lead us to the question whether other

approaches for fighting the PUF re-use model and bad PUFs

exist in practice.

Erasable and Certifiable PUFs: Two other, direct coun-

termeasures against the PUF re-use model and bad PUFs are

so-called Erasable and Certifiable PUFs. Erasable PUFs are

Strong PUFs with the additional feature that single responses

can be erased from the PUF (i.e., made impossible to read

out forever) without affecting any of the other responses.

Erasable PUFs have been considered for the first time by

Rührmair, Algasinger and Jaeger in [26], who also suggest

an implementation based on so-called crossbar structures.

This implementation is very area consuming, however. Area

efficient implementations have not been suggested up to this

date.

In order to better understand the challenges and the

novelty behind Erasable PUF design, consider two of the

currently most established Strong PUF designs: Arbiter

PUFs [30] and optical PUFs [20]. In both designs, many

subparts of the PUF interact in order to generate a response.

If one response shall be altered or erased, at least one of the

subparts must be changed. In the example of optical PUFs,

certain subparts of the scattering platelet would need to be

modified; in the case of the Arbiter PUF, at least one internal

delay value would need to be altered. But this will necessar-

ily also affect and modify other responses, contradicting the

requirements of an Erasable PUF. Reconfigurable PUFs [16]

are unsuited as Erasable PUFs for the same reason: Their

reconfiguration operation by definition alters all responses of

the PUF in one step. This makes any previously collected

CRPs of the PUF invalid.

If the area efficient, direct implementation of Erasable

PUFs remains difficult in the future, then an alternative

strategy could be equipping Strong PUFs with a surrounding

control logic. This logic is supposed to guard and regulate

the access to the Strong PUF’s challenge-response interface;

such constructions are also known as Controlled PUFs [8].

Along these lines, one could construct “Logically Erasable”

PUFs by letting the control logic maintain some record of the

previously applied and of the erased challenges (e.g., in the

form of an authenticated hash tree). Also Logically Recon-

figurable PUFs (LR-PUFs) as introduced by Katzenbeisser

et al. [13] can be an option in this context. They allow the

manufacturer of the PUF to collect a CRP-list that remains

valid even after many reconfiguration operations. This may

suffice to ensure the security of certain protocols in the

PUF re-use model. We remark, however, that such versions

of Controlled PUFs introduce additional assumptions, for

example that it is impossible to circumvent, modify or

tamper the control logic around the underlying Strong PUF.

Certifiable PUFs, on the other hand, are PUFs that allow

an offline certification of the fact that they have only those

properties that the honest parties expect from them. It is

possible to verify that they have been drawn faithfully from

the expected PUF distribution, and that they have not been

modified by anyone in any way afterwards. We argued

already in Section II-E why it is important that such a

certification can be carried out offline: Communication with

a trusted authority upon every protocol execution (in order to

certify the PUF) makes the use of PUFs obsolete. One could

then implement the desired functionalities easier by using

the trusted authority itself. Currently, however, no measures

whatsoever have been considered in the literature how such

authentication can be achieved.

The combination of certifiability and erasability (or vari-

ants such as logical erasability/reconfigurability) in a single

piece of hardware therefore poses a highly relevant, but very

challenging open problem to the PUF hardware community.

It should be resolved in order to restore the full applicability

of Strong PUFs as a general, broadly, and efficiently usable

cryptographic tool. It would allow PUF protocols in complex

environments without additional computational assumptions,

and without an economically unrealistic one-time use of

PUFs.

V. SUMMARY AND FUTURE WORK

We introduced a number of new attack models for Strong

PUF protocols in this paper, including the “PUF re-use
model” and the “bad PUF model”. These models, so we

argued, constitute practically relevant and hard-to-detect

attack strategies, and are strongly relevant for practical PUF

usage scenarios.

We then illustrated the power of the new models by

analyzing the security of several known protocols. The

results were already summarized in detail in Section I. In

short, all analyzed oblivious transfer (OT), bit commitment

(BC) and key excahnge (KE) protocols for Strong PUFs can

be attacked successfully in the bad PUF model and/or the

PUF re-use model. This includes schemes by Rührmair [22],

van Dijk [5], Brzuska et al. presented at Crypto 2011 [1],

and Ostrovsky et al. [18]. With one exception, where so-

called Communicating PUFs are required, all attacks in the

bad PUF model only utilize very simple types of bad PUFs,

such as simulatable PUFs and challenge-logging PUFs. The

attacks in the ordinary PUF re-use model are even simpler

296

to execute, and do not require physical modification of PUFs

at all.

We remark once more that our attacks leave the original

attack models of the protocols (with the exception of our

attack on Ostrovsky et al.’s BC protocol of Section III-E,

which works in their own, original model). Still, our attack

models seem realistic, and indeed closely follow practical

usage scenarios of PUFs. Depending on the exact applica-

tion, the protocols would likely be faced with them once

they were used in practice. This implies that current attack

models and design strategies for advanced PUF protocols

such as OT, BC or KE must strongly be re-thought.

Two potential classes of countermeasures against our

attacks were analyzed in Section IV: The first is the employ-

ment of classical computational assumptions in combination

with a strict one-time use of PUFs and shielding of the PUFs

against communication with the malicious party until its

destruction [18]. This step maintains the usability of standard

Strong PUFs in advanced settings and in the presence of

bad PUFs, but is practically very costly and seems difficult

to realize. Furthermore, it takes away some of the appeal

of PUFs as a new, independent, and post-quantum crypto-

graphic primitive that enables advanced protocols without

classical computational assumptions.

A second possibility, that would restore the usability of

PUFs in complex application settings without any restric-

tions, is the use of Certifiable and Erasable PUFs. These are

PUFs which can be certified offline for their genuineness,

and for the fact that they have no other features than those

expected by the honest parties (“certifiability”); and PUFs

that allow the selective erasure of single PUF responses with-

out affecting other responses (“erasability”). Without pre-

senting a formal proof of this claim in this paper, they seem

to allow efficient and secure PUF protocols whose security

is built on the unpredictability of the PUF alone, without

requiring additional computational assumptions. These novel

PUF types could maintain the status of Strong PUFs as

a general, new cryptographic primitive. If Erasable PUFs

maintain hard to realize in practice, then also variants such as

logical erasability/reconfigurability [13] could be interesting

in our context. In order to fight both the bad PUF and the

PUF re-use model, however, erasability (or variants of it)

and certifiability have to be combined in a single piece of

hardware. No strategies for this exist in the current literature.

Relation to PUF-Based Key Storage and Strong PUF-
based Identification: Apart from their use in basic crypto-

graphic protocols, a second established application of PUFs

is their usage as (tamper-sensitive) key storage element.

This application has at times been termed a “physically

obfuscated key” or POK [7], sometimes also a “Weak PUF”

[11]. We stress that this application scenario is not the topic

of our paper. Independent of whether such an assumption is

considered realistic or not, POKs explicitly suppose that the

PUF’s responses remain internal forever, and can only be

accessed by the system itself to derive an internal secret

key. This makes this PUF-type unusable for the type of

protocols considered in this paper; and at the same time,

it makes the attacks in the PUF re-use model meaningless.

Also the bad PUF model seems obsolete: PUF-based key

storage assumes that the manufacturer in a secure set-up

phase can read out the key derived from the PUF, and uses

it later on in communication with the PUF. This presupposes

some basic trust in the manufacturer in the first place, since

the secret key is shared with him from the beginning. The

exact relation between POKs and the bad PUF model will

be the topic of future analysis.
Something similar holds for the common Strong PUF

based identification protocol by Pappu et al. [20], [19]. The

use of bad PUFs here appears less relevant, and the PUF

re-use model does not seem to pose a significant threat.

On the other hand, a manufacturer who uses a simulatable

PUF can later impersonate the PUF-carrying hardware.

The exact implications of our attack models on PUF-based

identification were not the topic of this paper, and are left

for future investigations.
Future Work: We expect two strands of substantially

new research to emerge from our findings. The first will

be concerned with the theory behind Strong PUF proto-

cols: New attack models and security definitions must be

developed, for example in the context of the UC-framework.

They must include the formal definition of Erasable PUFs

(and variants such as Logically Erasable/Reconfigurable

PUFs) and Certifiable PUFs, and the investigation of “PUF

attestation” as standard protocol step. New security proofs

will need to be led in these environments. Finally, the exact

implications of our attack models for other PUF applications

than OT, BC and KE must be determined.
The second strand of research regards PUF hardware, and

concerns the development of efficient Erasable and Certifi-

able PUFs. As briefly addressed in Section IV, combining

these two features in a single piece of hardware efficiently is

highly non-trivial. The same holds for combinations of log-

ical erasability/reconfigurability and certifiability. We would

like to pose these problems as central future challenges to

the PUF hardware community in this work.

ACKNOWLEDGEMENTS

The authors would like to thank Jürg Wullschleger for

enjoyable discussions and his contributions on the bad PUF

model and challenge-logging PUFs.

REFERENCES

[1] C. Brzuska, M. Fischlin, H. Schröder, S. Katzenbeisser:
Physical Unclonable Functions in the Universal Composition
Framework. CRYPTO 2011.

[2] C. Brzuska, M. Fischlin, H. Schröder, S. Katzenbeisser:
Physical Unclonable Functions in the Universal Composition
Framework. Full version of the paper. Cryptology ePrint
Archive, Report 2011/681, 2011. Downloaded March 2012.

297

[3] R. Canetti: Universally Composable Security: A New
Paradigm for Cryptographic Protocols. FOCS 2001: 136-145.

[4] Q. Chen, G. Csaba, P. Lugli, U. Schlichtmann, U. Rührmair:
The Bistable Ring PUF: A new architecture for strong Phys-
ical Unclonable Functions. HOST 2011: 134-141

[5] M. van Dijk: System and method of reliable forward secret
key sharing with physical random functions. US Patent No.
7,653,197, October 2004.

[6] M. van Dijk, U. Rührmair: Physical Unclonable Functions in
Cryptographic Protocols: Security Proofs and Impossibility
Results. Cryptology ePrint Archive, Report 2012/228, 2012.
Downloaded April 2012.

[7] B. Gassend, Physical Random Functions, MSc Thesis, MIT,
2003.

[8] B. Gassend, M. van Dijk, D.E. Clarke, E. Torlak, S. Devadas,
P. Tuyls: Controlled physical random functions and applica-
tions. ACM TISSEC 10(4), 2008.

[9] B. Gassend, D. E. Clarke, M. van Dijk, S. Devadas: Silicon
physical random functions. ACM Conference on Computer
and Communications Security 2002: 148-160

[10] B. Gassend, D. Lim, D. Clarke, M. van Dijk, S. Devadas:
Identification and authentication of integrated circuits. Con-
currency and Computation: Practice & Experience, pp. 1077
- 1098, Volume 16, Issue 11, 2004.

[11] J. Guajardo, S. S. Kumar, G. J. Schrijen, P. Tuyls: FPGA
Intrinsic PUFs and Their Use for IP Protection. CHES 2007:
63-80

[12] D. E. Holcomb, W. P. Burleson, K. Fu: Initial SRAM state as
a fingerprint and source of true random numbers for RFID
tags. In: In Proceedings of the Conference on RFID Security,
2007.

[13] S. Katzenbeisser, Ü. Koçabas, V. van der Leest, A.-R.
Sadeghi, G. J. Schrijen, C. Wachsmann: Recyclable PUFs:
Logically Reconfigurable PUFs. Journal of Cryptographic
Engineering 1(3): 177-186 (2011)

[14] J. Kilian: Founding cryptography on oblivious transfer.
STOC, 1988

[15] S. S. Kumar, J. Guajardo, R. Maes, G. J. Schrijen, P. Tuyls:
The Butterfly PUF: Protecting IP on every FPGA. HOST
2008: 67-70

[16] K. Kursawe, A. R. Sadeghi, D. Schellekens, P. Tuyls, B. Sko-
ric: Reconfigurable physical unclonable functions – Enabling
technology for tamper-resistant storage. HOST 2009: 22-29.

[17] J.-W. Lee, D. Lim, B. Gassend, G. E. Suh, M. van Dijk, and
S. Devadas. A technique to build a secret key in integrated
circuits with identification and authentication applications. In
Proceedings of the IEEE VLSI Circuits Symposium, 2004.

[18] R. Ostrovsky, A. Scafuro, I. Visconti, A. Wadia: Universally
Composable Secure Computation with (Malicious) Physically
Uncloneable Functions. Cryptology ePrint Archive, Report
2012/143, 2012. First version downloaded in April 2012.
Throughout our paper, we refer to the numbering of figures
and protocols of the latest version of Ostrovsky et al. that was
available at the time of preparing our camera ready paper.
This latest version stems from Nov. 14, 2012.

[19] R. Pappu: Physical One-Way Functions. PhD Thesis, Mas-
sachusetts Institute of Technology, 2001.

[20] R. Pappu, B. Recht, J. Taylor, N. Gershenfeld: Physical
One-Way Functions, Science, vol. 297, pp. 2026-2030, 20
September 2002.

[21] R. Rivest: Illegitimi non carborundum. Invited keynote talk,
CRYPTO 2011.

[22] U. Rührmair: Oblivious Transfer based on Physical Unclon-
able Functions. TRUST 2010, pp. 430 - 440, Springer 2010.

[23] U. Rührmair, H. Busch, S. Katzenbeisser: Strong PUFs:
Models, Constructions and Security Proofs. In A.-R. Sadeghi,
P. Tuyls (Editors): Towards Hardware Intrinsic Security:
Foundation and Practice. Springer, 2010.

[24] U. Rührmair, S. Devadas, F. Koushanfar: Security based on
Physical Unclonability and Disorder. In: M. Tehranipoor and
C. Wang (Editors): Introduction to Hardware Security and
Trust. Springer, 2011

[25] U. Rührmair, M. van Dijk: Practical Security Analysis of
PUF-based Two-Player Protocols. Cryptographic Hardware
and Embedded Systems (CHES 2012), Springer, 2012.

[26] U. Rührmair, C. Jaeger, M. Algasinger: An Attack on PUF-
based Session Key Exchange and a Hardware-based Counter-
measure: Erasable PUFs. Financial Cryptography (FC 2011),
Springer, 2011.

[27] U. Rührmair, C. Jaeger, M. Bator, M. Stutzmann, P. Lugli,
and G. Csaba: Cryptographic Applications of High-Capacity
Crossbar Memories. IEEE Transactions on Nanotechnology,
2011.

[28] U. Rührmair, F. Sehnke, J. Sölter, G. Dror, S. Devadas,
J. Schmidhuber: Modeling Attacks on Physical Unclonable
Functions. ACM Conference on Computer and Communica-
tions Security (CCS’10), 2010.

[29] U. Rührmair, J. Sölter, F. Sehnke: On the Foundations of
Physical Unclonable Functions. Cryptology ePrint Archive,
Report 2009/277, 2009.

[30] G. E. Suh, S. Devadas: Physical Unclonable Functions for
Device Authentication and Secret Key Generation. DAC 2007:
9-14

[31] P. Tuyls, G. J. Schrijen, B. Skoric, J. van Geloven, N.
Verhaegh, R. Wolters Read-Proof Hardware from Protective
Coatings. CHES 2006, pp. 369-383, 2006.

[32] P. Tuyls, B. Skoric: Strong Authentication with Physical
Unclonable Functions. In: Security, Privacy and Trust in
Modern Data Management, M. Petkovic, W. Jonker (Eds.),
Springer, 2007.

298

APPENDIX

A. Strong PUFs

Different subtypes of PUFs exist (see [28], [29], [24]),

each with their own security properties and applications.

Strong PUFs are an important and central of these subtypes.

They have also been called Physical Random Functions due

to their similarity with the more classical Pseudo-Random

Functions [10]. A Strong PUF is a PUF with the following

features (for formal definitions see [29], [23], [1]):

1) Public CRP interface: Its challenge-response mech-

anism is publicly accessible. Everyone who holds a

Strong PUF can apply challenges to it and read out

the corresponding responses.

2) Large CRP set: It has a very large number of chal-

lenges, ideally exponentially many in some system

parameter, such as the system’s physical size or the

challenge length. Together with the finite read-out

speed of the Strong PUF, the large number of chal-

lenges makes it impossible to read out all CRPs in a

limited time, such as days or even weeks.

3) Unpredictability: The CRP-behavior of Strong PUFs

is so complex that it cannot be modeled or machine

learned or otherwise predicted. An adversary who

knows a large subset of all CRPs nevertheless cannot

build a model that allows him to correctly predict the

response to a randomly chosen, previously unknown

challenge with high probability.

The above features imply that only the very party who

currently holds possession of a Strong PUF can determine

the correct response to a randomly chosen challenge with

high probability, even if the PUF has been in the possession

of other parties before. This observation can be exploited

cryptographically in various ways, as we will see later in this

paper. Typical examples of Strong PUFs include Pappu’s op-

tical PUF [19], [20], the Arbiter PUF [9], [30], the Crossbar

PUF [27], and the Bistable Ring PUF [4]. Modeling Attacks

on Strong PUFs have been reported, among other places, in

[28]. The authors show how to attack Arbiter PUFs and

variants up to a substantial level of size and complexity, but

at the same time indicate that a sufficiently large number

(≥ 8) of XORed Arbiter PUFs of sufficient bitlength (≥ 64)

is resilient against current modeling strategies.

One advantage of Strong PUFs over other types of PUFs

(such as Weak PUFs/POKs, see again [28]) is that their

responses do not need to remain secret, and do not require

protection inside the embedding hardware.

B. OT-Protocol of Brzuska et al.

The OT protocol of Brzuska et al. [1] implements one-out-

of-two string oblivious transfer. It is assumed that in each

subsession the sender Pi initially holds two (fresh) bitstrings

s0, s1 ∈ {0, 1}λ, and that the receiver Pj holds a (fresh)

choice bit b.

Brzuska et al. generally assume in their treatment that

after error correction and the application of fuzzy extractors,

a PUF can be modeled as a function PUF : {0, 1}λ →
{0, 1}rg(λ). We often use this model throughout this paper,

too. In the upcoming protocol, they furthermore assume

that rg(λ) = λ, i.e., that the PUF implements a function

PUF : {0, 1}λ → {0, 1}λ (compare [1], [2]).

Protocol 1: PUF-BASED OT BY BRZUSKA ET AL. ([1],

SIMPLIFIED DESCRIPTION)

External Parameters: The protocol has a number of

external parameters, including the security parameter λ, the

session identifier sid, a number N that specifies how many

subsessions are allowed, and a pre-specified PUF-family P ,

from which all PUFs which are used in the protocol must

be drawn.

Initialization Phase: Execute once with fixed session iden-

tifier sid:

1) The receiver holds a PUF which has been drawn from

the family P .

2) The receiver measures l randomly chosen CRPs

c1, r1, . . . , cl, rl from the PUF, and puts them in a list

L := (c1, r1, . . . , cl, rl).
3) The receiver sends the PUF to the sender.

Subsession Phase: Repeat at most N times with fresh

subsession identifier ssid:

1) The sender’s input are two strings s0, s1 ∈ {0, 1}λ,

and the receiver’s input is a bit b ∈ {0, 1}.
2) The receiver chooses a CRP (c, r) from the list L at

random.

3) The sender chooses two random bitstrings x0, x1 ∈
{0, 1}λ and sends x0, x1 to the receiver.

4) The receiver returns the value v := c⊕xb to the sender.

5) The sender measures the responses r0 and r1 of the

PUF that correspond to the challenges c0 := v ⊕ x0

and c1 := v ⊕ x1.

6) The sender sets the values S0 := s0 ⊕ r0 and S1 :=
s1 ⊕ r1, and sends S0, S1 to the receiver.

7) The receiver recovers the string sb that depends on his

choice bit b as sb = Sb ⊕ r. He erases the pair (c, r)
from the list L.

Comments: The protocol implicitly assumes that the

sender and receiver can interrogate the PUF whenever they

have access to it, i.e., that the PUF’s challenge-response

interface is publicly accessible and not protected. This im-

plies that the employed PUF must possess a large number of

CRPs. Using a PUF with just a few challenges does not make

sense: The receiver could then create a full look-up table for

all CRPs of such a PUF before sending it away in Step 3 of

the Initialization Phase. This would subsequently allow him

to recover both strings s0 and s1 in Step 6 of the protocol

299

subsession, as he could obtain r0 and r1 from his look-up

table. Similar observations hold for the upcoming protocols:

Indeed, all protocols discussed in this paper do require PUFs

with a large number of challenges, a publicly accessible

challenge-response interfaces, and an unpredictable CRP-

behavior (or, in other words, Strong PUFs).
Furthermore, please note that no physical transfer of the

PUF and no adversarial access is envisaged during the

subsessions of the protocol, as already indicated in Section

II-B.

C. KE-Protocol of Brzuska et al.
Together with CRP-based identification, key exchange

(KE) was among the first security applications suggested

for PUFs. Pappu et al. were the first to mention “key
establishment” as a potential PUF application [20], and van

Dijk gives the first concrete protocol in a patent writing

[5]. The KE protocol of Brzuska et al. [1] picks up these

known approaches. We again describe it in a simplified form,

partly without the UC-notation and merely with a high-level

description of error correction. The key exchange is carried

out between two parties, let us call them Alice and Bob.

Protocol 2: PUF-BASED KEY EXCHANGE ([1], SIMPLI-

FIED DESCRIPTION)

External Parameters: The protocol has a number of

external parameters, including the security parameter λ, the

session identifier sid, a number N that specifies how many

subsessions are allowed, and a pre-specified PUF-family P ,

from which all PUFs which are used in the protocol must

be drawn.

Initialization Phase: Execute once with fixed session iden-

tifier sid:

1) Alice holds a PUF which has been drawn from the

family P .

2) Repeat N times:

• Choose a challenge c at random, measure the

response r of the PUF, create helper data d,

and extract a secret st from r. Add the tuple

(c, r, st, d) to the list L.

3) Alice sends the PUF to Bob.

Subsession Phase: Repeat at most N times with fresh

subsession identifier ssid:

1) Alice picks a tuple (c, r, st, d) from the list L at

random.

2) Alice sends (c, d) to Bob over the authenticated binary

channel.

3) Bob measures a (possibly noisy) response r′ to the

challenge c. He uses the helper data d to recover the

same secret st as the Server.

4) Both Alice and Bob set their key K = st. Alice erases

the tuple (c, r, st, d) from the list L.

Comments: For the same reasons as discussed in

Section B, the above KE protocols assumes (and indeed

requires) a Strong PUF. If the PUF has only got a small CRP-

set, then the adversary can fully read out all CRPs when

the PUF is in transition from Alice to Bob. Furthermore,

no adversarial access is foreseen or allowed between the

different subsessions of the protocol.

D. An Unconditional BC-Protocol of Ostrovsky et al. in the
Malicious/Bad PUF Model

Ostrovsky et al. [18] give an unconditional BC-protocol

(i.e., one that does not use computational assumptions) in

Fig. 6 of their paper. The protocol purportedly is secure in

the malicious PUF model (however, we show an attack on

the protocol in this very model in Section III-E). We provide

the protocol below.

Protocol 3: PUF-BASED BC IN THE MALICIOUS PUF

MODEL BY OSTROVSKY ET AL. [18]

Committer’s Input: Bit b ∈ {0, 1}.
Commitment Phase

1) Cuncon ⇒ Runcon : Committer sends

(initPUF, normal, sid,Cuncon) to FPUF and

obtains response (initializedPUF, sid). Committer

uniformly selects a query q ∈ {0, 1}n and sends

(evalPUF, sid,Cuncon, q) and receives response

(responsePUF, sid, q, a). Committer obtains

(st, p) ← FuzGen(a), and sends p to Runcon.

Committer sends (handoverPUF, sid, Cuncon, Runcon)
to FPUF.

2) Cuncon ⇐ Runcon : Receiver receives p′ from the com-

mitter and (handoverPUF, sid,Cuncon) from FPUF. It

uniformly chooses r ∈ {0, 1}l and sends it to the

committer.

3) Cuncon ⇒ Runcon : If b = 0, committer sends y = st
to the receiver. Else it sends y = r ⊕ st.

Decommitment Phase

1) Cuncon ⇒ Runcon : Committer sends (b, q) to receiver.

2) Cuncon ⇐ Runcon : Receiver receives (b′, q′) from the

committer and sends (evalPUF, sid,Runcon, q
′) to FPUF

and obtains (responsePUF, sid,q
′, a′). It then computes

st′ ← FuzRep(a′, p′). If b = 0, it checks if st′ = y.

Else, it checks if st′ = y ⊕ r. If the check passes, it

accepts, else it rejects.

Comments: We again stress that the above protocol

requires a Strong PUF: If the PUF has only a small set

of CRPs, the Committer can read out all CRPs and sub-

sequently may open his commitment in both ways without

being caught.

300

