## 802.1aq Shortest Path Bridging May Recap

Don Fedyk Mick Seaman János Farkas

### **Forward**

- Shortest Path Bridging is a large Project
- This summary contains some repeated material.
- For those who would like the delta we have marked the sides with

## Shortest Path Bridging Project Authorization Request

- Scope :VLAN Bridges
  - Shortest Path within a region
  - Interwork with Spanning Tree Protocols, RSTP, MSTP bridges
    - This standard specifies shortest path bridging of unicast and multicast frames, including protocols to calculate multiple active topologies that can share learnt station location information, and support of a VLAN by multiple, per topology, VLAN identifiers (VIDs).
  - Compatibility
    - This amendment will not change the conformance of IEEE Std 802.1Q to Std 802. Overview and Architecture, or its relationship to that specification.

### 802.1Q Data Planes

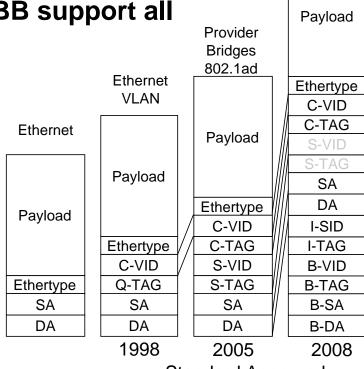
We have a long standing Data Plane
Combination of SPB and SPBB support all

SA = Source MAC address

DA = Destination MAC address

VID = VLAN ID

C-VID = Customer VID


S-VID = Service VID

I-SID = Service ID

B-VID = Backbone VID

B-DA = Backbone DA

B-SA = Backbone SA



Standard Approved

Provider Backbone Bridges 802.1ah

**Supports Data Plane OAM (CFM, MIP, MEPs)** 

### **Applicability**

IEEE 802.1aq

Shortest Path Bridging (SPB)

Shortest Path Backbone Bridging (SPBB)

Small VLAN
Networks
2-100 bridges

Large PBB
Networks
2-1000 backbone bridges

Plug and play
Efficient
Low delay
Backwards Compatible

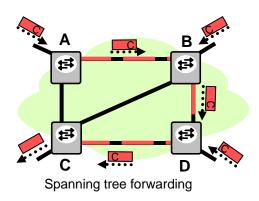
Carrier Grade
Fast convergence
Efficient use of resources
B-VLAN Partitioned Forwarding Compatible

E-Line, E-Tree, E-LAN Services

Provider E-Line, E-Tree, E-LAN Services

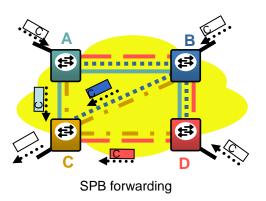
### What is unique about SPB?

- Link state application to shortest path trees compatible with 802.1 architecture
  - Link state versus lots of messaging (BPDUs)
  - Computation replaces messaging
    - All pairs shortest path
- SPBB provides fast and robust PBB B-MAC topology
  - Service Discovery via the I-SIDs
  - Efficient Multicast Trees
  - The most comprehensive control plane for PBB


### What SPB is not about

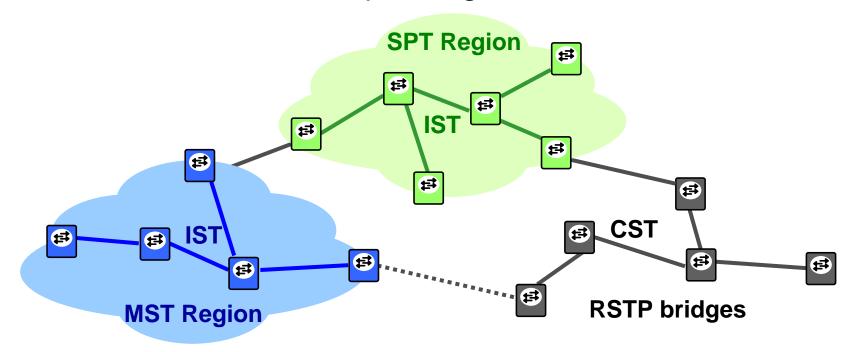
- Traffic engineering
  - PBB-TE is available
  - MSTP is available
- Multi-Domain
  - Single Level ISIS-SPB
  - No inter domain protocols

### Motivation


#### RSTP/MSTP forwarding

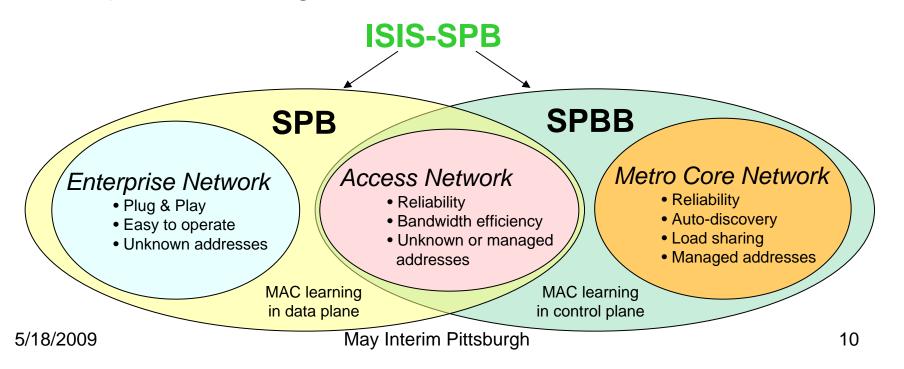
- Detours appear
- Manual configuration is needed for disjoint trees
- Forwarding can be only optimized by manual configuration




#### Shortest path forwarding

- Each bridge only sends frames on its own Shortest Path Tree (SPT)
- Automatic SPT management
- Controlled by IS-IS




## Interworking with RSTP and MSTP

- Common Spanning Tree (CST)
- Internal Spanning Tree (IST)
- Common and Internal Spanning Tree



### IEEE 802.1aq variants

- Shortest Path Backbone Bridging (SPBB) is aimed to be deployed in PBB networks where all addresses are managed
- Shortest Path Bridging (SPB) is applicable in customer, enterprise or storage area networks

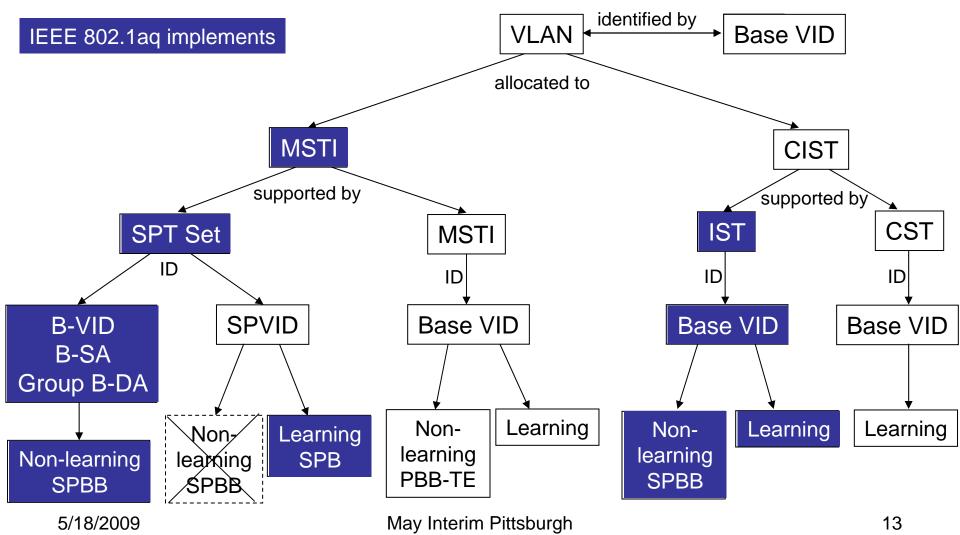


### IS-IS controls IEEE 802.1aq

- Topology discovery
  - Each bridge is aware of the physical topology of the SPT Region
- Service discovery
  - I-SID registrations are included into a new TLV
- Shortest Path Tree computation
- Maintenance of SPTs and CIST
- SPTs can be set according to the discovered I-SID membership information
  - MRP is not needed
- VID allocation to VLANs

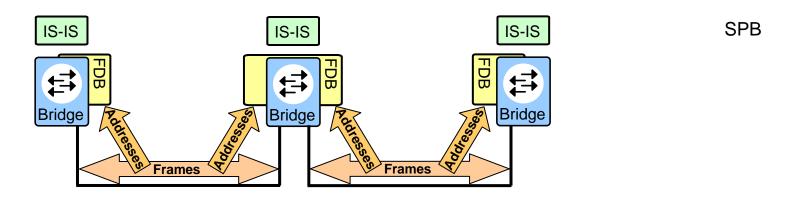
### Source tree identification (SPTID)

#### **VLAN ID**

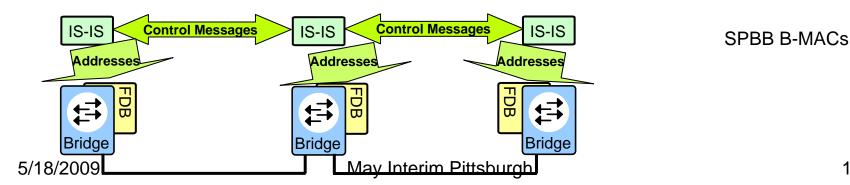

- An SPT is identified by the SPVID assigned to the source bridge
- Applicable to both 802.1Q and 802.1ah bridges
- ✓ Ingress check on VID
- Consumes VLAN space
- Unidirectional VIDs

#### **MAC** address

- B-SA and its SPSourceID incorporated into Group MAC DA identifies an SPT
- Two VIDs only used for a whole set of Shortest Path Trees (Base VID and another VID)
- Bidirectionality of VID is preserved
- Only applicable to 802.1ah bridges
- Ingress check on SA
- All group MAC addresses take the local bit mapping


### VLAN assignment



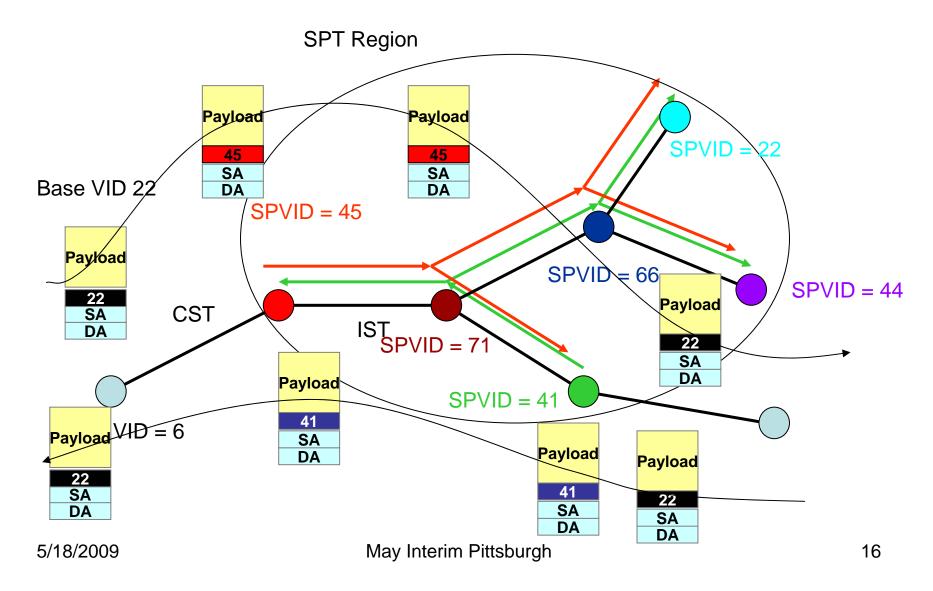



### MAC learning

MAC learning in the data plane (Learning)



MAC learning in the control plane (Non-learning)

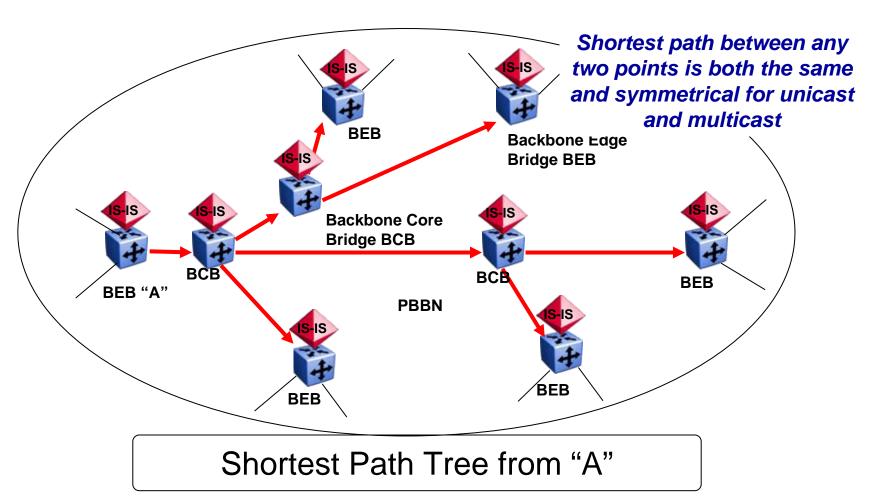



14

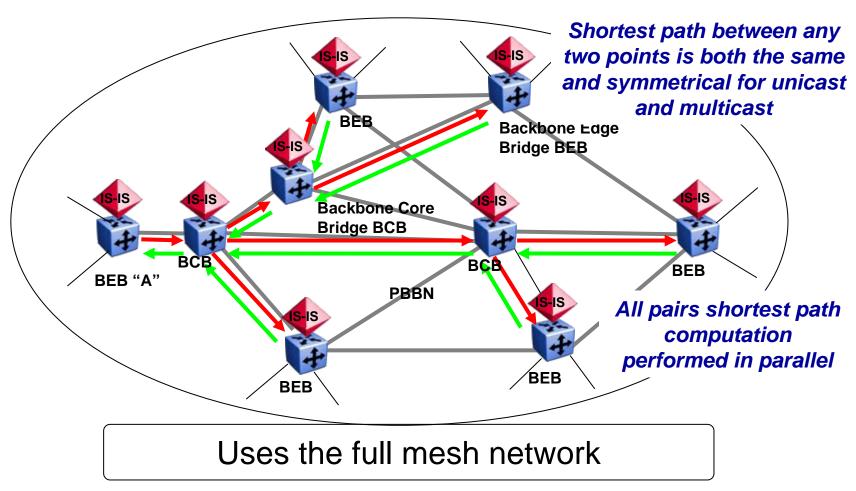
### SPB

- SPB (802.1Q compliant)
  - Uses VID for source identification, don't own the C-MAC
  - Solution Attributes
    - VID Trees, one source per bridge, distributed in IS-IS
    - SVL learning of unicast forwarding supported
  - Solution Requirements
    - Must Interwork at edges with RSTP, MSTP
    - The region may default to a single instance MSTP (associated with the "Base VID") if the VID allocation fails or detects errors
    - Must support loop prevention, may support ingress check

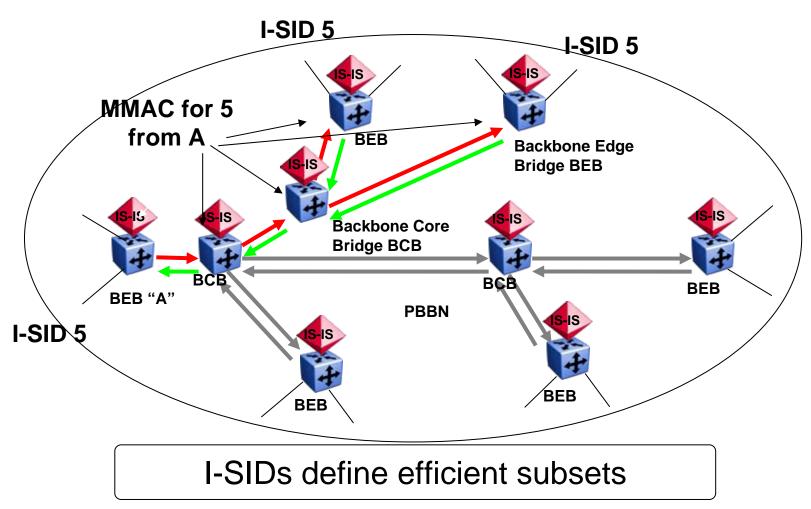
### SPB Concepts



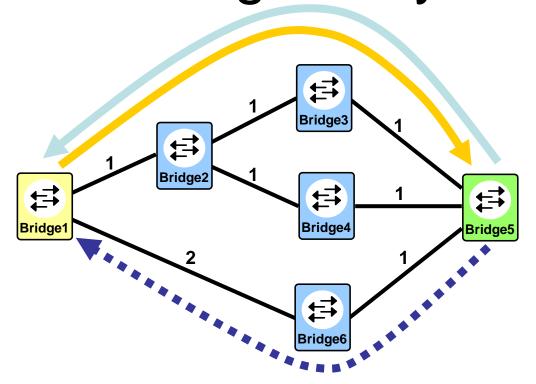

### **SPBB**




- SPBB (Shortest Path Backbone Bridging)
  - Solution Attributes
    - Single VID for an SPT Region (only)
    - Does not use learning of B-MACs
      - Provider addresses will all be known allows for more efficient flooding (no B-MAC broadcast storms),
    - Reduction in forwarding space Shared Forwarding,
  - Solution Requirements
    - Must use Multicast loop Prevention,
    - Must use ingress check for unicast

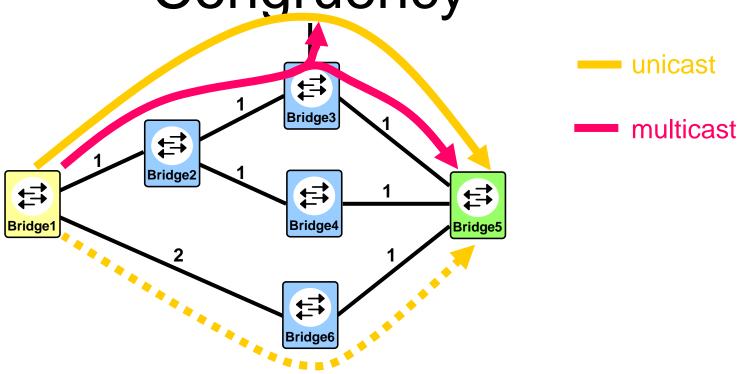

### **SPBB Operation**




## SPBB Shortest Path Tree to/from "A"



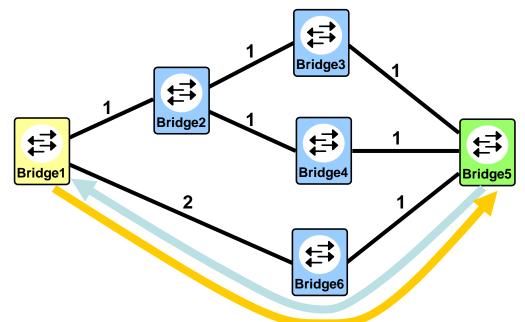
### SPBB Multicast Groups




# Forward and Reverse path Congruency



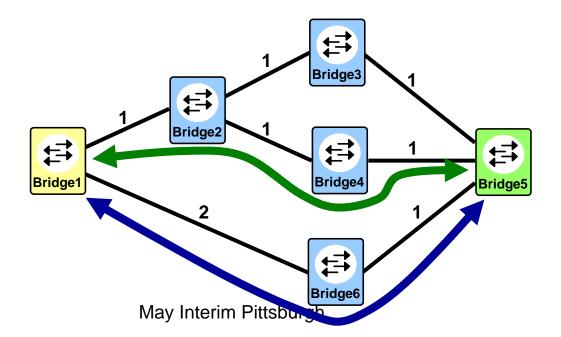
- Necessary if MAC learning is in the data plane
- Not necessary if MAC learning is in the control plane
- Going to be assured by both SPB and SPBB
   5/18/2009
   May Interim Pittsburgh


# Unicast and Multicast Congruency



- Necessary for MAC learning in data plane
- Necessary for the proper operation of OAM
- Going to be assured by both SPB and SPBB May Interim Pittsburgh

# Implementation of Congruency


- Tie-breaking extension to Dijkstra for the case of equal cost multiple paths
  - List of node IDs comprising a path are unique
  - $\{1,6,5\} < \{1,2,3,5\} < \{1,2,4,5\}$



• 5/1821999 e algorithm is usedyboth for whicast and multicast

### Load sharing

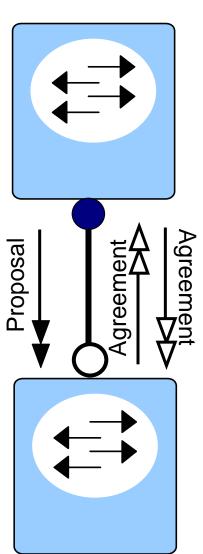
- Two trees are calculated taking advantage of equal cost multiple paths: {1,6,5} < {1,2,3,5} < {1,2,4,5}</li>
- SPT Primary Set → Primary Base VID
- SPT Alternate Set → Secondary Base VID



5/18/2009

### Loop Prevention and Mitigation

- Inconsistent view on network topology at different nodes may cause transient loops in case of a link-state control protocol
- Loop prevention
  - Agreement Protocol
  - Handshake mechanism between neighbors
  - Extension to MSTP's handshake
- Loop mitigation
  - Ingress Checking (e.g. RPFC)
  - Frames not arriving on the shortest path from the Source Bridge are discarded
  - Makes the tree directed
  - Good for loop prevention in most cases
  - Transient loops may appear
    - Severe problem for multicast traffic
    - A chance of network melt-down remains if one does not care
  - Ingress filtering has to be modified



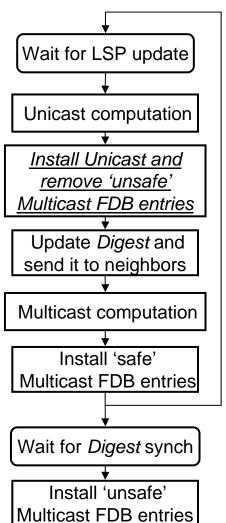

## Neighbor handshake mechanism

- Make sure bridges having different view on network topology do not exchange frames
- The link between adjacent neighbors has to be blocked after a topology change until they agree that both of them have the same topology database
- The agreement between neighbors is implemented by a handshake mechanism
- A digest of the topology database is exchanged
  - CRC
  - Cryptographic hash function (e.g. SHA-256)
- Agreements at different part of the network are independent of each other

## Handshake: MSTP extension

- Agreement Protocol
- Two-way Agreement = three-way handshake
- No per tree handshake (SPB)
- BPDUs contain
  - Digest of LSP database
  - Info on the CIST
- Proposal-Agreement
  - Explicit on the CIST
  - Computed for SPTs




### Agreement Protocol



- Exchanged in BDPUs
- Based on Port Roles and neighbor agreements
- Supports rapid transition to forwarding for safe transitions when neighbors agree
  - Agreement is per tree for RSTP, MSTP
  - Agreement is LSP Digest for SPB, SPBB

Handshake: Filtering entry manipulations

- SPBB networks
- STPs are implemented by Filtering Entries
- Do not implement the Agreement extensions to MSTP
- Implement link-state database synchronization (Agreement logic)
- Loops for unicast flows are mitigated by Ingress Checking (RPFC)
- Remove 'unsafe' entries if neighbors are unsynchronized



# IEEE 802.1aq Project Where are we now?

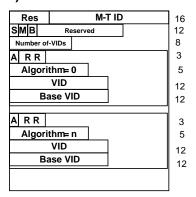


| • | Topology Distribution                                                 |                      |
|---|-----------------------------------------------------------------------|----------------------|
|   | – IS-IS                                                               | Only IS-IS need TLVs |
| • | Loop Prevention                                                       |                      |
|   | Agreement Protocol or SPBB Multicast Loop Prevention                  | Documented           |
| • | Loop Mitigation                                                       |                      |
|   | Optional Forwarding change Ingress Check                              | Documented           |
| • | SPVID allocation                                                      |                      |
|   | <ul> <li>Leverage link State</li> </ul>                               | Documented           |
| • | SPBB                                                                  | 2004                 |
|   | <ul> <li>Multicast Source Tree identification</li> </ul>              | 5                    |
|   | B-VID&Source DA                                                       | Document             |
|   | MRP and Link State                                                    | Proposal             |
| • | Path Computation                                                      |                      |
|   | <ul> <li>Convergence time/algorithms</li> </ul>                       | Proposal             |
| • | MSTP/RSTP/STP backwards/forwards interoperability & coexistence       | Documented Clause 13 |
| • | Provisioning                                                          | Documenting          |
|   | <ul> <li>Tree types (Shared Trees or Tree per source, etc)</li> </ul> | Documenting          |
|   | - MIBs                                                                |                      |
|   | <ul> <li>Mis-provisioning</li> </ul>                                  |                      |
| • | CFM                                                                   | No change            |
|   | - SPB CFM                                                             |                      |
|   | - SPBB CFM                                                            |                      |
|   |                                                                       |                      |

مرح المرائية على المرح المرح

### Next Steps

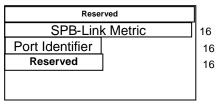
- Update draft with recent material
- One More task group Ballot and move to WG Ballots
- Draft is being finalized for ballot call this week.


### What do we need from IS-IS?

- Some TLVs and Sub TLVS
  - Per SPT Region
    - BASE VID (IST)
    - Shortest path tree algorithm
    - Define Single VIDs
    - Digest SPT Region
    - Per Bridge
      - Bridge Identifier
      - Per Base VID (active Topology)
        - » Define SPVID
        - » Bridge Priority
        - » Supported Multicast Groups/I-SIDs
        - » Supported Unicast
    - Per Port
      - Per Base VID (active Topology)
        - » Link Metric, Port Priority

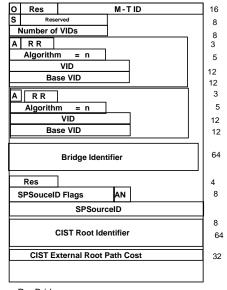
### Current View of TLVs Updated




#### a)Hello PDU BASE-VID TLV

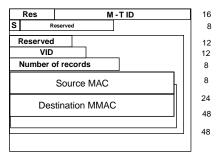


Per Bridge


IS-IS Reachability TLV

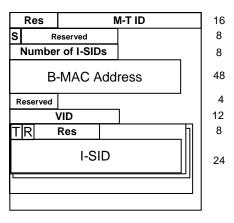
#### c) SPB Link Metric Sub TLV




Per Adjacency

#### b) SPB Instance TLV

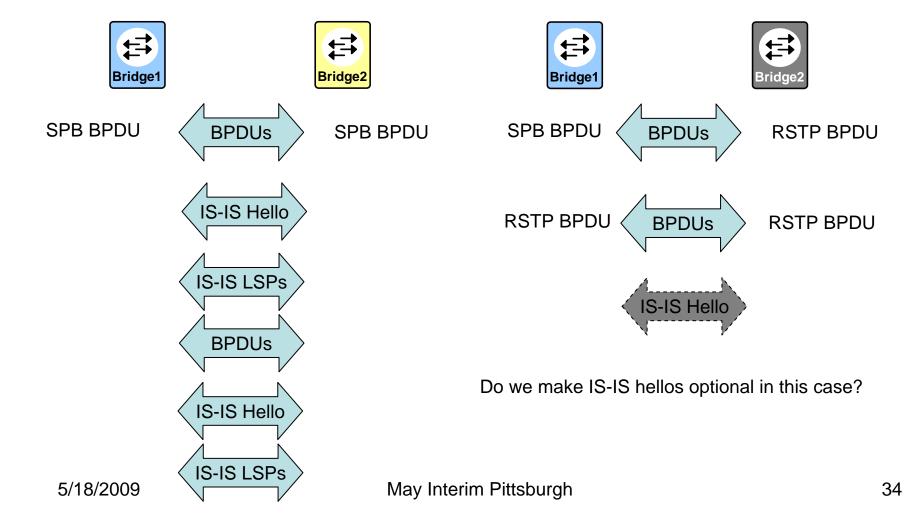



Per Bridge

#### d) SPB Multicast Group TLV



Per Bridge


#### e) SPBB I-SID and Unicast Address TLV



Per Bridge

## Forming an SPB region Updated





## Base VID and B-VIDs



**SPB** 





Parameters needing to be Co-coordinated for a Region?

MSTIDConf Digest = MSTID ConfDigest

IS-IS topology instance = IS-IS topology instance

Base VID Base VID

[My SPVID != My SPVID]

[Single B-VID(s) = Single B-VID(s)]

### Glossary

**B-MAC** Backbone MAC

**BEB** Backbone Edge Bridge

**BCB** Backbone Core Bridge

**C-VID** Customer VID

**CFM** Connectivity Fault Management

**CST** Common Spanning Tree

**ELINE** Ethernet Point to Point Service

**ELAN** Ethernet LAN Service

**ETREE** Ethernet Hub and Spoke Service

FDB Filtering Data Base

I-SID (802.1ah) Service Identifier

IGP Interior Gateway Protocol (Typically link state)

**IS-IS** Intermediate System to Intermediate System (IGP)

IST Internal Spanning Tree

**LAN** Local Area Network

MAC Media Access Control

MACinMAC see PBB

**MEP** Maintenance End point

**MIP** Maintenance Intermediate point

**MMAC** Multicast MAC

**MSTP** Multiple Spanning tree protocol

**MMRP** Multiple MAC Registration Protocol

**OAM** Operations, Administration and Maintenance

**PB** Provider Bridges IEEE 802.1ad

**PBB** Provider Backbone Bridging IEEE 802.1ah

**PBB-TE** PBB Traffic Engineering IEEE 802.1Qay

QinQ see PB

S-VID Service VID

SPB Shortest Path Bridging IEEE 802.1aq

**SPBB** Shortest Path Backbone Bridging

**SPT** Shortest Path Tree

**STP** Spanning tree protocol

SPSourceID SPBB OUI Field

**RSTP** Rapid Spanning tree protocol

**TTL** Time To Live

**VID** VLAN Identifier

**VLAN** Virtual LAN