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ABSTRACT
A variety of constructive manipulation, control, and bribery for

approval-based multi-winner voting have been extensively studied

very recently. However, their destructive counterparts seem to be

less studied in the literature so far. This paper aims to fill this gap

by exploring the complexity of several destructive bribery problems

under five prestigious approval-based multi-winner voting rules.

Generally speaking, these problems are to determine if a number

of given candidates can be excluded from any winning committees

by performing a series of modification operations yet without ex-

ceeding a given budget. We consider five operations. We offer a

complete landscape of the complexity of the problems studied in

this paper, and for NP-hard problems we study their parameterized

complexity with respect to meaningful parameters.
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1 INTRODUCTION
After more than two decades of extensive study on the complexity

of single-winner voting problems, the computational social choice

community shifted their main focus to multi-winner voting very

recently. Many variants of manipulation, control, and bribery prob-

lems for approval-based multi-winner voting rules (ABM rules for

short) have been studied from the complexity point of view (see

e.g., [2, 23, 41, 47]). However, these works are mainly concerned

with the constructive model of these problems where, in general,

one is interested in making a single distinguished candidate a win-

ner, or making a committee a winning committee. The destructive

counterparts of these problems seem not to have been widely stud-

ied in the literature so far. Aiming at filling this gap, we propose

several destructive bribery problems for ABM rules and study their

complexity and parameterized complexity. Our problems are de-

fined tomodel the applications where an election attacker (or briber)

wants to preclude multiple distinguished candidates from winning

by making some changes of the votes (or bribing some voters so
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that they change their votes in a certain way) while not exceeding

his/her budget. The behavior of the attacker may be motivated by,

for example, that these distinguished candidates are his/her rivals

(e.g., these candidates have completely different political views

from the attacker), or the attacker wants to make them lose in

order to increase the chance of making his/her liked candidates

win. We consider five particular bribery operations classified into

two classes: atomic operations and vote-level operations. Approval
addition (AppAdd) and approval deletion (AppDel) are atomic op-

erations where each single AppAdd/AppDel means to add/delete

one candidate into/from the set of approved candidates of some

vote. Vote-level change (VC), vote-level addition change (VAC), and

vote-level deletion change (VDC) are vote-level operations where

each single operation respectively means to change a vote in any

possible way, change a vote by adding some candidates into the set

of the approved candidates, and change a vote by deleting some can-

didates from the set of approved candidates. Each bribery problem

is associated with an operation type and the attacker can perform

at most a given number of single operations of the same type. For

vote-level operation problems, we also introduce an integer dis-

tance bound 𝑟 and assume that each vote can be only changed into

another one which has Hamming-distance at most 𝑟 from the vote.

This parameter models the scenarios where voters do not want to

deviate too much from their true preferences. We point out that

bribery problems with distance restrictions have been studied in

the setting of single-winner voting recently [7, 16, 44].

We study these problems under five widely-studied ABM rules,

namely, approval voting (AV), satisfaction approval voting (SAV),

net-satisfaction approval voting (NSAV), Chamberlin-Courant ap-

proval voting (CCAV), and proportional approval voting (PAV).

We obtain the complexity of all problems considered in the paper.

Many of our NP-hardness results hold even in very special cases.

For NP-hardness results, we also explore how numerous mean-

ingful parameters shape the parameterized complexity of these

problems. We obtain both fixed-parameter tractability (FPT) results

and W[1]-hardness results.

RelatedWork.Our work is clearly related to the pioneering works
of Bartholdi et al. [4–6] where numerous strategic single-winner

voting problems have been studied from the complexity point of

view, motivated by that complexity can be regarded as a barrier

against strategic behavior.
1
Since their seminal work, investigating

the complexity of many single-winner voting problems, particularly

of strategic problems in both constructive model and destructive

model, has been dominating the advance of computational social

1
It should be pointed out that several recent studies have shown that many computa-

tionally hard voting problems may be solved efficiently for practical elections.
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choice. However, the research on the complexity of multi-winner

voting problems had lagged behind with only a few related pa-

pers being published [9, 29, 31] until the work of Aziz et al. [2].

In particular, Aziz et al. [2] studied the complexity of the winners

determination and several constructive manipulation problems for

ABM rules. Their work largely sparked the extensive and inten-

sive study of the complexity of voting problems for ABM rules.

Among all these studies, the following works are most related to

ours. Meir et al. [31] studied both constructive and destructive ma-

nipulation and control but mainly for ranking-based multi-winner

voting rules. Faliszewski et al. [23] studied various constructive

bribery problems for ABM rules. Particularly, they also studied the

operations AppAdd and AppDel. Bredereck et al. [12] studied con-

structive shift bribery for both ranking-based multiwinner voting

rules and ABM rules. Very recently, Yang [41] investigated the com-

plexity of constructive manipulation and control problems for ABM

rules. However, in these problems there is only one distinguished

candidate which is wanted to be included in the winning committee

by the election attackers, but we consider multiple distinguished

candidates who are desired by the attackers not to be in any win-

ning committees. It should be also pointed out that destructive

strategic voting problems with multiple distinguished candidates

have been explored in single-winner voting problems [45] and in

the setting of group identification [22, 43]. Aziz et al. [2] also stud-

ied a constructive manipulation problem where there are exactly 𝑘

distinguished candidates, and the goal is to make them exactly the

winners. In contrast, we study destructive bribery problems and

the number of distinguished candidates is not necessarily to be the

number of winners.

The destructive bribery problems studied in this paper are more

or less related to the concept of robustness of multi-winner voting

rules which is concerned with the minimum amount of changes

to alter the winning committees. In particular, Gawron and Fal-

iszewski [26] recently studied the complexity of determining how

many operations are needed to change the set of winning commit-

tees in the setting of approval-based voting. They considered the

adding, deleting, and replacing operations.

2 PRELIMINARIES
In approval-based voting, each voter is asked to report a subset of

candidates who s/he approves. Formally, an approval-based election

is a tuple (𝐶,𝑉 ) where 𝐶 is a set of candidates and 𝑉 is a multiset

of votes, each vote is cast by a voter and is defined as a subset of

candidates consisting of all candidates approved by the voter. In

this paper, a subset of candidates is called a committee, and a subset

of exactly 𝑘 candidates is called a 𝑘-committee. A multi-winner

voting rule 𝑓 assigns to each election (𝐶,𝑉 ) and an integer 𝑘 ≤
|𝐶 | a collection of 𝑘-committees, called the winning 𝑘-committees

under 𝑓 . For a candidate 𝑐 ∈ 𝐶 , let 𝑉 (𝑐) = {𝑣 ∈ 𝑉 : 𝑐 ∈ 𝑣} be the
multiset of votes approving 𝑐 .

In this paper, we study the rules AV, SAV, NSAV, CCAV, and PAV.

In these rules, each vote offers a certain score to each committee,

and winning 𝑘-committees are those having the maximum total

scores received from all votes. These rules differ only at how the

scores are defined. The scores of a committee𝑤 ⊆ 𝐶 with respect

to these rules are summarized in Table 1.

Table 1: Scores of five multi-winner voting rules.

rules total scores of𝑤 ⊆ 𝐶 in an election (𝐶,𝑉 )
AV

∑
𝑣∈𝑉 |𝑣 ∩𝑤 |

SAV

∑
𝑣∈𝑉 ,𝑣≠∅

|𝑣∩𝑤 |
|𝑣 |

NSAV

∑
𝑣∈𝑉 ,𝑣≠∅

|𝑣∩𝑤 |
|𝑣 | −∑

𝑣∈𝑉 ,𝑣≠𝐶
|𝑤\𝑣 |
|𝐶 |− |𝑣 |

CCAV |{𝑣 ∈ 𝑉 : 𝑣 ∩𝑤 ≠ ∅}|
PAV

∑
𝑣∈𝑉 ,𝑣∩𝑤≠∅

∑ |𝑣∩𝑤 |
𝑖=1

1

𝑖

In AV, each voter gives 1 point to every candidate s/he approves.

In SAV, each voter has a fixed 1 point which is equally distributed

among her/his approved candidates. NSAV takes a step further by

allowing voters to express their dissatisfaction with their disap-

proved candidates. Particularly, in addition to the fixed 1 point like

SAV, each voter also equally distributes −1 point among all her/his

disapproved candidates. The AV/SAV/NSAV score of a committee

is the sum of the total scores of its members. SAV and NSAV were

respectively proposed by Brams and Kilgour [10] and Kilgour and

Marshall [28]. In CCAV voting, a voter is satisfied by a committee

if at least one of her/his approved candidates is included in the

committee. This rule selects 𝑘-committees satisfying the maximum

number of voters. CCAV is a special case of a class of rules studied

in [14], and was suggested by Thiele [37]. In PAV, each commit-

tee𝑤 receives 1 + 1

2
+ · · · + 1

|𝑣∩𝑤 | points from each vote 𝑣 such that

𝑣∩𝑤 ≠ ∅. PAVwas first mentioned in the work of Thiele [37]. A sig-

nificant difference among these rules is that calculating a winning

𝑘-committee is NP-hard for CCAV and PAV but polynomial-time

solvable for AV, SAV, and NSAV [2].

For each 𝑓 ∈ {AV, SAV,NSAV,CCAV, PAV} and a committee𝑤 ⊆
𝐶 in an election (𝐶,𝑉 ), let 𝑓(𝐶,𝑉 ) (𝑤) denote the 𝑓 score of 𝑤 re-

ceived from all votes in 𝑉 . For a singleton committee {𝑐} where
𝑐 ∈ 𝐶 , we write 𝑓(𝐶,𝑉 ) (𝑐) for 𝑓(𝐶,𝑉 ) ({𝑐}) for notion simplicity. We

omit the subindex from the notion if it is clear from the context

which election is considered.

We study five destructive bribery problems characterized by

five modification operations, including two atomic operations and

three vote-level change operations. The two atomic operations are

defined as follows.

Approval addition (AppAdd) A single AppAdd operation on

some vote 𝑣 ∈ 𝑉 such that 𝑣 ≠ 𝐶 means that we extend 𝑣 by

adding exactly one candidate in 𝐶 \ 𝑣 into 𝑣 .
Approval deletion (AppDel) A single AppDel operation on

some vote 𝑣 ∈ 𝑉 such that 𝑣 ≠ ∅ means that we remove one

candidate from 𝑣 .

Let 𝑓 be an ABM rule. Let 𝑋 be an atomic operation.

Destructive 𝑋 Bribery for 𝑓 (D𝑋B-𝑓 )

Input: An election (𝐶,𝑉 ) , a nonempty subset 𝐽 ⊆ 𝐶 of distin-

guished candidates, and two positive integers 𝑘 ≤ |𝐶 |
and ℓ .

Question: Can we perform at most ℓ many𝑋 operations in (𝐶,𝑉 ) so
that none of 𝐽 is in any winning 𝑘-committees under 𝑓 ?

Different from atomic operations, each single vote-level opera-

tion changes one vote in some specific way.
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Vote change (VC) A single VC operation on some vote 𝑣 means

to change 𝑣 into another vote which can be any subset of

candidates.

Vote addition change (VAC) A single VACoperation on some

vote 𝑣 such that 𝑣 ≠ 𝐶 means that we add some (one or more)

candidates from 𝐶 \ 𝑣 into 𝑣 .
Vote deletion change (VDC) A single VDCoperation on some

vote 𝑣 such that 𝑣 ≠ ∅ means that we remove some (one or

more) candidates from 𝑣 .

To generalize our study as much as possible, we consider the

distance-bounded bribery model where we are given an additional

nonnegative integer 𝑟 , and request that the Hamming distance

between a bribed vote 𝑣 and the new vote after a single vote-level

operation on 𝑣 is at most 𝑟 . Recall that the Hamming distance

between two votes 𝑣 ⊆ 𝐶 and 𝑣 ′ ⊆ 𝐶 is |𝑣 \𝑣 ′ |+ |𝑣 ′\𝑣 |. When 𝑟 is the

number of candidates, this restriction completely fades out. Many

of our NP-hardness results hold even when 𝑟 is a small constant.

For a vote-level operation 𝑌 defined above and a nonnegative

integer distance bound 𝑟 , we study the following problem.

𝑟 -Bounded Destructive 𝑌 Bribery for 𝑓 (𝑟 -D𝑌B-𝑓 )

Input: An election (𝐶,𝑉 ) , a nonempty subset 𝐽 ⊆ 𝐶 of distin-

guished candidates, and two positive integers 𝑘 ≤ |𝐶 |
and ℓ ≤ |𝑉 |.

Question: Is there a subset𝑉 ′ ⊆ 𝑉 of at most ℓ votes such that we

can perform a single𝑌 operation on every vote in𝑉 ′
such

that the Hamming distance between the vote after the

operation and the original vote is at most 𝑟 and, moreover,

after all these |𝑉 ′ | operations none of 𝐽 is in any winning

𝑘-committees under 𝑓 ?

We assume the reader is familiar with the basics in computational

complexity, parameterized complexity, and graph theory, and we

refer to [17, 38, 39] for consultation. Our hardness results in the

paper are based on reductions from the following problems.

Restricted Exact Cover by Three Sets (RX3C)

Input: A universe𝐴 of cardinality 3𝜅 for some positive integer 𝜅 ,

and a collection H of subsets of 𝐴 such that each subset

in H is of cardinality 3, and each element in 𝐴 appears

in exactly three elements of H.

Question: Is there an exact set cover of 𝐴, i.e., a subcollection H′ ⊆
H such that every element in 𝐴 appears in exactly one

element of H′
?

It is known that the RX3C problem is NP-hard [27]. Note that

for every RX3C instance (𝐴,H), it holds that |H | = |𝐴| = 3𝜅, and

each solution H ′
is of cardinality 𝜅.

An independent set of a graph is a subset of vertices whose

induced subgraph contains no edges.

𝜅-Independent Set

Input: A graph𝐺 and a positive integer 𝜅 .

Question: Does𝐺 have an independent set of size 𝜅?

A clique in a graph is a subset of vertices whose induced subgraph

is complete (i.e., there is an edge between every two vertices).

𝜅-Cliqe

Input: A graph𝐺 and an integer 𝜅 .

Question: Does𝐺 have a clique of size 𝜅?

It is well-known that both the 𝜅-Independent Set and the

𝜅-Cliqe problems are W[1]-hard with respect to the parame-

ter 𝜅 [18]. Moreover, both problems remain W[1]-hard even when

restricted to regular graphs [13].

For a graph𝐺 = (𝑈 ,𝐴) and a subset𝑈 ′ ⊆ 𝑈 ,𝐺 [𝑈 ′] denotes the
subgraph of𝐺 induced by𝑈 ′

. For a positive integer 𝑖 , let [𝑖] = { 𝑗 ∈
N : 1 ≤ 𝑗 ≤ 𝑖} be the set of all positive integers no greater than 𝑖 .

Due to space limitations, we omit several proofs, and we mark

the theorems whose proofs are omitted by ★. We also omit the

analysis of the exact running times of polynomial-time algorithms

obtained in this paper. A full version of this paper is available at

https://arxiv.org/pdf/2002.00836.pdf.

3 NP-HARDWINNERS DETERMINATION
RULES

We start our exploration with CCAV and PAV. Unlike other rules

studied in this paper, for CCAV and PAV even Winners Determi-

nation is NP-hard [2]. However, these rules are still interesting

due to at least the following reasons. First, they satisfy certain pro-

portional properties which are failed by other rules studied in the

paper [1, 24, 34]. Second, many FPT-algorithms and competitive

approximation algorithms have been reported for calculating win-

ners under these rules [2, 35, 36, 46]. Polynomial-time algorithms

for restricted domains have also been derived [33, 42].

We show that the bribery problems defined in this paper are

W[1]-hard under CCAV and PAV with respect to the size of the

winning committees even when there is only one single distin-

guished candidate (|𝐽 | = 1), the budget is 0 (ℓ = 0), and every

voter approves at most two candidates. In fact, in this special case,

we have exactly the following problem: given an election, a dis-

tinguished candidate 𝑝 , and an integer 𝑘 , determine if 𝑝 is not in-

cluded in any winning 𝑘-committees under some rule 𝑓 . We call this

special case Non-Winner Determination for 𝑓 (NWD-𝑓 ). Our

W[1]-hardness result is via reductions from the 𝜅-Independent

Set problem restricted to regular graphs.

Theorem 3.1. NWD-CCAV is W[1]-hard with respect to the pa-
rameter 𝑘 , even when every voter approves at most two candidates.

Proof. Let (𝐺 = (𝑈 ,𝐴), 𝜅) be an instance of the𝜅-Independent
Set problem where every vertex in𝐺 has degree exactly 𝑑 for some

positive integer 𝑑 . We create an instance of NWD-CCAV, denoted

by ((𝐶,𝑉 ), 𝑝 ∈ 𝐶, 𝑘), as follows. For each vertex 𝑢 ∈ 𝑈 in 𝐺 , we

create one candidate 𝑐 (𝑢). In addition, we create a distinguished

candidate 𝑝 . So, we have𝐶 = {𝑐 (𝑢) : 𝑢 ∈ 𝑈 }∪{𝑝}. Themultiset𝑉 of

votes consists of the following votes. For each edge {𝑢,𝑢 ′} ∈ 𝐴, we

create one vote 𝑣 (𝑢,𝑢 ′) = {𝑐 (𝑢), 𝑐 (𝑢 ′)}. In addition, we create 𝑑 − 1

votes each of which approves only the distinguished candidate 𝑝 .

Finally, we set 𝑘 = 𝜅. Now we show the correctness.

(⇒) Suppose that𝐺 has an independent set of size𝜅 . Then, every

𝑘-committee corresponding to an independent set of size 𝑘 satisfies

the maximum number of 𝜅 · 𝑑 votes. However, every 𝑘-committee

containing the distinguished candidate 𝑝 is able to satisfy at most
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Table 2: A summary of the complexity of destructive bribery for ABM rules. Here, “P” means polynomial-time solvable. Pa-
rameterized complexity results are with respect to the parameters enclosed in the parentheses next to them. A bracket next
to some parameter means that the result with respect to this parameter holds even when the conditions in the brackets are
fulfilled.

AppAdd AppDel 𝑟 -VC 𝑟 -VAC 𝑟 -VDC

AV P P NP-h (𝑘 = 1 ∧ 𝑟 ≥ 4) W[1]-h (ℓ , 𝑘) [ | 𝐽 | = 1 ∧ 𝑟 ≥ 2] NP-h (𝑘 = 1 ∧ 𝑟 ≥ 3)

W[1]-h (ℓ , 𝑘) [ | 𝐽 | = 1 ∧ 𝑟 ≥ 3] FPT (𝑚, 𝑛 [𝑟 =𝑚]) FPT ( | 𝐽 |, 𝑛)
FPT (𝑚, 𝑛 [𝑟 =𝑚]) P (𝑘 = 1) P (𝑟=1)

SAV NP-h (𝑘 = 1) NP-h (𝑘 = 1) NP-h (𝑘 = 1 ∧ 𝑟 ≥ 4) NP-h (𝑘 = 1 ∧ 𝑟 ≥ 1) NP-h (𝑘 = 1 ∧ 𝑟 ≥ 3)

FPT (𝑚) W[1]-h (ℓ , 𝑘) [ | 𝐽 | = 1] W[1]-h (ℓ , 𝑘) [ | 𝐽 | = 1 ∧ 𝑟 ≥ 1] FPT (𝑚) W[1]-h (ℓ , 𝑘) [ | 𝐽 | = 1 ∧ 𝑟 ≥ 1]

FPT (𝑚) FPT (𝑚) FPT (𝑚)

NSAV NP-h (𝑘 = 1) NP-h (𝑘 = 1) NP-h (𝑘 = 1 ∧ 𝑟 ≥ 4) NP-h (𝑘 = 1 ∧ 𝑟 ≥ 1) NP-h (𝑘 = 1 ∧ 𝑟 ≥ 3)

FPT (𝑚) W[1]-h (ℓ , 𝑘) [ | 𝐽 | = 1] W[1]-h (ℓ , 𝑘) [ | 𝐽 | = 1 ∧ 𝑟 ≥ 1] FPT (𝑚) W[1]-h (ℓ , 𝑘) [ | 𝐽 | = 1 ∧ 𝑟 ≥ 1]

FPT (𝑚) FPT (𝑚) FPT (𝑚)

CCAV W[1]-h (𝑘 [ | 𝐽 | = 1 ∧ ℓ = 0]) W[1]-h (𝑘 [ | 𝐽 | = 1 ∧ ℓ = 0 ∧ 𝑟 ≥ 0])
FPT (𝑚) FPT (𝑚)

PAV W[1]-h (𝑘 [ | 𝐽 | = 1 ∧ ℓ = 0]) W[1]-h (𝑘 [ | 𝐽 | = 1 ∧ ℓ = 0 ∧ 𝑟 ≥ 0])
FPT (𝑚) FPT (𝑚)

(𝜅 − 1) ·𝑑 + (𝑑 − 1) = 𝜅 ·𝑑 − 1 votes. Therefore, 𝑝 cannot be included

in any winning 𝑘-committees.

(⇐) Suppose that𝐺 does not have any independent set of size 𝜅 .

We claim that there exists at least one winning 𝑘-committee which

contains the distinguished candidate 𝑝 . If 𝑝 is included in all win-

ning 𝑘-committees, we are done. Assume that there is a winning

𝑘-committee𝑤 which contains only candidates corresponding to

a set of 𝑘 vertices in 𝐺 . As 𝐺 does not have an independent set

of size 𝜅, there exists at least one edge {𝑢,𝑢 ′} in 𝐺 such that

both 𝑐 (𝑢) and 𝑐 (𝑢 ′) are in 𝑤 . In addition, as there are exactly

𝑑 − 1 votes who approve only the distinguished candidate 𝑝 , it

holds that the committee𝑤 ′ = (𝑤 \ {𝑐 (𝑢)}) ∪ {𝑝} satisfies at least
CCAV(𝑤) − (𝑑 − 1) + (𝑑 − 1) = CCAV(𝑤) votes, implying that𝑤 ′

is also a winning 𝑘-committee. □

For PAV, we can obtain the same result.

Theorem 3.2 (★). NWD-PAV is W[1]-hard with respect to the
parameter 𝑘 , even when every voter approves at most two candidates.

The above theorems give us the following corollary.

Corollary 3.3. For 𝑓 ∈ {CCAV, PAV}, the problems DAppAddB-f,
DAppDelB-f, 𝑟 -DVCB-f, 𝑟 -DVACB-f, and 𝑟 -DVDCB-f are W[1]-hard
with respect to the parameter 𝑘 . These hold even when |𝐽 | = 1, the
budget of the briber is ℓ = 0, and every voter approves at most two
candidates. For 𝑟 -DVCB-f, 𝑟 -DVACB-f, and 𝑟 -DVDCB-f, the W[1]-
hardness holds for all 𝑟 ≥ 0.

4 POLYNOMIAL-TIMEWINNERS
DETERMINATION RULES

In this section, we investigate destructive bribery for AV, SAV, and

NSAV whose Winners Determination problem is polynomial-

time solvable. First, we study a relation between SAV and NSAV

elections which enables us to derive hardness results for NSAV

from those for SAV. Assume that we have a hardness result for

SAV via a reduction where an election is created. Then, to show the

hardness for NSAV, we add a large set of dummy candidates who are

never approved by any voter (and none of them is a distinguished

candidate). The large quantity of the dummy candidates ensures

that the NSAV scores of candidates are dominated by their SAV

scores, in the sense that a candidate has a greater/smaller SAV

score than that of another candidate if and only if the former has a

greater/smaller NSAV score than that of the latter in the election

after adding all dummy candidates.

Lemma 4.1. Let (𝐶,𝑉 ) be an election where 𝑚 = |𝐶 | ≥ 2 and
𝑛 = |𝑉 |. Let𝐷 be a set of at least𝑛·𝑚2 candidates disjoint from𝐶 . Then,
for every two candidates 𝑐 and 𝑐 ′ in 𝐶 , it holds that SAV(𝐶,𝑉 ) (𝑐) >
SAV(𝐶,𝑉 ) (𝑐 ′) if and only if NSAV(𝐶∪𝐷,𝑉 ) (𝑐) > NSAV(𝐶∪𝐷,𝑉 ) (𝑐 ′).

Proof. Observe that if two candidates 𝑐, 𝑐 ′ ∈ 𝐶 have different

SAV scores in (𝐶,𝑉 ), then the absolute value of their score gap is

at least
1

𝑚−1 −
1

𝑚 = 1

𝑚 · (𝑚−1) . In the election (𝐶 ∪𝐷,𝑉 ), candidates
in 𝐷 are not approved by any vote in𝑉 . Therefore, the NSAV score

of a candidate 𝑐 ∈ 𝐶 in (𝐶 ∪ 𝐷,𝑉 ) is its SAV score in (𝐶,𝑉 ) minus∑
𝑣∈𝑉 ,𝑐∉𝑣

1

𝑚+|𝐷 |− |𝑣 | . Because |𝐷 | ≥ 𝑛 ·𝑚2
and |𝑣 | ≤ 𝑚 − 1, it holds

that

∑
𝑣∈𝑉 ,𝑐∉𝑣

1

𝑚+|𝐷 |− |𝑣 | <
1

𝑚 · (𝑚−1) . The lemma follows. □

All hardness results for NSAV in this paper can be obtained by

modifications of the reductions for the same problems under SAV by

adding dummy candidates as discussed above. Lemma 4.1 ensures

the correctness of the reduction for NSAV.

In the following, we divide our discussions into several subsec-

tions each of which is devoted to a concrete bribery problem.

4.1 Approval Addition
In this subsection, we study the atomic operation AppAdd. We

show that among the five rules, AV is the only one which admits a

polynomial-time algorithm.

Theorem 4.2. DAppAddB-AV is polynomial-time solvable.

Proof. Let 𝐼 = ((𝐶,𝑉 ), 𝐽 ⊆ 𝐶, 𝑘, ℓ) be a DAppAddB-AV instance.

Let𝑚 and 𝑛 denote the number of candidates and the number of

votes, respectively. Consider first the case where there exists one

candidate in 𝐽 which is included in all votes. In this case, we directly

conclude that the given instance is a No-instance. Therefore, in
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the following let us assume that the above case does not occur. We

derive an algorithm as follows. First, we calculate the AV scores of

all candidates, and find a candidate 𝑐∗ in 𝐽 such thatAV(𝑐∗) ≥ AV(𝑐)
for all 𝑐 ∈ 𝐽 . Let 𝐶> (𝑐∗) = {𝑐 ∈ 𝐶 \ 𝐽 : AV(𝑐) > AV(𝑐∗)} be the
set of all nondistinguished candidates who have strictly higher

AV scores than that of 𝑐∗. If |𝐶> (𝑐∗) | ≥ 𝑘 , we conclude that 𝐼 is a

Yes-instance. Assume that this is not the case. As adding candidates

into votes never decreases AV scores of any candidates, and it

is optimal to never add distinguished candidates into any vote,

the question is now whether we can perform at most ℓ AppAdd

operations so that at least 𝑘 candidates in 𝐶 \ 𝐽 have AV scores

at least AV(𝑐∗) + 1. For each candidate 𝑐 ∈ 𝐶 \ (𝐽 ∪ 𝐶> (𝑐∗)), let
diff(𝑐) = AV(𝑐∗) + 1 − AV(𝑐) be the minimum number of AppAdd

operations needed to make 𝑐 have AV score at least AV(𝑐∗) + 1. We

order the candidates in𝐶\(𝐽∪𝐶> (𝑐∗)) due to a nondecreasing order
of diff(𝑐), and let𝐴 be the set of the first 𝑘 − |𝐶> (𝑐∗) | candidates in
the order. If

∑
𝑐∈𝐴 diff(𝑐) ≤ ℓ we conclude that 𝐼 is a Yes-instance;

otherwise, 𝐼 is a No-instance. □

An important base for the correctness of the algorithm in the

proof of Theorem 4.2 is that adding candidates in a vote does not

change the scores of other candidates, which allows us to solve the

instance greedily. However, this is not the case in SAV and NSAV

voting, where adding a candidate in a vote increases the score of

this candidate but decreases the scores of other candidates in this

vote. The difference of the behavior between AV and SAV/NSAV

essentially distinguishes the complexity of the bribery problems

under these rules.

Theorem 4.3. DAppAddB-SAV and DAppAddB-NSAV are NP-hard
even if 𝑘 = 1.

Proof. We give only the proof for SAV via a reduction from the

RX3C problem. The reduction for NSAV is a modification of the

reduction for SAV based on Lemma 4.1.

Let (𝐴,H) be an instance of RX3C where |𝐴| = |H | = 3𝜅.

We assume that 𝜅 > 4 and 𝜅 is even which does not change

the complexity of the problem. We create an instance denoted

by ((𝐶,𝑉 ), 𝐽 ⊆ 𝐶, ℓ, 𝑘) of DAppAddB-SAV as follows.

First, we create a set of 3𝜅 candidates corresponding to 𝐴, one

for each. Let 𝑐 (𝑎) denote the candidate created for 𝑎 ∈ 𝐴 and let

𝐶 (𝐴) = {𝑐 (𝑎) : 𝑎 ∈ 𝐴}. In addition, we create a candidate denoted

by 𝑝 . We define 𝐶 = 𝐶 (𝐴) ∪ {𝑝}. We let 𝐽 = 𝐶 (𝐴), set 𝑘 = 1 and

ℓ = 𝜅. The multiset 𝑉 of votes comprises of the following votes.

First, we create
3

4
𝜅2−3𝜅 votes each of which approves all candidates

except 𝑝 . As we assumed that 𝜅 > 4 and 𝜅 is even,
3

4
𝜅2 − 3𝜅 is a

positive integer. In addition to the above votes, for each 𝐻 ∈ H , we

create one vote 𝑣 (𝐻 ) which approves exactly the three candidates

corresponding to its three elements, i.e., 𝑣 (𝐻 ) = {𝑐 (𝑎) : 𝑎 ∈ 𝐻 }.
This completes the construction. Observe that in this election the

SAV score of the nondistinguished candidate 𝑝 is 0 and that of

everyone else is

(
3

4
𝜅2 − 3𝜅

)
· 1

3𝜅 + 3 × 1

3
= 𝜅

4
. It remains to show

the correctness of the reduction. Notice that as 𝐶 = 𝐽 ∪ {𝑝} and
𝑘 = 1, the question in consideration is equivalent to whether we

can make at most ℓ = 𝜅 additions so that {𝑝} becomes the unique

winning 1-committee.

(⇒) Assume thatH ′ ⊆ H is an exact set cover of 𝐴. Consider

the election after the following modifications: for each 𝐻 ∈ H ′
,

add 𝑝 into the vote 𝑣 (𝐻 ), i.e., reset 𝑣 (𝐻 ) := 𝑣 (𝐻 ) ∪{𝑝}. As |H ′ | = 𝜅 ,

we make exactly 𝜅 additions. In this election, the votes approving 𝑝

are exactly those corresponding to H ′
. As each of these votes

approves four candidates now and there are exactly 𝜅 of them, the

SAV score of 𝑝 in this election is
𝜅
4
. For each candidate 𝑐 (𝑎) where

𝑎 ∈ 𝐴, its SAV score decreases when we add 𝑝 in some vote 𝑣 (𝐻 )
such that 𝑎 ∈ 𝐻 ∈ H ′

by
1

3
− 1

4
= 1

12
. As H ′

is an exact 3-set

cover, there is exactly one such vote. Therefore, after the above

modifications, the SAV score of 𝑐 (𝑎) where 𝑎 ∈ 𝐴 decreases to

𝜅
4
− 1

12
, leading to {𝑝} being the unique winning 1-committee.

(⇐) Assume that we can make at most ℓ = 𝜅 additions so

that {𝑝} is the unique winning 1-committee. Without loss of gener-

ality, assume that exactly 𝑡 votes among the
3

4
𝜅2 − 3𝜅 votes approv-

ing 𝐽 are modified. Observe that for these votes, we can only add 𝑝

to them. We claim first that 𝑡 = 0 in fact. Assume, for the sake of

contradiction that 𝑡 > 0. Then, at most 𝜅 − 1 votes corresponding

toH can be modified. This implies that there exists at least one dis-

tinguished candidate 𝑐 (𝑎) where 𝑎 ∈ 𝐴 such that none of the three

votes 𝑣 (𝐻 ) such that 𝑎 ∈ 𝐻 ∈ H is modified. This further means

that after the modifications, the candidate 𝑐 (𝑎) has SAV score(
3

4

𝜅2 − 3𝜅 − 𝑡

)
· 1

3𝜅
+ 𝑡

3𝜅 + 1

+ 1 =
𝜅

4

− 𝑡

3𝜅
+ 𝑡

3𝜅 + 1

.

However, after the modifications the SAV score of 𝑝 can be at most

𝑡
3𝜅+1 +

𝜅−𝑡
4

which is strictly smaller than that of 𝑐 (𝑎) for 𝜅 > 4. This

contradicts that after the modifications, {𝑝} is the unique winning
1-committee, and our claim is proved.

Now we can assume that all modified votes are from those cor-

responding to H . Moreover, we can observe that when some 𝑣 (𝐻 )
where𝐻 ∈ H , is supposed to be modified, it is optimal to add only 𝑝

in the vote. Therefore, under this claim, exactly 𝜅 votes correspond-

ing to H are modified and each of them is modified by adding 𝑝 .

In this case, the SAV score of 𝑝 is exactly
𝜅
4
after the modifications.

Because {𝑝} is the unique winning 1-committee after the modifica-

tions, it must be that for every candidate 𝑐 (𝑎) where 𝑎 ∈ 𝐴, at least

one vote 𝑣 (𝐻 ) such that 𝑎 ∈ 𝐻 is modified so that the SAV score

of 𝑐 (𝑎) is decreased, implying that the subcollection corresponding

to the set of modified votes is an exact set cover of 𝐴. □

4.2 Approval Deletion
This section explores the atomic operation AppDel. For AV, we can

obtain a polynomial-time solvability result again.

Theorem 4.4. DAppDelB-AV is polynomial-time solvable.

Proof. Given an instance ((𝐶,𝑉 ), 𝐽 ⊆ 𝐶, 𝑘, ℓ) of DAppDelB-AV,
we first check if the number of nondistinguished candidates who

are approved by at least one vote is at most 𝑘 − 1. If this is the case,

we immediately conclude that the given instance is a No-instance.

Otherwise, our algorithm proceeds by exhaustively applying the

following reduction rule.

Reduction Rule. Let 𝑐∗ ∈ 𝐽 be a candidate such that AV(𝑐∗) ≥
AV(𝑐) for all 𝑐 ∈ 𝐽 . If the number of nondistinguished candidates

whose AV scores are at least AV(𝑐∗) + 1 is at most 𝑘 − 1, remove 𝑐∗

from any arbitrary vote which approves 𝑐∗, and decrease ℓ by one.

After exhaustively applying the above reduction rule, we con-

clude that the given instance is a Yes-instance if and only if ℓ ≥ 0.
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The polynomial-time solvability follows from that each application

of the above reduction rule takes polynomial time, and we apply

the rule at most 𝑛 ·𝑚 times, where 𝑛 and𝑚 respectively denote the

number of votes and the number of candidates. □

However, for SAV and NSAV, we again have hardness results.

Theorem 4.5 (★). DAppDelB-SAV and DAppDelB-NSAV are NP-
hard even when 𝑘 = 1.

Without stopping here, we also show W[1]-hardness results for

SAV and NSAV with respect to the parameters ℓ and 𝑘 . This holds

even when there is only one distinguished candidate.

Theorem 4.6 (★). DAppDelB-SAV and DAppDelB-NSAV are W[1]-
hard with respect to both the parameter ℓ and the parameter 𝑘 . More-
over, the results hold even when |𝐽 | = 1.

4.3 Vote Change
From this section, we study vote-level operations. We show that

problems associated with these operations are generally NP-hard

or W[1]-hard even in some special cases, and this is already the

case for AV.

Theorem 4.7 (★). 𝑟 -DVCB-AV for all possible values of 𝑟 ≥ 4 are
NP-hard even when 𝑘 = 1.

We point out that in the proof of Theorem 4.7, the number of

distinguished candidates is again not bounded by a constant. One

may wonder whether we have FPT algorithms with respect to the

number of distinguished candidates, or the combined parameter

of 𝑘 and |𝐽 |. The next result destroys this hope.

Theorem 4.8. 𝑟 -DVCB-AV for all possible values of 𝑟 ≥ 3 is W[1]-
hard with respect to both ℓ and 𝑘 . This holds even when |𝐽 | = 1.

Proof. We prove the theorem via a reduction from the𝜅-Cliqe

problem restricted to regular graphs. Let (𝐺 = (𝑈 ,𝐴), 𝜅) be an in-

stance of the 𝜅-Cliqe problem where every vertex in𝐺 has degree

exactly 𝑑 for some positive integer 𝑑 . Without loss of generality,

we assume that 𝜅 ≥ 2. Moreover, we assume that 𝑑 > 𝜅3 since

otherwise the instance can be solved in FPT time with respect to 𝜅 .

Let 𝑟 be an integer at least 3. We construct an 𝑟 -DVCB-AV instance

((𝐶,𝑉 ), 𝐽 ⊆ 𝐶, ℓ, 𝑘) as follows. The candidate set is 𝐶 = 𝑈 ∪ {𝑝}
where 𝑝 ∉ 𝑈 is the only distinguished candidate, i.e., 𝐽 = {𝑝}. We

create 𝑚 votes corresponding to the edges in 𝐺 , where 𝑚 is the

number of vertices in 𝐺 . In particular, for each edge {𝑢,𝑢 ′} ∈ 𝐴,

we create a vote approving all candidates except 𝑢 and 𝑢 ′. In addi-

tion, we create 𝑑 + 1 − (𝜅−1) ·(𝜅+2)
2

votes approving all candidates

except 𝑝 . Note that under our assumption 𝑑 > 𝜅3 and 𝜅 ≥ 2,

𝑑 + 1 − (𝜅−1) ·(𝜅+2)
2

is a positive integer. We complete the construc-

tion by setting ℓ =
𝜅 · (𝜅−1)

2
and 𝑘 = 𝜅 , i.e., we are allowed to change

at most
𝜅 · (𝜅−1)

2
votes and we aim to select exactly 𝜅 winners.

Now we show the correctness of the reduction. Let us first

consider the AV scores of the candidates. The AV score of 𝑝 is

AV(𝑝) =𝑚, and the AV score of every other candidate 𝑢 ∈ 𝑈 is

AV(𝑢) =
(
𝑑 + 1 − (𝜅 − 1) · (𝜅 + 2)

2

)
+ (𝑚 − 𝑑)

= 1 +𝑚 − (𝜅 − 1) · (𝜅 + 2)
2

.

Under the assumption 𝜅 ≥ 2, it holds that AV(𝑢) < AV(𝑝) for every
candidate 𝑢 ∈ 𝑈 .

(⇒) Assume that there is a clique𝑈 ′ ⊆ 𝑈 of size𝜅 in the graph𝐺 .

We modify all votes corresponding to edges between vertices in

the clique 𝑈 ′
, i.e., all edges in 𝐺 [𝑈 ′]. Clearly, there are exactly

𝜅 · (𝜅−1)
2

= ℓ such votes. We modify them so that all candidates

except 𝑝 are approved in these votes. The distance between each

new vote and its original vote is exactly 3which does not disobey the

distance restriction. As a vote corresponding to some edge {𝑢,𝑢 ′}
initially approves 𝑝 but approves neither 𝑢 nor 𝑢 ′, after modifying

this vote, the AV score of 𝑝 decreases by one and the AV scores of

both𝑢 and 𝑣 increase by one. So, after all these modifications the AV

score of 𝑝 becomes𝑚− 𝜅 · (𝜅−1)
2

. For each𝑢 ∈ 𝑈 ′
, as there are exactly

𝜅 − 1 edges incident to 𝑢 in 𝐺 [𝑈 ′], after modifying the above ℓ

votes, the AV score of 𝑢 becomes AV(𝑢) + 𝜅 − 1 = 1 +𝑚 − 𝜅 · (𝜅−1)
2

,

which is strictly greater than the final score of 𝑝 , implying that 𝑝

cannot be in any winning 𝑘-committees after all the modifications.

(⇐) Assume that we can change at most ℓ =
𝜅 · (𝜅−1)

2
votes

so that 𝑝 is not included in any winning 𝑘-committee. Observe

that it is always better to modify votes corresponding to the edges

than those who already disapprove 𝑝 and approve all the other

candidates. Moreover, observe that it is optimal to full use the

number of operations, and when a vote corresponding to an edge

is determined to be modified, it is optimal to change it so that the

vote approves all candidates except the distinguished candidate 𝑝 .

The final AV score of 𝑝 is then determined as AV(𝑝) − ℓ = 𝑚 −
𝜅 · (𝜅−1)

2
. This implies that after the changes, there must be at least 𝑘

candidates whose AV scores increase by at least 𝜅 − 1 each. Note

that when a vote corresponding to some edge {𝑢,𝑢 ′} is changed,
only the AV scores of 𝑢 and 𝑢 ′ increase, each by one. Let 𝑈 ′

be

the set of candidates whose scores are increased after the changes

of the votes in a solution. Therefore, 𝑈 ′
consists of the vertices

spanned by all edges whose corresponding votes are changed. Due

to the above analysis, changing ℓ =
𝜅 · (𝜅−1)

2
edge-votes can increase

the total AV scores of candidates in 𝑈 ′
by at most 𝜅 · (𝜅 − 1). This

directly implies that𝑈 ′
consists of exactly 𝑘 candidates. From the

fact that
𝜅 · (𝜅−1)

2
edges span exactly 𝜅 vertices if and only if the set

of spanned vertices is a clique, we know that𝑈 ′
is a clique in𝐺 . □

Theorem 4.9. 𝑟 -DVCB-SAV and 𝑟 -VC-NSAV for all integers 𝑟 ≥ 4

are NP-hard. This hold even if 𝑘 = 1.

Regarding fixed-parameter intractability results, we have the

following theorem.

Theorem 4.10 (★). 𝑟 -DVCB-SAV and 𝑟 -DVCB-NSAV for all possi-
ble values of 𝑟 ≥ 1 are W[1]-hard with respect to both the parameter ℓ
and the parameter 𝑘 . The results hold even when |𝐽 | = 1.
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4.4 Vote Addition Change
In the previous section, we showed that 𝑟 -DVCB-AV is already

NP-hard when 𝑘 = 1. However, this is not the case for vote-level

addition operation.

Theorem 4.11. 𝑟 -DVACB-AV for all possible values of 𝑟 is polynomial-
time solvable if 𝑘 = 1.

Proof. Let ((𝐶,𝑉 ), 𝐽 ⊆ 𝐶, 𝑘 = 1, ℓ) be an instance of 𝑟 -DVACB-

AV, where 𝑟 is a nonnegative integer. If 𝑟 = 0, we solve the instance

by directly checking if none of the distinguished candidates is

a winner. Now we consider the case where 𝑟 > 0. Let 𝑛 = |𝑉 |.
In addition, let 𝑠 be the maximum AV score of the distinguished

candidates, i.e., for all 𝑐 ∈ 𝐽 it holds that AV(𝑐) ≤ 𝑠 and there is at

least one candidate 𝑐 ′ ∈ 𝐽 such that AV(𝑐 ′) = 𝑠 . Finally, let 𝑐∗ ∈ 𝐶 \ 𝐽
be a candidate with the maximum AV score among all those in𝐶 \ 𝐽 .
Our algorithm goes as follows. If 𝑐∗ already has AV score at least 𝑠+1,
we return “Yes”. Otherwise, if AV(𝑐∗) +min{ℓ, 𝑛 − |𝑉 (𝑐∗) |} ≥ 𝑠 + 1,

we return “Yes” too. The reason is that in this case we can select

arbitrarily min{ℓ, 𝑛} votes in 𝑉 \𝑉 (𝑐∗) and add 𝑐∗ into each of the

selected votes so that the AV score of 𝑐∗ is 𝑠 +1. If none of the above
two cases occurs, we return “No”. □

However, we have fixed-parameter intractable result when 𝑘

and ℓ are parameters even when other parameters are constants.

Theorem 4.12 (★). 𝑟 -DVACB-AV for all integers 𝑟 ≥ 2 is W[1]-
hard with respect to the parameters ℓ and 𝑘 . Moreover, this holds even
when |𝐽 | = 1.

Unlike AV, for SAV and NSAV, we already have NP-hardness

even when both 𝑘 and 𝑟 are equal to 1.

Theorem 4.13 (★). 𝑟 -DVACB-SAV and 𝑟 -DVACB-NSAV for all
integers 𝑟 ≥ 1 are NP-hard. Moreover, this holds even when 𝑘 = 1.

4.5 Vote Deletion Change
For the vote-level deletion operation, we have an NP-hardness

result for AV even when we want to elect only one winner.

Theorem 4.14 (★). 𝑟 -DVDCB-AV is NP-hard for all possible inte-
gers 𝑟 ≥ 3 even when 𝑘 = 1.

Next, we show that if every vote is only allowed to delete at most

one approved candidate, the problem becomes polynomial-time

solvable, regardless of the values of 𝑘 .

Theorem 4.15. 𝑟 -DVDCB-AV is polynomial-time solvable if 𝑟 = 1.

Proof. We solve the problem by reducing it to the maximum

matching problem which is polynomial-time solvable [19, 25]. Let

((𝐶,𝑉 ), 𝐽 ⊆ 𝐶, 𝑘, ℓ) be an instance of 𝑟 -DVDCB-AV. We calculate

the AV scores of all nondistinguished candidates and order them

according to their scores from the highest to the lowest with ties

being broken arbitrarily. Let 𝑠 denote the AV score of the 𝑘-th

candidate in the order. Our goal is to select at most ℓ votes and

remove some distinguished candidates from these votes, one from

each, so that the AV score of every distinguished candidate is at

most 𝑠−1. Let 𝐽 ′ be the set of distinguished candidates who have AV
scores at least 𝑠 . We create a bipartite graph. Particularly, we create a

vertex for each distinguished candidate in 𝐽 ′, and create a vertex for

each vote which approves at least one candidate in 𝐽 ′. We connect a

vote-vertex with a candidate-vertex if and only if the vote approves

this candidate. Then, we do the following. For each distinguished

candidate 𝑐 ∈ 𝐽 ′ of score AV(𝑐) ≥ 𝑠 + 1, we create AV(𝑐) − 𝑠 copies

of the corresponding vertex (each copy also has the same neighbors

as the original vertex). Note that we can immediately conclude that

the given instance is a No-instance if

∑
𝑐∈𝐽 ′ (AV(𝑐) − 𝑠 + 1) > ℓ .

So, let us assume that this is not the case. Then, we calculate a

maximum matching. If all candidate-vertices and all of their copies

are saturated by the matching, we conclude that the instance is a

Yes-instance; otherwise, the instance is a No-instance. □

Theorem 4.16 (★). 𝑟 -DVDCB-SAV and 𝑟 -DVDCB-NSAV are NP-
hard for all possible integers 𝑟 ≥ 3 even when 𝑘 = 1 and every voter
approves at most three candidates.

Next, we show that for SAV and NSAV, destructive bribery with

the vote deletion operation is W[1]-hard.

Theorem 4.17 (★). 𝑟 -DVDCB-SAV and 𝑟 -DVDCB-NSAV for all
possible values of 𝑟 ≥ 1 are W[1]-hard with respect to both ℓ and 𝑘 .
This holds even when |𝐽 | = 1.

5 FIXED-PARAMETER TRACTABILITY
In the previous sections, we have obtained many intractability re-

sults and a few polynomial-time solvability results in some special

cases. This section aims to explore fixed-parameter tractable al-

gorithms with respect to three natural parameters: the number of

candidates𝑚, the number of voters 𝑛, and the number of distin-

guished candidates |𝐽 |. As |𝐽 | ≤ 𝑚 in each problem instance studied

in this paper, any FPT-algorithmwith respect to |𝐽 | carries over to𝑚
directly. These three parameters are relevant to many real-world

applications and have received extensive study [3, 11, 15, 40, 47].

We have shown that 𝑟 -VC-AV and 𝑟 -VAC-AV are NP-hard even

when there is only one distinguished candidate but left whether

𝑟 -VDC-AV is also NP-hard in this case unexplored in the previous

sections. We answer this question now. Interestingly, we show that

𝑟 -VDC-AV is FPT with respect to |𝐽 |, standing in a sharp contrast

to the NP-hardness of the other two problems even when |𝐽 | = 1.

Theorem 5.1. 𝑟 -DVDCB-AV for all possible values of 𝑟 is FPT with
respect to the number of distinguished candidates.

Proof. Let ((𝐶,𝑉 ), 𝐽 ⊆ 𝐶, 𝑘, ℓ) be an instance of 𝑟 -DVDCB-

AV where 𝑟 is a nonnegative integer. Our FPT-algorithm is based

on integer-linear programming (ILP) formulation. For each subset

𝐴 ⊆ 𝐽 , let 𝑉 (𝐴) = {𝑣 ∈ 𝑉 : 𝑣 ∩ 𝐽 = 𝐴} denote the multiset of votes

approving exactly the candidates in 𝐴 among all distinguished

candidates. Let 𝑛(𝐴) = |𝑉 (𝐴) |. We calculate the AV scores of all

nondistinguished candidates and rank them according to their AV

scores, from those with the highest score to those with the lowest

score, with ties being broken arbitrarily. Let 𝑠 denote the AV score of

the 𝑘-th candidate in this rank. For each𝐴 ⊆ 𝐽 and each 𝐵 ⊆ 𝐴 such

that |𝐵 | ≤ 𝑟 , we create a nonnegative integer variable 𝑥𝐴,𝐵 which

indicates that in a solution we change 𝑥𝐴,𝐵 votes in 𝑉 (𝐴) so that

exactly the candidates in𝐵 are removed from these votes.We have at

most 4
| 𝐽 |

variables. The constraints are as follows. As we change at

most ℓ votes, it holds that
∑
𝐵⊆𝐴⊆𝐽 , |𝐵 | ≤𝑟 𝑥𝐴,𝐵 ≤ ℓ . For each 𝐴 ⊆ 𝐽 ,

it holds that

∑
𝐵⊆𝐴, |𝐵 | ≤𝑟 𝑥𝐴,𝐵 ≤ 𝑛(𝐴). Finally, to ensure that the
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final score of every distinguished candidate is at most 𝑠−1, for every
𝑐 ∈ 𝐽 , it holds that AV(𝐶,𝑉 ) (𝑐) −

∑
𝑐∈𝐵,𝐵⊆𝐴⊆𝐽 , |𝐵 | ≤𝑟 𝑥𝐴,𝐵 ≤ 𝑠 − 1.

This ILP can be solved in FPT time with respect to |𝐽 | due to the

Lenstra’s theorem [30]. □

Note that the fixed-parameter tractability with respect to |𝐽 |
does not hold for SAV and NSAV as we have shown in the previous

sections that 𝑟 -DVDCB-SAV and 𝑟 -DVDCB-NSAV are W[1]-hard

with respect to ℓ and 𝑘 even when |𝐽 | = 1. This is essentially

because that in AV, deleting a candidate from a vote does not affect

the AV scores of other candidates in the vote, but in SAV and NSAV,

deleting a candidate from a vote increases the SAV and NSAV scores

of other candidates in the vote. The behavior of AV allows us to

only focus on removing distinguished candidates but the behavior

of SAV and NSAV asks us to pay attention to all candidates.

Based on ILP formulations again, we can show that all problems

studied in this paper are FPT with respect to a larger parameter,

namely, the number of candidates𝑚. This holds for all five rules

studied in the paper. At a high level, our algorithm first guesses the

exact winning 𝑘-committees, each of which does not include any

distinguished candidates. There are at most 2
(𝑚𝑘 ) ≤ 2

2
𝑚

guesses

and each guess involves at most 2
𝑚

committees. For each guessed

class of winning 𝑘-committees, we provide an ILP formulation. Par-

ticularly, we partition the votes into at most 2
𝑚

groups, each group

consists of all votes approving the same set of candidates. Then, for

each group, we introduce 2
𝑚

nonnegative integer variables, each

of which corresponds to a subset 𝐶 ′
of candidates and indicates

how many votes from the group are changed into votes approv-

ing exactly the candidates in 𝐶 ′
. The constraints are derived to

ensure that all 𝑘-committees in the guessed class have the same

score which is strictly higher than that of any 𝑘-committees not

in the class. For vote-level operations with distance bound 𝑟 , we

should also constraint the variables corresponding to a group of

votes and a subset 𝐶 ′
to be 0 if the distance between each vote in

the group and 𝐶 ′
is larger than 𝑟 . The FPT-running time follows

from that we need to solve at most 2
2
𝑚
ILPs each of which has at

most 2
𝑚 · 2𝑚 = 4

𝑚
variables, and ILP is FPT with respect to the

number of variables [30].

Theorem 5.2 (★). For𝑋 ∈ {AV, SAV,NSAV,CCAV, PAV}, the prob-
lems DAppAddB-X, DAppDelB-X, 𝑟 -DVCB-X, 𝑟 -DVACB-X, and 𝑟 -
DVDCB-X are FPT with respect to the number of candidates. The
results for 𝑟 -DVCB-X, 𝑟 -DVACB-X, and 𝑟 -DVDCB-X hold for all pos-
sible values of 𝑟 .

Finally, we study the parameter 𝑛, the number of votes.

Theorem 5.3. 𝑟 -DVDCB-AV for all possible values of 𝑟 can be
solved in 𝑂∗ (2𝑛) time, where 𝑛 denotes the number of votes.

Proof. Let ((𝐶,𝑉 ), 𝐽 ⊆ 𝐶, 𝑘, ℓ) be an 𝑟 -DVDCB-AV instance

where 𝑟 is an integer. We order all nondistinguished candidates

according to their AV scores, from the highest to the lowest, with

ties being broken arbitrarily. Let 𝑠 denote the score of the 𝑘-th

candidate in the order. Let 𝐽 ′ = {𝑐 ∈ 𝐽 : AV(𝑐) ≥ 𝑠} be the set of
distinguished candidates whose AV scores are at least 𝑠 . We guess

the ℓ votes which need to be modified to make all distinguished

candidates be excluded from all winning 𝑘-committees. Precisely,

we split the instance into at most 2
𝑛
subinstances each of which

takes as input the original instance together with a subset 𝑉 ′ ⊆ 𝑉

of ℓ votes, and the question is whether we can modify exactly the

votes in𝑉 ′
to exclude all distinguished candidates from anywinning

𝑘-committee. Clearly, the original instance is a Yes-instance if and

only if at least one of the subinstances is a Yes-instance. To solve

a subinstance corresponding to a subset 𝑉 ′ ⊆ 𝑉 , we reduce it to

a maximum network flow instance. Particularly, in the maximum

network flow instance, we have a source node 𝑣+ and a sink node 𝑣−.
Moreover, for each vote 𝑣 ∈ 𝑉 ′

, we create a node denoted still by 𝑣

for simplicity. For each distinguished candidate 𝑐 ∈ 𝐽 ′ we create
a node denoted still by 𝑐 for simplicity. The arcs are as follows.

There is an arc from the source node 𝑣+ to every vote-vertex 𝑣 with

capacity min{𝑟, |𝑣 ∩ 𝐽 ′ |}. For a vote-node 𝑣 and a candidate-node 𝑐 ,

there is an arc from 𝑣 to 𝑐 with capacity 1 if and only if 𝑣 approves 𝑐 ,

i.e., 𝑐 ∈ 𝑣 . Finally, for each candidate-node 𝑐 ∈ 𝐽 ′ there is an arc

from 𝑐 to the sink node 𝑣− with capacity AV(𝑐) − 𝑠 + 1. It is easy to

see that the subinstance is a Yes-instance if and only if the above

constructed network has a flow of size

∑
𝑐∈𝐽 ′ (AV(𝑐) − 𝑠 + 1). The

theorem follows from that the maximum network flow problem

can be solved in polynomial-time (see, e.g., [32]). □

We can show that for the other two vote-level operations, the

corresponding problems are also FPT with respect to 𝑛 when 𝑟 =𝑚.

Precisely, we enumerate all subsets of at most ℓ votes which are

considered to be modified. Once the modified votes are determined,

we can solve the instance greedily when the distance restriction

is dropped: for the VAC operation, we add all nondistinguished

candidates in these votes, and for the VC operation, we let these

votes approve exactly all nondistinguished candidates.

Theorem 5.4 (★). 𝑟 -DVCB-AV and 𝑟 -DVACB-AV for 𝑟 =𝑚 can be
solved in 𝑂∗ (2𝑛) time where 𝑛 is the number of votes.

6 CONCLUSION
We have studied the (parameterized) complexity of five destructive

bribery problems in the setting of approval-based multi-winner

voting. These problems model the scenario where a briber aims to

exclude all of a given set of candidates from having any chance to

win by bribing some voters without exceeding her/his budget. Our

study significantly complements previous study because bribery

problems for ABM rules in the destructive model have not been

widely studied prior to our work. For the five well-studied ABM

rules AV, SAV, NSAV, CCAV, and PAV, we provided a comprehen-

sive landscape of the (parameterized) complexity of these problems.

Our results are summarized in Table 2.

There are many possibilities for future work. First, one can al-

ways start by resolving open problems left. For instance, all prob-

lems considered in this paper are FPT with respect to the number

of candidates. However, we have only a few FPT-algorithms with

respect to the number of votes, leaving many cases remained open.

It should be noted that many control and manipulation problems

are already NP-hard even when the number of voters is a con-

stant [3, 8, 15]. Second, our study is purely theoretical analysis.

One can conduct experimental work to investigate whether these

problems are really hard to solve in practice. Third, the complexity

of these problems in special dichotomous domains is widely open.

For concepts of dichotomous domains we refer to [20, 21, 42].
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