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ABSTRACT
Multi-Agent Path Finding (MAPF) plays an important role in many
real-life applications where autonomous agents must coordinate
to reach their goals without collisions. MAPF problems often take
place in structured environments that are usually assumed to be
static and known in advance. In this paper, we introduce C-MAPF,
i.e., MAPF in Configurable environments, a novel variant of the
MAPF problem in which the environment is configurable, namely
its structure and topology can be controlled within some given
constraints. Consider, for instance, a warehouse logistics applica-
tion: the environment can be changed (at least to some degree)
by the managers of the warehouse, for example by re-arranging
the positions of the shelves or by removing or adding temporary
walls. We study the properties of the C-MAPF problem and we
devise two algorithms for solving it, both based on Conflict-Based
Search (CBS), a state-of-the-art MAPF algorithm. First, we present
Parallel CBS (P-CBS), that searches for a solution by simultaneously
considering all the possible configurations of the environment. We
then present Abstract CBS (A-CBS), an extended version of the
CBS algorithm that solves C-MAPF problems by introducing a new
type of conflict on the allowable configurations of the environment.
We prove that our solvers are both complete and optimal and we
experimentally assess their performance in different settings.
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1 INTRODUCTION
Multi-Agent Path Finding (MAPF) is a challenging problem encoun-
tered in several applications that require coordinated motion of
multiple agents, like warehouse logistics [47], office robots [45],
quadrotor swarms [19], aircraft-towing vehicles [31], and digital
entertainment [29]. In its basic formulation, the MAPF problem
requires to find a set of non-interfering paths, one for each agent,
such that agents can move from their start to their goal locations
while minimizing some global cost. The MAPF problem has been
widely studied [41], both in its abstract form, in which the environ-
ment is represented as a graph and full determinism is assumed [12],
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(a) 3D representation of a configurable environment

(b) 2D representation of a corresponding C-MAPF problem

Figure 1: A warehouse where blue shelves can be moved to
the center (a) and a corresponding C-MAPF problem (b), in
which 10 agents have tomove from si toдi (with i = 1, . . . , 10),
with two possible configurations, G1 (left) and G2 (right).

and in more practical forms [28, 44], in which, for example, the
kinematics [18, 23] and the physical shape [3, 27] of the robots
are considered. To the best of our knowledge, almost all existing
formulations of the MAPF problem assume that the environment is
known and static. Situations that do not match this assumption, like
the presence of dynamic obstacles, are usually reactively tackled
during execution [13, 14].

In this paper, we introduce MAPF in Configurable environments
(C-MAPF), a novel variant of the MAPF problem where the envi-
ronment is configurable, namely its structure and topology can be
controlled within some given constraints. The C-MAPF problem
envisions settings where not only the agents, but also parts of the
environment can be controlled. The potential of these settings has
not yet been recognized and exploited by the available MAPF al-
gorithms, which usually assume the environment as part of the
problem and not of the solution. Consider, for instance, a warehouse
logistics application in which the environment can be changed (at
least to some degree) by the managers of the warehouse, for exam-
ple by re-arranging the positions of the shelves or by removing or
adding temporary walls. In some cases, the positions of the shelves
can be dynamically controlled (e.g., mobile shelves [39, 47] con-
trolled by other agents or remotely). This setting can be modeled as
a C-MAPF problem in which the different arrangements of the envi-
ronment are called configurations (an example is shown in Figure 1).
Other application settings that can be modeled using C-MAPF in-
clude search and rescue (e.g., finding the best passages that can be
opened by extinguishing fires [21]), city planning (e.g., selecting
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an optimal configuration of one-way routes [9]), military opera-
tions (e.g., intelligence preparation of the battlefield [24]), digital
entertainment (e.g., videogames design [20]), and hardware circuit
design. We study the properties of the C-MAPF problem and we
devise two algorithms for its resolution, based on Conflict-Based
Search (CBS) [35], a state-of-the-art MAPF algorithm. Specifically,
we introduce Parallel CBS (P-CBS), that searches for a solution by
simultaneously considering all the possible configurations of the
environment, and Abstract CBS (A-CBS), an extended version of the
CBS algorithm that solves C-MAPF problems by introducing a new
type of conflict on the allowable configurations of the environment.
We prove that both our algorithms are complete and optimal and
we experimentally evaluate them in different settings in order to
assess their performance in terms of success rate and computing
time required to get solutions for increasingly complex instances.

2 RELATEDWORK
The basic formulation of the MAPF problem asks for finding non-
interfering paths for multiple agents, each one with its start and
goal locations in a given discretized environment represented as a
graph [41]. The solution is often required to minimize some global
cost function, such as the sum of the individual path costs (flowtime)
or the maximum of the individual path costs (makespan).

Different algorithms are available for solving MAPF problems.
Here, we just overview the main families, referring the reader
to [22, 41] for further details. Solving algorithms can be complete,
optimal, both, or neither. Complete solvers guarantee to find a so-
lution if the problem is solvable. Note that complete solvers do
not guarantee to find the optimal solution (according to the global
cost function), although sometimes they can guarantee to return a
solution whose cost is at a bounded distance from that of an optimal
solution. Optimal solvers are usually slower, but they guarantee to
find only optimal solutions. Switching to the techniques used by
solving algorithms, search-based and reduction-based families can
be identified. Search-based solvers search the solution in a given
search space and are typically designed to deal with a flowtime
global cost function [15, 16, 35, 37, 40, 46]. Reduction-based solvers
translate the problem to an equivalent problem in another domain
for which efficient algorithms are available and are typically de-
signed to deal with a makespan global cost function [10, 43, 48].

Since it is relevant for presenting our contribution, we describe
in somemore detail a prominent complete and optimal search-based
solving algorithm called Conflict-Based Search (CBS) [35]. It runs
searches at two levels. The low-level searches for an optimal path for
each agent individually, typically using an A*-based procedure [16],
taking into account constraints imposed by the high-level. When a
conflict between individual paths is found, the high-level expands a
constraint tree via a split action, keeping all information about the
conflict, and imposes new constraints to the agents in order to avoid
the conflict the next time the low-level search for those agents is
performed. A constraint prohibits an agent from being at a certain
position at a given time. The algorithm is exponential in the number
of conflicts since it tries to solve the detected conflicts in all the
possible ways. Several improvements of CBS are available [6, 11, 25],
as well as sub-optimal variants [5].

In the classical formulation of the MAPF problem, the graph
representing the environment is usually given and fixed. To the
best of our knowledge, the resolution of MAPF problems in environ-
ments that can be purposefully changed, that we call configurable,
has not yet been investigated. Nevertheless, there are some re-
sults concerning MAPF in non-static environments. MAPF with
Dynamic Obstacles (MAPF-DO) [30, 32] considers the presence of
dynamic obstacles in the map, overcoming the assumption of static
environments of classical MAPF. However, in MAPF-DO problems,
dynamic obstacles follow given, potentially random, movement
rules and there is no possibility to control them, nor to modify the
environment.

One attempt to overcome the assumption of unchangeable envi-
ronments in single-agent path planning comes from the computa-
tional geometry community, in which the problem of computing
the best path for a single agent in environments with removable
polygonal obstacles has been recently addressed [1]. We borrow a
similar idea, but move from a single-agent to a multi-agent setting.
A recent attempt to deal with MAPF and removable obstacles uses a
Theta*-based [33] algorithm [2]. As discussed by the authors, their
algorithm cannot be directly applied to MAPF but it can be modified
to become base block of MAPF solves such as CBS. The approach
of [2] does not compute optimal solutions. Our goal is to go beyond
and provide CBS-based resolution methods for optimally solving
C-MAPF problems, which, differently from [1, 2], involve a more
general class of configurable environments.

We finally note that the MAPF problem with use of highways [7]
and the MAPF problem with optimal task assignment [17] exhibit
some configurable aspects. In the former, sub-optimal MAPF solvers
push agents to follow some human-generated highways, that can
be configured in various ways, in the attempt of avoiding collisions.
In the latter, the agents’ goal locations can be configured (keeping
the environment unchanged), while in the C-MAPF problem it is
possible to configure the environment while keeping the start and
goal locations of the agents unchanged.

3 C-MAPF
In this section, we introduce and analyze a general formulation of
the C-MAPF problem built as a natural extension of the classical
MAPF problem. In the next section, we devise an alternative (equiv-
alent) formulation that, although less straightforward, will help to
develop one of the resolution algorithms we propose.

3.1 Problem Formulation
The MAPF problem in Configurable environments, C-MAPF prob-
lem, assumes a non-empty family G = {G1, . . . ,Gn } of graphs
G j = (Vj , Ej ) that represent all the possible configurations of the
environment and a set of k labeled agents A = {a1, . . . ,ak }. We
assume that a given physical location is associated to a single vertex.
Hence, if the location corresponding to vertex v is present in two
configurations,G = (V , E) andG ′ = (V ′, E ′), thenv ∈ V andv ∈ V ′.
Similarly for physical connections between locations and the edges
that represent them. DefineV∩ =

⋂
j=1, ...,n Vj , E∩ =

⋂
j=1, ...,n Ej ,

V∪ =
⋃
j=1, ...,n Vj , and E∪ =

⋃
j=1, ...,n Ej . Each agent ai ∈ A has

an associated unique start vertex si ∈ V∩ and goal vertex дi ∈ V∩.
Hence, we assume that start and goal vertices si and дi are present
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in every configuration. Two agents can never occupy the same
vertex at the same time. As a consequence, meaningful instances
of the problem satisfy |V∩ | ≥ k . From now on we shall assume
that this always holds. At each (discrete) time step t , each agent
ai moves between two vertices or stays at its current vertex. A
path πi of cost πi = Ti for an agent ai is a sequence of vertices
πi = (v

0
i , . . . ,v

Ti
i ,v

Ti+1
i , . . .) such thatv0i = si andv

t
i = дi , ∀t ≥ Ti

(i.e., the path πi , when followed by ai , brings the agent from si to
дi ). That is,Ti represents the earliest time at which agent ai reaches
its goal vertex дi and stops moving. A path πi is applicable in a
graph G = (V , E) if, for any t , vti ∈ V and vti , vt+1i implies that
(vti ,v

t+1
i ) ∈ E (i.e., a path πi is applicable in a graphG if, intuitively,

it possible to simulate πi inG). For the moment, we require paths to
be applicable in G∪ = (V∪, E∪). A set of k paths π = {π1, . . . , πk },
one for each agent, is called a plan. Namely, a plan is composed of
paths that could be applicable in some configuration of the environ-
ment (a graph in G). A conflict between paths πi and πj is a tuple
⟨ai ,aj ,v, t⟩ meaning that agents ai and aj are occupying the same
vertex v ∈ V∪ at time step t . A solution ⟨π ,G⟩ for the C-MAPF
problem is a conflict-free plan π and a configuration G ∈ G such
that all the paths in π are applicable in G. When G is composed
of a single configuration, the C-MAPF problem trivially reduces to
the MAPF problem.

If a solution ⟨π ,G⟩ minimizes some given global cost function,
then it is an optimal solution. Most common global cost functions
for MAPF problems are the flowtime, namely the sum of individual
path costs (SIC), defined as

∑
πi ∈π πi , and the makespan, namely

the cost of the most expensive path, defined as maxπi ∈π πi . In this
paper, we focus on solving the C-MAPF problem optimally and we
consider the flowtime as the global cost function.

Example 3.1. Consider k = 10 agents that have to move from
si to дi (with i = 1, . . . , 10) in a warehouse. The environment
can be set in two different configurations, G1 and G2, reported in
Figure 1. Free areas are white cells, while obstacles are colored cells.
Although not strictly necessary, the two configurations have the
same number (24) of obstacle cells arranged in different patterns and,
in accordance with the definition above, start and goal vertices of
the agents are the same in both configurations. A C-MAPF instance
can represent this setting and an optimal solution returns a set
of conflict-free paths for the agents that minimizes the flowtime
and the corresponding configuration. Finally, note that one may
discover (e.g., by generating and solving various C-MAPF instances)
that, on average, one configuration is better than the other.

3.2 Problem Analysis
The following analysis is based on the C-MAPF problem in its
general form where edge conflicts1 can be present too.

The definition of the C-MAPF problem poses almost no restric-
tion on how the configurations in G are defined. A way to simplify
the process of finding an optimal solution to such problem is to
identify and eliminate the inefficiencies caused by redundancies
among configurations and by areas that are unreachable in some
configurations. For instance, consider a C-MAPF problem and two
1An edge conflict between paths πi and πj is a tuple ⟨ai , aj , v , v ′, t ⟩ meaning that
from time step t to t +1 agent ai is traveling fromv ∈ V ∪ tov ′ ∈ V ∪ while agent aj
is traveling from v ′ to v , i.e., they are traveling along an edge in opposite directions.

configurations G,G ′ ∈ G. If G is a subgraph2 of G ′, then, when
solving the C-MAPF problem, we can discard G from the set of
configurations G since all the plans that are applicable inG are also
applicable in G ′.

It is interesting to study the possibility of using solvers for the
MAPF problem in order to optimally solve the C-MAPF problem.

Proposition 3.2. The C-MAPF problem can be optimally solved for
flowtime and makespan minimization by exploiting any MAPF solver.

Proof. The C-MAPF problem can be optimally solved in a brute-
force manner by invoking any MAPF solver to solve the MAPF
problems corresponding to all configurations G ∈ G. Note that
it is possible to preliminary check whether each of these MAPF
problems is solvable [50] if the adopted MAPF solver is unable to
identify unsolvable MAPF instances. Intuitively, given the MAPF
problems corresponding to all configurations, if there is at least
one solvable problem and all solvable problems are solved by any
optimal MAPF solver, the C-MAPF problem can be optimally solved
simply by selecting the best MAPF solution and the corresponding
configuration. If, for each configuration, there is no solution to the
corresponding MAPF problem, then the C-MAPF problem admits
no solution. □

We now turn to analyze the complexity of finding a solution and
of finding an optimal solution for the C-MAPF problem.

Proposition 3.3. Solvability of the C-MAPF problem can be deter-
mined in polynomial time.

Proof. For a MAPF problem on a graphG = (V , E), solvability can be
determined in linear time [50]. Wemay need to check the solvability
of n MAPF problems, one per each configurationG ∈ G. The entire
process has polynomial time worst-case complexity. □

Proposition 3.4. A (non necessarily optimal) solution for the C-
MAPF problem can be found in polynomial time.

Proof. A MAPF problem on a graph G = (V , E) can be solved (not
optimally) in polynomial time [50]. In order to (not optimally) solve
the C-MAPF problem, it is sufficient to solve one MAPF problem
among those that can be defined starting from the set of config-
urations G. The entire process, which include the solvability test
for the MAPF problems since they are not necessarily solvable, has
polynomial time worst-case complexity. □

Theorem 3.5. The C-MAPF problem is NP-hard to solve optimally
for flowtime and makespan minimization, even on grid environments.

Proof. The C-MAPF problem is trivially a generalization of theMAPF
problem, which is NP-hard to solve optimally for flowtime and
makespan minimization [49], even on grid environments [4]. □

4 ALGORITHMS
According to the previous section, the C-MAPF problem can be
optimally solved in a brute-force manner by invoking the CBS al-
gorithm [35] (or any other optimal MAPF solver) for each MAPF
problem that can be defined starting from G. Clearly, this approach
is impractical for complex instances. We propose two more effi-
cient algorithms, both based on the CBS algorithm, for solving
2A graph G = (V , E) is a subgraph of G′ = (V ′, E′) when V ⊆ V ′ and E ⊆ E′.

Research Paper  AAMAS 2020, May 9–13, Auckland, New Zealand

161



the C-MAPF problem. We choose CBS because it is a search-based
algorithm and it matches well with the combinatorial complexity
introduced by the selection of the configuration of the environment.

We quickly overview some aspects (expanding those mentioned
in Section 2) of CBS that are useful to understand our algorithms.
Please refer to the original paper [35] for full details. CBS im-
poses constraints to agents. A constraint for an agent ai is a triplet
⟨ai ,v, t⟩ meaning that ai cannot occupy vertex v at time step t . If
a path πi for agent ai satisfies all the constraints for ai , then πi is
said to be a consistent path. A consistent plan is a plan composed
only of consistent paths, one for each agent. The CBS algorithm
operates at two levels. The high-level performs a best-first search
on a binary constraint tree (CT). Each CT node N contains a set of
constraints (N .constraints), a plan consistent with its constraints
(N .plan, calculated by the low-level algorithm), and its associated
flowtime cost (N .cost). The root R of the CT has R.constraints = ∅.
When a node N is selected, a validation process searches for any
conflict in N .plan. If N .plan is conflict-free, then it is a solution for
the MAPF problem and the node N is a goal node (the search ter-
minates at that point). If a conflict ⟨ai ,aj ,v, t⟩ is found, then a split
action is performed, generating two child nodes, N1 and N2. The
constraint ⟨ai ,v, t⟩ is added to N1.constraints and the constraint
⟨aj ,v, t⟩ is added to N2.constraints. For the two child nodes, a new
plan is then computed invoking the low-level algorithm, which re-
plans the path only for the agent involved in the added constraint.
Given an agent ai and its constraints, the low-level plans a path πi
on the graph representing the environment ignoring the presence
of the other agents and taking into account only the constraints
of ai . Generally, the low-level employs A*-based procedures [16];
however, is possible to use any single-agent path finding algorithm
to find paths. Finally, N1 and N2 are added to an OPEN list. CBS
performs a best-first search in OPEN based on the cost of the nodes
(N .cost).

Improved CBS (ICBS) [6] improves CBS by resolving first the
cardinal conflicts in N .plan, that are the ones that lead to the gener-
ation of two child nodes with a cost higher than N .cost. CBSH [11]
improves it further by adding an admissible heuristic to guide the
high-level search. The idea behind the heuristic is that if a CT node
N has a cardinal conflict, then all goal nodes descending from N
have a cost of at least N .cost+1. Consequently, if N has N .h disjoint
(i.e., between disjoint pairs of agents) cardinal conflicts, N .h is an
admissible heuristic for N . Both our algorithms are based on CBSH
and perform a best-first search considering N .cost + N .h.

4.1 P-CBS
Our first algorithm is called Parallel CBS (P-CBS) and is a simple
optimized version of the brute-force approach mentioned above.
While the brute-force approach sequentially solves all the MAPF
instances that can be generated from a C-MAPF instance (one
for each configuration in G), P-CBS carries out a best-first search
similar to the high-level of CBS, but simultaneously considering
all the MAPF instances. The idea is to perform a forest search,
similarly to what done for solving the MAPF problem with optimal
task assignment [17].

Specifically, in P-CBS, each CT node N has a new field called
N .configuration that stores a configuration G ∈ G, which remains

G I1 I2 G ∪ I1 ∪ I2

Figure 2: A graph G and two graph improvements for it, I1
and I2. Adding both I1 and I2 results in the graph on the right.

the same for its child nodes. The low-level algorithm, when invoked
by the high-level for updatingN .plan, is bound to look for paths that
are applicable in N .configuration. At the beginning of the search,
P-CBS generates a CT node Nj , equivalent to the root node of plain
CBS, for each configurationG j ∈ G, and setsNj .configuration = G j .
It is possible to speed up the generation of these initial nodes by
reusing individual agent paths from previously generated nodes
whenever possible (e.g., when they are still optimal and applicable
in the new configuration). These n nodes are all added to OPEN
and the search continues as in CBS.

In practice, P-CBS searches in parallel over multiple “virtual”
trees (one per configuration) and, as soon as a goal node is found by
the best-first search strategy, the search is stopped for all the trees.
The approach of P-CBS is straightforward and has some limitations.
For instance, consider a conflict whose presence is independent
of the configuration of the environment. It may be necessary to
solve this conflict in several “virtual” trees. In the next section, we
present an algorithm which, by using an aggregation technique, is
able to partially address this limitation.

We now show a result about completeness and optimality.

Theorem 4.1. P-CBS terminates if a solution exists (completeness).
If P-CBS terminates, it returns the optimal solution according to the
flowtime (optimality).

Proof is trivially derived from the fact that P-CBS performs (at
worst) an exhaustive search for plans over all configurations.

4.2 A-CBS
In order to introduce our second algorithm, called Abstract CBS
(A-CBS), we present an alternative and more operative formulation
for the C-MAPF problem defined in Section 3.

Operative formulation of the C-MAPF problem. The idea of
the operative formulation of the C-MAPF problem is to start from
a graph G = (V , E), representing a primitive skeleton, to which
structures of vertices and edges, called graph improvements, can
be added.

Definition 4.2. A graph improvement I = (V ′, E ′) for a graph
G = (V , E) is a structure composed of a set of vertices V ′ and a set
of edges E ′ (it is not required that E ′ ⊆ (V ∪V ′) × (V ∪V ′)) such
that V ∩V ′ = ∅ and E ∩ E ′ = ∅.

In general, adding a graph improvement I = (V ′, E ′) to a graph
G = (V , E) does not result in a well-formed graph G ′ = G ∪ I =
(V ∪V ′, E ∪ E ′) (e.g., some edges can be dangling). In the operative
formulation, a configuration of the original formulation of Section 3
can be obtained as an appropriate combination of some graph
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improvements. An example is shown in Figure 2 in which the left
graphG and the right graphG∪I1∪I2 represent two configurations.
The operative formulation of the C-MAPF problem is obtained
as follows. Consider a graph G = (V , E), a set of disjoint3 graph
improvements I = {I1, . . . , Im } for G, a validation function f :
P(I) → {0, 1}, and a set of k labeled agents A = {a1, . . . ,ak }.
Each agent ai ∈ A has an associated unique start vertex si ∈ V
and goal vertex дi ∈ V . Thus, we assume that |V | ≥ k . f () tells, by
returning 1, which combinations of graph improvements produce
configurations in G and is defined as (I ′ ⊆ I):

f (I ′) =

{
1 if G ∪ (

⋃
I ∈I′ I ) ∈ G

0 otherwise
.

We require that there exist at least a set I ′ ⊆ I such that f (I ′) = 1.
The above operative formulation resembles that for the (single-

agent) path finding problem with removable obstacles in the plane
of [1], in which some disjoint polygonal-shaped obstacles can be
removed, paying a cost, from an initial environment. In the formu-
lation of [1], a (given) limited budget can be spent for removing
obstacles. In our case, instead of the budget, which implicitly de-
fines the combinations of obstacles that can be removed, we have a
more general validation function f () with a similar purpose. More-
over, while the approach of [1] operates by subtracting polygonal
obstacles, we operate by adding parts of the graph.

The operative formulation of the C-MAPF problem does not
require to explicitly list all the configurations of the environment
G, but to list the graph improvements that can be used to obtain
such configurations.

Proposition 4.3. It is possible to translate a C-MAPF problem for-
mulated as in Section 3 into the operative formulation and vice versa.

Proof. We immediately note that we can easily obtain the orig-
inal C-MAPF formulation of Section 3 from the operative for-
mulation since we can always define G by inspecting f (). We
now prove that we can obtain the operative formulation from the
original C-MAPF formulation. Define ∆G = {∆G1, . . . ,∆Gn } and
¬∆G = {¬∆G1, . . . ,¬∆Gn } (n is the number of configurations
in G), where4 ∆G j = G j − G∩ and ¬∆G j = G∪ − G j (where
G∩ = (V∩, E∩) and G∪ = (V∪, E∪)). I is defined starting from
∆G and ¬∆G. For each {i, . . . , j} ⊂ {1, . . . ,n}, we define a graph
improvement Ii , ..., j for G∩ as:

Ii , ..., j =
©­«

⋂
k ∈{i , ..., j }

∆Gk
ª®¬ ∩ ©­«

⋂
k ∈{1, ...,n }−{i , ..., j }

¬∆Gk
ª®¬ .

At this point, we discard all the empty graph improvements. The
set of graph improvements I obtained as above is composed of
disjoint graph improvements for G∩. In fact, given two different
graph improvements Ix and Iy , x , y implies that there exist at least
one index h ∈ {1, . . . ,n} such that h ∈ x ∧ h < y or h < x ∧ h ∈ y
and then5 Ix ⊆ ∆Gh ∧ Iy ⊆ ¬∆Gh or Iy ⊆ ∆Gh ∧ Ix ⊆ ¬∆Gh :
3Two graph improvements I = (V , E) and I ′ = (V ′, E′) are disjoint if I ∩ I ′ =
(V ∩V ′, E ∩ E′) is empty (i.e., V ∩V ′ = ∅ and E ∩ E′ = ∅).
4Given two graphs G = (V , E) and G′ = (V ′, E′) such that V ′ ⊆ V and E′ ⊆ E ,
G −G′ = (V −V ′, E − E′). Note thatG −G′ is a graph improvement forG′ but it is
not necessarily a graph.
5Given two graph improvements I = (V , E) and I ′ = (V ′, E′), I ⊆ I ′ if V ⊆ V ′ and
E ⊆ E′.

it follows that Ix ∩ Iy = (
⋂
k ∈x ∆Gk ) ∩ (

⋂
k ∈{1, ...,n }−x ¬∆Gk ) ∩

(
⋂
k ∈y ∆Gk ) ∩ (

⋂
k ∈{1, ...,n }−y ¬∆Gk ) = ∆Gh ∩ . . . ∩ ¬∆Gh = ∅,

since ∆Gh ∩ ¬∆Gh = ∅. Finally, we define G = G∩ and f () such
that, given I ′ ⊆ I, it returns 1 iff

⋃
I ∈I′ I ∈ ∆G. □

Observation 4.4. Given n configurations in G, by using the trans-
lation method shown in the proof of Proposition 4.3, we can obtain at
mostm = 2n − 2 (disjoint) graph improvements in I.

Observation 4.5. Givenm disjoint graph improvements in I, we
can obtain at most n =

( m
⌊m/2⌋

)
(i.e., n ≈ 2m/

√
m) configurations

G such that there are no configurations G,G ′ ∈ G in which G is a
subgraph of G ′.

Proof is trivially derived from the Sperner’s theorem [38].

Algorithm behavior. A-CBS extends CBS in considering not only
constraints for the agents, but also constraints for the environment.
The idea behind A-CBS is that, unless otherwise imposed by envi-
ronment constraints, the low-level algorithm considers all the graph
improvements as added to G (where G is equal to G∩). At high-
level, each CT nodeN has an additional field calledN .improvements,
which contains all the graph improvements used by N .plan, i.e.,
given the improvement I ∈ I, I ∈ N .improvements iff N .plan is
not applicable in the largest graph embedded in G∪ − I . Note that
computing N .improvements from N .plan is trivial. The root R of
the CT has R.constraints = ∅ (as in CBS). Consequently, the plan of
the root node is calculated considering all the graph improvements
added to G, ignoring (for the moment) the fact that this abstract
search space (which is initially equivalent to G∪) may be illegal.

When a node N is selected from OPEN, a new validation process
is immediately carried out, before checking for conflicts in N .plan.
A-CBS first checks if there exists a configuration in which N .plan
is applicable. This is done by exploiting the operative formulation
and the following function.

Definition 4.6. The extended validation function F : P(I) →
{0, 1} determines if there is a configuration that contains given
graph improvements and is defined as (I ′ ⊆ I):

F (I ′) =

{
1 ∃I ′′ ⊆ I − I ′ s.t. f (I ′ ∪ I ′′) = 1
0 otherwise

.

F () is similar to the validation function f () but less restrictive (note
that f (I ′) = 1 ⇒ F (I ′) = 1) and can be computed from f (). If a
configuration in which the plan is applicable exists, A-CBS proceeds
following the behavior of CBS, otherwise, A-CBS imposes environ-
ment constraints, limiting the search space. The idea is to perform
a disjoint splitting, as in [26], but applied to the environment. We
define a new type of conflict and two new types of constraints.

Definition 4.7. An environment conflict is a tuple ⟨I , . . . , I ′⟩ mean-
ing that the plan uses all the graph improvements in {I , . . . , I ′} ⊆ I
but F ({I , . . . , I ′}) = 0.

Definition 4.8. There are two types of environment constraints.
The constraint ⟨I ⟩ imposes the presence of all vertices and edges
in I ∈ I within the search space, while the constraint ⟨I ⟩ imposes
the removal (absence) of all vertices and edges in I ∈ I from the
search space.
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Algorithm 1: A-CBS algorithm (simplified version).
1 Main(C-MAPF instance)
2 R.constraints← ∅;
3 R.plan← find individual paths using the low-level;
4 R.cost← flowtime(R.plan);
5 R.improvements← graph improvements in R.plan;
6 insert R in OPEN;
7 while OPEN not empty do
8 P ← best node from OPEN;
9 if F (P .improvements) is 0 then
10 I ← select-one(P .improvements);
11 Generate Child(P , ⟨I ⟩) //left child;
12 Generate Child(P , ⟨I ⟩) //right child;
13 continue

14 validate the paths in P ;
15 if P has no conflict then
16 return P //P is goal node;
17 C ← first conflict ⟨ai ,aj ,v, t⟩ in P ;
18 Generate Child(P , ⟨ai ,v, t⟩) //left child;
19 Generate Child(P , ⟨aj ,v, t⟩) //right child;

20 Generate Child(Node N , Constraint(s) C)
21 A.constraints← N .constraints ∪C;
22 A.plan← N .plan;
23 foreach agent ai involved in C do
24 update A.plan by invoking the low-level for ai ;
25 A.cost← flowtime(A.plan);
26 A.improvements← graph improvements in A.plan;
27 insert A in OPEN;

Given a CT node N , if an environment conflict ⟨I , . . . , I ′⟩ is
found, then a split action is performed, generating two child nodes,
N1 and N2. A-CBS selects a graph improvement Ij ∈ {I , . . . , I ′}
(such that ⟨Ij ⟩ is not inN .constraints) and adds the constraint ⟨Ij ⟩ to
N1.constraints and the constraint ⟨Ij ⟩ to N2.constraints. We choose
the one that is most used by the agents in N .plan, but other policies
are possible. A node N is consistent with its environment con-
straints if N .plan is applicable in the largest graph embedded in
the (largest) search space consistent with N .constraints. As a conse-
quence, when adding an environment constraint of type ⟨I ⟩ (with
I ∈ I), we must re-compute the individual paths of all the agents
that use the graph improvement I in order to find a consistent
plan. A node N is pruned if the environment can not satisfy the
environment constraints in N .constraints6.

Example 4.9. Suppose that the plan in the root node of the CT
has an environment conflict ⟨I1, I2, I3⟩ and that the split action gen-
erates N1 with the constraint ⟨I1⟩ and N2 with the constraint ⟨I1⟩.
Moreover, suppose that N1.cost = N2.cost and N2.improvements =
{I2, I4}. At this point N2 could be selected from OPEN and π =

6That is, if there is no configuration that includes all the vertices and edges in I ,
∀⟨I ⟩ ∈ N .constraints, and that not includes any of the vertices and edges in I ′,
∀⟨I ′⟩ ∈ N .constraints.

N2.plan could be conflict-free. If f ({I1, I2, I4}) = 1, then F ({I2, I4}) =
1 (because of I1). It does not matter if ⟨I1⟩ ∈ N2.constraints because
the constraint ⟨I1⟩ imposes the absence of the vertices and edges
in I1 from the search space and not from the configuration that
is part of the solution: the best-first search ensures that N2.cost is
the optimal cost. In fact, it is trivial to prove that, in this case, the
sub-tree below N1 will necessarily contain a goal node with the
same cost of π . Therefore, π can be selected as part of the optimal
solution (⟨π ,G ∪ (

⋃
j ∈{1,2,4} Ij )⟩).

The pseudocode (salient steps) of the A-CBS algorithm is re-
ported in Algorithm 1. The main changes wrt CBS are highlighted.

In practically implementing A-CBS, multiple environment con-
straints can be considered at each step. For instance, consider a case
in which there is no configuration in G that contains the vertices
and the edges of both I ∈ I and I ′ ∈ I. In this case, the addition
of the environment constraint ⟨I ⟩ to N1.constraints can be done
jointly with the addition of the further environment constraint ⟨I ′⟩.
In other words, given a CT node N and a graph improvement I ∈ I
(such that ⟨I ⟩ and ⟨I ⟩ are not in N .constraints), if the addition of ⟨I ⟩
(or ⟨I ⟩) to N .constraints leads in pruning N , then ⟨I ⟩ (or ⟨I ⟩) can be
added to N .constraints.

A-CBS maintains the nodes that reported an environment con-
flict on top of the CT. Let EC(N ) be the higher ancestor node of
N in which a (non-environment) conflict ⟨ai ,aj ,v, t⟩ has been de-
tected.When considering the CT nodeN , if an environment conflict
⟨I , . . . , I ′⟩ is detected, then the sub-tree below EC(N ) is discarded
and a new split action at EC(N ) is performed assuming the presence
of the conflict ⟨I , . . . , I ′⟩ and ignoring the conflict ⟨ai ,aj ,v, t⟩. Note
that the algorithm could be further optimized in order to somehow
reuse the sub-tree below EC(N ), for example by possibly hanging
it on the new left child node of EC(N ).

These adjustments drastically reduce the number of environment
conflicts encountered during the high-level search. In particular,
the following proposition can be trivially proved.

Proposition 4.10. The number n of configurations in G represents a
strict upper bound on the number of environment conflicts encountered
during the high-level search of A-CBS.

For example, adding (possibly multiple) environment constraints
to the child nodes of the root node R means, in a sense, dividing
the set of configurations into two subsets associated with the child
nodes of R. The above result is reassuring in cases in which the
C-MAPF instance presents many more graph improvements than
configurations (i.e., whenm >> n).

We now prove completeness and optimality of A-CBS.

Theorem 4.11. A-CBS terminates if a solution exists (completeness).
If A-CBS terminates, it returns the optimal solution according to
flowtime (optimality).

Proof. The completeness proof of CBS shown in [36] is still valid
for A-CBS for the same reasons (consider also Proposition 3.3). The
optimality proof for A-CBS is an extension of that for CBS shown
in [35], which is presented as a consequence of two lemmas (please
refer to [35] for details). Hence, we demonstrate that these two
lemmas hold also for A-CBS. Lemma 1 states that the cost of a node
N in the CT is a lower bound on min⟨π ,G′⟩∈CV (N ) flowtime(π ),
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where CV (N ) is the set of all the (non necessarily optimal) so-
lutions consistent with N . The proof in [35] can be extended by
considering that π must be applicable in the (same) largest graph em-
bedded in the (largest) search space consistent with N .constraints,
∀⟨π ,G ′⟩ ∈ CV (N ). In our case, Lemma 2 states that, for any solu-
tion ⟨π ,G ′⟩, at all time steps, there exists a CT node N in OPEN
s.t. ⟨π ,G ′⟩ ∈ CV (N ). Proof by induction provided in [35] is still
valid even considering environment constraints. CV (R) (where R
is the root node) contains all the solutions ⟨π ,G ′⟩ since the search
space is the widest (G∪). Secondly, given a solution ⟨π ,G ′⟩, if
⟨π ,G ′⟩ ∈ CV (N ) at a given time step for a certain CT node N , and a
split action (due to an environment conflict) is performed generating
N1 andN2, then ⟨π ,G ′⟩must satisfy at least one of the new environ-
ment constraints, i.e., ⟨π ,G ′⟩ ∈ CV (N1) or ⟨π ,G ′⟩ ∈ CV (N2). □

Low-level search. Given a CT node N and an agent ai ∈ A, the
low-level algorithm computes an optimal path πi that is consistent
with N .constraints, including environment constraints. Further-
more, when possible, the low-level prefers paths that use fewer
graph improvements without counting those involved in environ-
ment constraints (i.e., all I ∈ I s.t. ⟨I ⟩ ∈ N .constraints). In CBS, a
common choice for the low-level algorithm is A* [16] with a perfect
heuristic. This choice may be impractical for C-MAPF since it is nec-
essary to pre-compute a perfect heuristic for all the configurations
of the environment. Instead, we use a simpler consistent heuristic,
such as the Manhattan distance for 4-connected grid environments
or the Euclidean distance for Euclidean graphs [34]. We also use
EPEA* [15], a fast solver for single agents when the heuristic is less
informative. Obviously, there are various alternatives, as M* [46].

5 EXPERIMENTS
All the experiments are conducted on a computer equipped with
an AMD RyzenTM 5 1500X quad-core processor at 3.79 GHz and
with 16 GB of RAM. We implemented our two algorithms in Java.
We also implemented an ideal solver (labeled IDEAL) that knows
in advance, from an oracle, the configuration G ∈ G of an optimal
solution ⟨π ,G⟩ and has only to solve a MAPF problem on the graph
G by invoking CBS. The IDEAL algorithm is of course not realis-
tic, but represents a lower bound for the computing time needed
to solve a C-MAPF problem. To the best of our knowledge, in the
literature, there is no other MAPF algorithm that can be used in con-
figurable environments against which our algorithms can compare.
As mentioned above, our algorithms use the conflict prioritization
and the high-level heuristic values of CBSH [11].

We know, from theoretical analysis (Proposition 4.10), that A-
CBS is able to efficiently limit the size of the CT when m >> n
(wherem is the number of graph improvements and n is the num-
ber of configurations) and that, by definition, P-CBS generates n
“virtual” trees (regardless of the value ofm). Therefore, in our exper-
iments, we mainly consider instances defined starting from a set of
graph improvements (where typically n > m). We run experiments
in two classes of grid environments7, which are discussed in the
following sections. In order to have a controllable way for gener-
ating configurations of the environments, we adopt the following
7Given a 2D grid composed of cells, which can be either free or occupied by obstacles,
the corresponding graph is obtained by associating vertices to the centers of free cells
and edges to pairs of adjacent free cells (assuming 4-connection).

m (1 × 1 obstacles) 5 10 15 20 25 30
n (configurations) 5 120 1365 38760 480700 14307150
Table 1: Number of configurations wrt tom for β = 30%.

Runtime (ms) Expanded CT nodes
# P-CBS A-CBS IDEAL P-CBS A-CBS IDEAL

15
×
15

gr
id

m
ap
s

10 50 34 5 1 310 34 7
15 49 62 10 1 726 107 13

k 20 49 731 194 18 3030 828 87
25 47 846 81 36 3798 396 220
30 44 2405 930 272 9776 4395 1618
35 39 2676 859 107 10192 2895 396
5 50 1069 742 363 6281 4484 2482
10 47 846 81 36 3798 396 220

m 15 44 2082 78 3 15381 462 51
20 35 5755 663 12 20730 1814 75
25 46* NA 944* 7* NA 5884* 55*
30 46* NA 1096* 2* NA 5005* 35*

de
n9

00
d

10 49 5874 121 89 299 1 1
20 45 12975 1517 1064 231 7 6

k 30 37 29742 2611 1503 186 19 11
40 25 29661 7030 3063 115 38 21
50 25 38357 10043 5331 378 80 75
60 16 47144 15240 10845 203 50 36

Table 2: Runtime and number of expanded CT nodes wrt k
andm. Column “#” is the number of instances solved by both
P-CBS and A-CBS or only by A-CBS (*) within the timeout.

approach. Some obstacle cells can be removed by selecting a given
percentage of them or, alternatively, by paying obstacle-removal
costs within a limited total budget. The configurations G of the
environment are thus determined by all the possible combinations
of removed obstacles.

For each setting (a setting is an environment and a configuration
of parameters), we solve 50 instances with different, randomly
generated, start and goal vertices. We set a timeout of 30 seconds
for small maps (as in Section 5.1) and a timeout of 5minutes for large
maps (as in Section 5.2). We measure the success rate, defined as
the percentage of instances solved within the timeout, the runtime
of the algorithms, and the number of nodes that the algorithms
expand in the CT. The data points representing these values are
averaged over the instances solved by all the three algorithms.

5.1 Small Grid Maps
We consider a 15 × 15 grid map. We place 1 × 1 obstacles in the
map and we allow the solvers to remove a fraction β = 30% of
the present obstacles. Although obstacles are randomly placed, we
guarantee that they are detached from the outer border of the map
and from each other. Note that, given the numberm of removable
obstacles, the number of configurations is n = n(m) =

( m
⌊βm ⌋

)
≈

2H (β )m , where H (β) is the binary entropy function8 [8]. Note that
n(25) > 105 for β = 30% (Table 1). Results are reported in Figure 3
and in Table 2.

We first test this setting for a varying number of agents k ∈
{10, 15, . . . , 35} and m = 10 obstacles. In these small grid maps,
A-CBS performs slightly better than P-CBS in terms of success rate
and consistently better in terms of computing effort (runtime and
number of expanded CT nodes), coming closer (wrt to P-CBS) to the
lower bound represented by IDEAL. In particular, when the number

8H (β ) = −β log(β ) − (1 − β ) log(1 − β ) for β ∈ [0, 1].
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(a) Success rate wrt k (b) Runtime wrt k

(c) Expanded CT nodes wrt k (d) Runtime partition wrt k

(e) Success rate wrtm (f) Runtime wrtm

(g) Expanded CT nodes wrtm (h) Runtime partition wrtm

Figure 3: Results on small grid maps.

k of agents increases, A-CBS maintains a higher success rate and a
shorter runtime. Runtime partition results suggest that, in this test,
A-CBS spends more time in finding an optimal configuration than
in solving the associated MAPF instance.

We further test the same setting for a varying number of remov-
able obstaclesm ∈ {5, 10, . . . , 30} and k = 25 agents. Results show
that A-CBS behaves much better than P-CBS when the number
of obstaclesm increases. Whenm is large, the number of possible
configurations of the environment is large and the combinatorial
aspects of the corresponding C-MAPF problem becomes more rele-
vant. Our results show that A-CBS dominates this increased com-
plexity better than P-CBS, which seems unable to solve instances
withm = 25 andm = 30 within the timeout.

5.2 Large Grid Maps
We consider a large 128 × 128 grid map, namely the benchmark
Dragon Age: Origins (DAO) computer game map den900d from [42].
We also consider m = 25 4 × 4 obstacles, each with an integer
removal cost picked randomly from {1, 2, . . . , 5}, and a budget of

(a) Success rate wrt k (b) Runtime wrt k

(c) Expanded CT nodes wrt k (d) Runtime partition wrt k

Figure 4: Results on large grid maps.

10. In this way, the solvers will be likely forced to choose which
obstacles should be removed, especially when the number of agents
grows. We test this setting for a varying number of agents k ∈
{10, 20, . . . , 60}. Results are reported in Figure 4 and in Table 2.
A-CBS performs similarly to P-CBS for success rate and clearly
outperforms P-CBS for runtime. Unlike P-CBS, the computing time
of A-CBS is very close to the lower bound represented by the com-
puting time of IDEAL, especially when k increases. In this case,
runtime partition results show that the time spent by A-CBS to
find an optimal configuration is slightly less than the time spent to
solve the associated MAPF instance.

6 CONCLUSIONS
In this paper, we introduced C-MAPF, namely a version of the
MAPF problem in configurable environments. From an algorithmic
point of view, the C-MAPF problem adds another combinatorial
dimension to MAPF problems, which is related to the need of se-
lecting the most convenient configuration in order to optimize the
flowtime, namely the sum of the costs of the individual paths. We
also introduced two complete and optimal algorithms, P-CBS and
A-CBS, that are experimentally demonstrated to perform well in
different settings. In particular, A-CBS shows high success rates and
short computing times even in challenging environments that ad-
mit several configurations. However, a deeper and more systematic
comparison between the two algorithms is needed.

Future work will address the investigation of new algorithms for
C-MAPF, for example sub-optimal solvers, in the attempt of trading
off between efficiency and quality of solutions. Moreover, while in
this paper we considered the flowtime as the only objective function,
more complex objective functions could be defined, for example
combining the cost of solutions (either flowtime or makespan) and
the cost of modifying the environment (e.g., the cost of setting the
environment in a configuration). Future work also includes the
“online” variant of the problem, in which the environment can be
dynamically reconfigured during execution, for example, to better
exploit the advantages of mobile shelving.
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