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ABSTRACT
Neural networks that output the parameters of a diagonal Gauss-
ian distribution are widely used in reinforcement learning tasks
with continuous action spaces. They have had considerable suc-
cess in single-agent domains and even in some multi-agent tasks.
However, general multi-agent tasks often require mixed strategies
whose distributions cannot be well approximated by Gaussians
or their mixtures. This paper proposes an alternative for policy
representation based on normalizing flows. This approach allows
for greater flexibility in action distribution representation beyond
mixture models. We demonstrate their advantage over standard
methods on a set of imitation learning tasks modeling human driv-
ing behaviors in the presence of other drivers.
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1 INTRODUCTION
The multi-agent learning (MAL) literature is replete with examples
of multiple self-interested agents with imperfect information that
are strategically interacting with each other [2, 20]. Imperfect in-
formation as well as strategic interaction conditions require agents
that can both model complex strategies of other interacting agents
and formulate complex strategies in response. This often requires
action distributions that are multi-modal to model the effects of
hidden latent variables under imperfect information and to avoid
being predictable to other agents.

However, past work has largely focused on discrete action do-
mains or population-based methods [9]. Single agent continuous
control tasks are often modeled as either deterministic policies [14]
or unimodal multivariate Gaussian with diagonal covariances as
stochastic policies [19]. Experimentally, we find that unimodal
Gaussian distribution representations of stochastic policies can
also restrict the model class leading to suboptimal performance
in multi-agent domains. Consequently, devising methods to learn
complex policy representations required for multi-agent systems is
a significant challenge.

Density modeling is a rich field of study. Mixture models are
often used to build multi-modal distributions from unimodal ones.
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This approach can be effective when the degree of multi-modality
is known. However, complex multi-agent interactions often require
more flexible distributions than those achieved by mixture models.
Recent advances in generative modeling [3, 6, 7, 11, 12] have shown
promise for modeling complex distributions. Various normalizing
flow [3–5, 8, 10, 17] models allow learning complex distributions
while maintaining ease of sampling and density evaluation.

In this work, we show two examples of multi-agent problems
that require complex action distributions for agent policies. We
show how normalizing flow models can be architected to act as
useful policy representations and how they fare against Gaussian
mixture model representations.

2 NORMALIZING FLOW POLICY
REPRESENTATION

Flow models are invertible transformations that map observed data
x to a latent variable z from a simpler distribution, such that both
computing the probability density 𝑝 (x) and sampling 𝑥 ∼ 𝑝 (x) is
efficient. Represented as a function 𝑓 , the key idea is to stack individ-
ual simple invertible transformations [3, 4] as 𝑓 (x) = 𝑓1◦· · ·◦ 𝑓𝐿 (x),
with each 𝑓𝑖 having a tractable inverse and a tractable Jacobian de-
terminant. We focus on RealNVP [4] as our exemplary flow model.
It uses an affine coupling layer as 𝑓𝑖 . Given a 𝐷 dimensional input
x and 𝑑 < 𝐷 , the 𝐷 dimensional output y from application of 𝑓𝑖 is
defined as:

y1:𝑑 = x1:𝑑 ; y𝑑+1:𝐷 = x𝑑+1:𝐷 ⊙ 𝑒𝛼 (x1:𝑑 ) + 𝑡 (x1:𝑑 ) (1)

where 𝛼 and 𝑡 are scale and translation functions from R𝑑 → R𝐷−𝑑

and ⊙ is the Hadamard product. These functions are represented
by neural networks.

Conditioning the flow distribution 𝑝 (x) representing the action
distribution, on some state 𝑠 , allows us to use it as a representation
for a policy network. Formally, we want to transform z ∼ 𝑞 to a
policy, 𝑎 ∼ 𝜋 (𝑎 | 𝑠) by defining 𝑎 = 𝑓 −1

𝜃
(z, 𝑠), whose log-likelihood

is calculated as:

log𝑝 (x | 𝑠) = log𝑞(𝑓 (x, 𝑠)) +
𝐿∑
𝑖=1

log
����det 𝜕𝑓𝑖 (y, 𝑠)

𝜕𝑓𝑖−1 (y, 𝑠)

���� (2)

We propose to incorporate this change by replacing 𝑓 −1
𝜃

(z𝑚) with
𝑓 −1
𝜃

(z𝑚, 𝑠) in each flow. For RealNVP, this implies substituting
𝛼 (x1:𝑑 ) and 𝑡 (x1:𝑑 ) with 𝛼 (x1:𝑑 , 𝑠) and 𝑡 (x1:𝑑 , 𝑠). In practice, this
means that the neural networks representing 𝛼 and 𝑡 take both x1:𝑑
and 𝑠 as input.
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(f) RealNVP

Figure 1: Traffic Light Intersection: Distribution of agent ac-
celeration along the road for different policy parameteriz-
tions. The gray line indicates the intersection location.

3 EXPERIMENTS
We evaluate flow policies for a synthetic and a real-world agent-
modeling task, inmulti-agent contexts.We use behavior cloning [16]
to maximize the likelihood of actions in the training data.

We compare flow policies against the standard diagonal mul-
tivariate Gaussian policies, as well as the Gaussian policies with
full covariance using Cholesky decomposition (denoted as CG). We
also compare against the mixture of multivariate diagonal or full
covariance Gaussian policies (denoted as GMM and MCG).

Synthetic. To verify that flow policies can learn to represent
multi-modal behavior, we designed a simple environment to model
human driving in response to a traffic light at an intersection sce-
nario. As soon as the traffic light turns yellow, the driver either
needs to accelerate or decelerate to avoid coming into conflict with
the orthogonal traffic. Figure 1a shows the sample expert accel-
eration along the road ( ¥𝑥) with noticeable multi-modal behavior.
Some drivers decelerate and show negative ¥𝑥 , while some others
accelerate and display a positive ¥𝑥 . We do a 10-fold cross validation
and the test scores are reported in Table 1.

The performance of learned policies can be evaluated by sam-
pling from them for the same batch of initial states. Figures 1b
and 1c show that the single Gaussian policies fail to capture the
expert action distribution. It tries to cruise along at the same speed
even when closer to the intersection. Figures 1d and 1e as well as Ta-
ble 1 suggest that mixture models help a little and have lower spread
beyond the intersection along constant speeds. We see marked im-
provement in agent modeling from our conditional RealNVP, as
can be seen in Figure 1f with very little spread of constant speeds
beyond the intersection point.

Real World. Schmerling et al. [18] demonstrate the importance of
modeling complex action distributions in human-robot interaction
policies in the traffic-weaving scenario.1 Two drivers intend to
swap lanes without communication in a 135 meters straight road.

1Dataset from https://github.com/StanfordASL/TrafficWeavingCVAE

Policy Traffic Light Intersection Traffic Weaving

Gaussian 1.21 ± 0.02 −1.94 ± 0.10
Cholesky Gaussian 1.20 ± 0.02 −1.79 ± 0.21
𝑘-Gaussian mixture 1.40 ± 0.07 0.19 ± 0.14

𝑘-Cholesky Gaussian mixture 1.38 ± 0.07 0.17 ± 0.18
RealNVP 1.46 ± 0.04 0.86 ± 0.25

Table 1: Average best test log-likelihood scores. Best scores
for Gaussian mixture models were achieved with 𝑘 = 3 for
Traffic Light Intersection, and 𝑘 = 20 for Traffic Weaving.
Higher is better.

The dataset contains 1105 trials recorded from 19 different pairs of
human drivers.
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Figure 2: Traffic Weaving: First Wasserstein distance with
respect to the test set expert trajectories.

The 10-fold cross validation scores are reported in Table 1. On
this dataset, the RealNVP policy again has the highest test score.

Due to the complexity of true human behaviors, the quality of
the generated trajectories from the trained policies could not be
visually differentiated. We instead compute the per-timestep first
Wasserstein distance [15] of vehicle positions between the expert
trajectories in the test set and the rollout trajectories generated by
the learned policies using the same initial conditions. The results are
shown in Figure 2. The RealNVP policy has the lowest distance on
almost every time step, indicating that the trajectories sampled from
the RealNVP policy distribution are closest to the demonstration
distribution compared to other approaches.

4 CONCLUSION
We focused on the task of choosing the best representation for agent
policies in multi-agent continuous control contexts. We showed
how even mixture models may not suffice for tractably modeling
the required complex multi-modal action distributions for optimal
behavior. Using conditional normalizing flows, we found significant
performance improvements in learning complex, multi-modal agent
behaviors. Incorporating our model with the recent developments
in imitation learning [1] and reinforcement learning [13] for multi-
agent systems is important future work.
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