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ABSTRACT
Simulated games have become a dominant platform for multia-
gent intelligence research in recent years. Previous works have
succeeded on arcade, first person shooter (FPS), real-time strat-
egy (RTS), and massive online battle arena (MOBA) games. Our
work considers massively multiplayer online role-playing games
(MMORPGs or MMOs), which capture several complexities of real-
world learning that are not well modeled by any other game genre.
We present a massively multiagent game environment inspired by
MMOs and demonstrate that simple policy gradient methods pro-
duce interesting emergent exploration and specialization behaviors.
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1 INTRODUCTION
From arcade to FPS to RTS and MOBA, the use of increasingly
complex game environments has accelerated progress in deep rein-
forcement learning (RL) in recent years [1–5, 7]. MMOs simulate
self-contained macrocosms with large, variable numbers of play-
ers and realistic social strategy. However, standard assumptions
made about observation/action spaces and infrastructure currently
prevent RL from scaling to MMOs. Our key contributions are:

(1) Neural MMO as a fully open-source and actively supported
environment for multiagent research

(2) Pretrained policies with the associated distributed training
code and utility libraries for reproducibility [Video]

(3) Stand-alone scalable infrastructure and performance logging
for massively multiagent environments

(4) Stand-alone methods for interfacing with complex observa-
tion and action spaces in multiagent environments
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2 NEURAL MMO
Neural MMO is a massively multiagent environment for artificial
intelligence research. Agents forage for resources and engage in
strategic combat within a persistent game world that is never re-
set during training. Our environment implements a progression
system inspired by traditional MMOs and a full 3D renderer for
visualizations. Figure 1 details the three core game systems.

Environment Representation: Neural MMO is laid out on 2D
tile map that is procedurally generated by thresholding a Perlin
ridge fractal. Agents are added (spawn) to the environment con-
stantly at a fixed rate. They may move about the grass and forest
tiles of the game map, but stone and water are impassible. The map
is also surrounded by a lethal lake of lava.

Resource System:Agents spawnwith 10 (configurable) units of
food, water, and health. At every time step, agents lose 1 food and 1
water. If agents run out of food or water, they begin losing health. If
agents are well fed and well hydrated, they begin regaining health.
In order to survive, agents must quickly forage for food, which is
in limited supply, and water, which is infinitely renewable but only
available at a smaller number of pools. Thus, the objective is to
simultaneously navigate and forage for food/water in the presence
of upward of one hundred agents attempting to do the same.

Combat System: Agents can attack each other with three dif-
ferent styles – Range, Mage, and Melee. Accuracy and damage
are determined by the attack style and the combat stats of the at-
tacker and defender. This system enables a variety of strategies.
Agents more skilled in combat can assert map control, locking
down resource rich regions for themselves. Agents more skilled in
maneuvering can succeed through foraging and evasion. The goal
is to balance between foraging safely and engaging in dangerous
combat to pilfer other agents’ resources and cull the competition.

Progression System: Progress in real MMOs varies on two axes:
soft advantage gained through strategic/mechanical talent and hard
numerical advantage gained through skill levels/equipment. In Neu-
ral MMO, agents progress their abilities through usage. Foraging
for food and water grants experience in the respective Hunting
and Fishing skills, which enable agents to gather and carry more
resources. A similar system is in place for combat. Agents gain
levels in Constitution, Range, Mage, Melee, and Defense through
fighting other agents. Higher offensive levels increase accuracy
and damage while Constitution and Defense increase health and
evasion. The global scale of experience awarded for each action is
configurable to enable any game progression time scale from a few
minutes to thousands of hours.
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Figure 1: Neural MMO is a massively multiagent environment for AI research. Agents compete for resources through foraging
and combat. Observation and action representation in local game state enable efficient training and inference. A 3DUnity client
provides visualizations for interpreting learned behaviors. The environment, client, training code, and policies are fully open
source, officially documented, and actively supported through a live community Discord server.

3 THE IO PROBLEM
Small scale RL environments typically provide input observations
as raw data tensors and output actions as low-dimensional vectors.
More complex environments may contain variable length observa-
tion and action spaces withmixed data types: standard architectures
that expect fixed length tensors cannot process these IO spaces. Our
solution to this problem parameterizes the observation space as a
set of entities, each of which is parameterized by a set of attributes
(Figure 1, Input). We automatically generate attentional networks to
select variable length action arguments by keying against learned
entity embeddings (Figure 1, Output).

3.1 The Input Problem
We define local game state by the set of observable objects or entities
(e.g. agents and tiles), each of which is parameterized by a number
of local properties or attributes (e.g. health, food, water). At compile
time, embedding networks ex1 , ex2 , ... are defined for each attribute.
We also define soft attention functions { fyj } and д to be used later.

Input Entity set of attribute sets

X B {xi } Define attributes xi
Y = {exi (xi )} Embed attributes for each entity
Z = { fyj ({x1, ...,n } ⊆ Y )} Soft attend fyi to attribute subsets
o = д(Z ) Soft attend д to entity embeddings

At run time, we project x1,x2, ... to fixed length attribute embedding
vectors y1,y2, ... using embedding layers exi . Soft attention layers
fyj aggregrate across the attribute embeddings of each entity to
produce a representation zi for each entity. Finally, an attentional
layer д aggregates across all entity embeddings Z to produce a flat
observation embedding o. We return both o and Z .

3.2 The Output Problem
We define agent decision space by a list of actions, each of which
takes a list of arguments. Actions are callable function references
that the environment can invoke on the associated argument list
in order to execute an agent’s decision, such as Move→ [North]
or Attack→ [Melee, Agent ID]. At compile time, the user specifies
a hard attentional architecture h. We reuse the Input module to
generate embedding layers for all arguments.

Output Action list of argument lists

A B [Ai : [a1, ...,an], ...] Define arguments Ai j
Bi j = eai j (Ai j ) Embed arguments to Bi j

argAi = h(o, {Bi , z̃i ⊆ Z }) Hard attend f to arguments

At run time, we convert the hidden state o of the main network
into an action list of argument lists. To do so, we embed candidate
arguments for all actions Ai j to fixed length vectors Bi j using eai j ,
similarly to as in the Input module. As entities can be arguments,
we will also consider Z from the input network. For each candi-
date action-argument Ai j , we compare embeddings {Bi , z̃i } to the
hidden state using the attentional function h to produce a softmax
distribution. Sampling from this distribution yields a hard atten-
tional choice argAi over arguments. Finally, we return game actions
paired with their selected argument lists.

4 CONCLUSION
Neural MMO has been in development for over two years and is
now fully open source with dedicated setup, documentation, and
tutorial pages, an active Discord community support server with
over 100 current members, and major updates every 3-4 months. We
plan to support Neural MMO as a robust platform for multiagent
research at small and large scale and will continue its development
going forward. We hope that our solutions will prove useful to
others developing massively multiagent systems.
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