
Algorithms for Swap and Shift Bribery in Structured Elections
Edith Elkind

University of Oxford
Oxford, UK

elkind@cs.ox.ac.uk

Piotr Faliszewski
AGH University
Krakow, Poland

faliszew@agh.edu.pl

Sushmita Gupta
National Institute of Science Education and Research

Bhubaneswer, India
sushmitagupta@niser.ac.in

Sanjukta Roy
The Institute of Mathematical Sciences, HBNI

Chennai, India
sanjukta@imsc.res.in

ABSTRACT
In computational social choice, shift bribery is the procedure of
paying voters to shift the briber’s preferred candidate forward in
their preferences so as to make this candidate an election winner;
the more general swap bribery procedure also allows one to pay
voters to swap other candidates in their preferences. The complexity
of swap and shift bribery is well-understood for many voting rules;
typically, finding a minimum-cost bribery is computationally hard.
In this paper we initiate the study of swap and shift bribery in the
setting where voters’ preferences are known to be single-peaked or
single-crossing. We obtain polynomial-time algorithms for several
variants of these problems for classic voting rules, such as Plurality,
Borda and Condorcet-consistent rules.
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1 INTRODUCTION
Alice, Bob, Claire and Dan have applied for a research job in Profes-
sor X’s lab. Alice got the position; as Claire is still on the job market,
she decides to write to Professor X and ask her to provide feedback
on her performance in the interview. In her response, Professor
X mentions that Claire has published fewer AAMAS papers than
Alice and Bob, and her rating on Mathoverflow is less impressive
than Dan’s. Claire then realizes that she would have to work very
hard to publish more papers in AAMAS, but she can increase her
Mathoverflow rating by answering simple questions. While we
may question Professor X’s hiring methods, Claire’s approach to
improve her job prospects is very mature: she realizes that she is
being ranked on several criteria, and there are costs to improving
her position with respect to each of them. She can then allocate her
efforts to improve her chances of being selected in the future.
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Computational social choice offers relevant tools for modeling
Claire’s reasoning. Specifically, in the Bribery family of problems,
introduced by Faliszewski et al. [16], we are given an election and
we ask howmany votes need to be changed—and to what extent—so
that a specified candidate becomes a winner (see also the survey
by Faliszewski and Rothe [18]). These problems model various
real-life scenarios, ranging from actual bribery, where we try to
find a small set of voters to bribe1 [2, 7, 16], through campaign-
management, where we invest various resources into convincing
some voters to genuinely change their minds [10, 30], to margin-
of-victory and measure-of-success settings, where the cost of the
bribery corresponds to the difficulty of changing the election result
in a given way [19, 23, 32]; it is themeasure of success interpretation
of Bribery that motivates our work (and models Claire’s behavior).

Our primary focus is the Shift Bribery problem, where we are
given an election—i.e., a collection of votes that rank the candidates
from the most to the least appealing one—and the briber’s preferred
candidate denoted by p. Our goal is to ensure that this preferred
candidate becomes a winner. To achieve this goal, we can pay the
voters to shift p forward in their rankings; however, we would like
to minimize the total expenditure. In the important special case
of unit costs, where shifting a candidate by one position in a vote
costs one unit of currency, the cost of bribery indicates how well p
performed in the election: the winner needs zero shifts, the second-
best candidate might need a few shifts, the third-best candidate
needs a few more, and so on. We also consider the more general
Swap Bribery problem where, in addition to shifting his preferred
candidate, the briber can swap other candidates (at a cost).

There is a number of reasons why using Shift Bribery as a mea-
sure of candidate success is appealing (e.g., as opposed to directly
comparing the scores provided by the voting rule used). For exam-
ple, this measure enables us to check how well a given candidate
would have performed if the election was conducted using a dif-
ferent rule. Another advantage is that the Shift Bribery problem
allows us to specify, for each voter and each positive integer s , the
price of shifting the preferred candidate by s positions. This allows
us to model the candidate’s performance in a very fine-grained way.
For example, we can view a Formula 1 season as an election, where
each race is a vote that ranks the drivers in the order of completing
the race; the cost of shifting a driver A by a given number of posi-
tions then corresponds to the smallest improvement in A’s finishing
time that would allow him to finish at a given position.

1The references here are meant as examples only.
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Yet, using Shift Bribery also has drawbacks. One of them is
that it is NP-hard for many voting rules, including rules similar to
the ones that determine Formula 1 winners. This in itself is not a
major issue, as this problem admits good approximation and param-
eterized algorithms [5, 10, 17]. More fundamentally, though, Shift
Bribery disregards the internal structure that the input election
may have. Since many elections—such as those in politics or in var-
ious business settings—are indeed highly structured, shift bribery
costs sometimes fail to capture the candidates’ true performance.
Our goal is to tackle this issue.

We model structural properties of elections using the notions
of single-peaked [3] and single-crossing [25, 29] preferences. Intu-
itively, an election is single-peaked if there is a common ordering
of the candidates, referred to as the societal axis (e.g., the political
left-to-right spectrum), such that for each t > 0 the top t candidates
in each vote form an interval with respect to the axis. For example,
in a single-peaked political election with the left-to-right axis, a
voter would not rank an extreme left and extreme right candidates
next to each other (unless they were ranked at the two bottom
positions).

On the other hand, an election is single-crossing if the voters
can be ordered in such a way that for every pair of candidates (c,d),
as we move from one end of this order to the other, the relative
ranking of c and d changes at most once. While this property may
appear less intuitive, single-crossing elections do appear, e.g., when
considering taxation [25, 29]. There are also natural examples of
elections that are both single-peaked and single-crossing [11]; this
happens, e.g., in the 1D Euclidean domain, where both candidates
and voters are points on a line and the voters rank the candidates
according to their Euclidean distance from them [14].

We study the complexity of Swap and Shift Bribery for elec-
tions that are either single-peaked or single-crossing, and have to
retain this property after the bribery (for the same societal axis
or voter order—after all, we want to maintain their structure). We
obtain the following results:

(1) For single-peaked preferences, we design polynomial-time
algorithms for Swap Bribery under Plurality and all rules
that are Condorcet-consistent, as well as for Shift Bribery
for the Borda rule (with unit costs). In contrast, in the un-
restricted setting Swap Bribery is NP-hard for Copeland
and Maximin (which are Condorcet-consistent) and Shift
Bribery is NP-hard for Borda, even with unit costs [5].

(2) For single-crossing preferences, we design polynomial-time
algorithms for Shift Bribery under Plurality, Borda, and all
Condorcet-consistent rules. For the Borda rule, we are also
able to provide a significantly faster variant of our algorithm
for the case of unit costs.

Some proofs are deferred until the full version of the paper.

2 PRELIMINARIES
For a positive integer t , we write [t] to denote the set {1, . . . , t}.
We use the Iverson bracket notation, i.e., for a logical expression P ,
we write [P] to mean 1 when P is true, and to mean 0 otherwise.
We assume general familiarity with notions regarding algorithms
and computational complexity theory.

Elections An election E = (C,V ) is given by a set of candidates
C = {c1, . . . , cm } and a list V = (v1, . . . ,vn ) of votes; we refer
to elements of [n] as voters, so vi is the vote of voter i . Votes are
preference orders, ranking the candidates from the most to the least
appealing one for a given voter. For a candidate c j and vote vi , we
write posvi (c j ) to denote the position of c j in vi : e.g., if c j is the
most preferred candidate in vi then posvi (c j ) = 1, and if c j is the
least preferred one then posvi (c j ) = m. We write c j = top(vi ) if
posvi (c j ) = 1. We write c j ≻vi ck if voter i prefers c j to ck , i.e.,
if posvi (c j ) < posvi (ck ). Sometimes instead of writing posvi (·)
or ≻vi we simply write posi (·) or ≻i , provided that the context is
clear. Further, we sometimes specify a preference orderv by writing
v : c1 ≻ · · · ≻ cm , and writev : c ≻ d to indicate that inv candidate
c is ranked above candidate d .
Voting Rules A voting rule is a function R that given an election
E = (C,V ) outputs a setW ⊆ C of candidates that tie as winners of
this election. While in practical settings some tie-breaking mecha-
nisms would be necessary, we disregard this issue; yet, we mention
that algorithmic consequences of certain tie-breaking methods can
be nontrivial [26, 28]. We focus on the following two rules (in both
cases the candidate(s) with the highest score win):

(1) Under the Plurality rule, each candidate c obtains a single
point from each vote that ranks c in the top position.

(2) Under the Borda rule, the number of points that candidate
c receives from vote v is equal to the number of candidates
that are ranked below c in v .

For a given election E and candidate c , we write scoreE (c) to denote
the score of c in this election. The voting rule will always be clear
from the context.

Plurality and Borda are two examples of so-called positional

scoring rules. We are also interested in Condorcet-consistent rules.
We say that a candidate c ∈ C is a (weak) Condorcet winner in an
election E = (C,V ) if for each candidate d ∈ C \ {c} more than (at
least) half of the voters prefer c to d . A voting rule R is (weakly)
Condorcet-consistent if for each election with (weak) Condorcet
winners, it returns exactly the Condorcet winner (exactly the set of
weak Condorcet winners).
Single-Peaked Elections Let v be some vote over candidate
setC and let ◁ be an order overC . We refer to ◁ as the societal axis.
We say that v is single-peaked with respect to axis ◁ if for every
pair of candidates c,d ∈ C we have:(

(c ◁ d ◁ top(v)) ∨ (top(v) ◁ d ◁ c)
)
=⇒

(
d ≻v c

)
.

Equivalently, v is single-peaked with respect to ◁ if for each t ∈

[|C |] it holds that the top t candidates with respect to ≻v form a
consecutive segment within ◁. An election (C,V ) is single-peaked
with respect to an axis ◁ if all votes in V are single-peaked with
respect to ◁. An election is single-peaked if it is single-peaked with
respect to some axis [3].
Single-Crossing Elections Let E = (C,V ) be an election with
C = {c1, . . . , cm } and V = (v1, . . . ,vn ). Without loss of generality,
we assume that the first voter has preference order v1 : c1 ≻ · · · ≻

cm . We say that E is single-crossing with respect to the order ◁ of the

voters implied byV (we refer to this order as the natural order of the
voters) if for every pair of candidates c,d ∈ C there is a number tc,d
such that the set {i | c ≻i d} is either of the form {1, . . . , tc,d } or of

2
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the form {tc,d , . . . ,n}. Equivalently, an election is single-crossing
with respect to the natural order of the voters if for every pair of
candidates c,d ∈ C , as we consider voters v1, . . . ,vn from left to
right, the relative ranking of c and d changes at most once [25, 29].
We define single-crossing elections with respect to a given order
of the voters (i.e., not necessarily the natural one) in a similar way.
An election is single-crossing if there exists an order of the voters
with respect to which it is single-crossing.

Recognizing Restricted Elections There are well-known algo-
rithms that given an election E recognize if it is single-peaked [1,
8, 15] or single-crossing [6, 13] and, if so, provide the societal axis
or the order of the voters that witness this fact. Yet, we focus on
elections with prescribed orders witnessing their nature.

3 SHIFT AND SWAP BRIBERY PROBLEMS
We primarily focus on the Shift Bribery problem, but sometimes
we also discuss the more general Swap Bribery problem. Both prob-
lems were introduced by Elkind et al. [12] and in both of them we
look for a way to ensure that a given preferred candidate becomes
a winner, at a minimum cost.

Shift Bribery Let R be some voting rule. In the R Shift Bribery
problem we are given an election E = (C,V ) with m candidates
and n voters, a preferred candidate p ∈ C , a list ρ = (ρ1, . . . , ρn )
of shift-bribery price functions, and a budget B ∈ N. Our goal is
to ensure that p is a winner of this election and, to this end, we
can shift him or her forward in some of the votes. However, each
such action comes with a cost specified by the price functions, and
we cannot exceed the budget. Formally, if we choose to shift p by
some ℓ positions forward in the preference order of voter vi , then
we have to pay ρi (ℓ) ∈ N units of budget for this. For each price
function ρi we require that ρi (0) = 0 (i.e., not shifting the preferred
candidate does not incur any cost) and for each ℓ, ρi (ℓ + 1) ≥ ρi (ℓ)
(i.e., shifting the preferred candidate further cannot be cheaper than
shifting him or her closer).

Families of Price Functions It is often useful to consider special
families of price functions. In particular, we consider unit prices,
all-or-nothing prices, and arbitrary prices [5]. In the first case, each
unit shift has the same unit cost. Formally, for each vote vi and
each legal number ℓ of positions by which we may want to shift
the preferred candidate, we have ρi (ℓ) = ℓ. For the case of all-or-
nothing prices, each given voter i has a constant xi (which may
depend on i , i.e., different voters may have different constants) such
that ρi (ℓ) = xi · [ℓ > 0]. In other words, if a voter has an all-or-
nothing price function, then we pay the same amount irrespective
of how far we push the preferred candidate (and so, in the setting
where no constraints are put on the preference orders, it makes
sense to push him or her to the top of the vote). Finally, under
arbitrary prices we place no restrictions on the price functions.

Swap Bribery For a given voting rule R, the R Swap Bribery
problem is a generalization of R Shift Bribery. The difference is
that in the former problem not only are we allowed to shift the
preferred candidate forward, but also in each vote we can perform
a sequence of swaps of candidates who are adjacent at the time
of the swap; for each voter the price function specifies the cost of
swapping every pair of candidates.

The Complexity of Swap and Shift Bribery Shift Bribery is
NP-hard for many voting rules, including Borda and many of the
Condorcet-consistent rules, such as Copeland and Maximin2 [12].
Nonetheless, the problem is in P for Plurality [12] and for several
other rules, such as Bucklin [30]. Further, for positional scoring rules
there is a simple 2-approximation algorithm of Elkind et al. [10, 12]
and a recent, more involved PTAS [17]. There are also several FPT
algorithms [5], but the problem is also W[1]-hard for some param-
eters. Unfortunately, Shift Bribery tends to be computationally
challenging for Condorcet-consistent rules (see [5, 10, 12, 17, 30])
and for elimination-based ones [24]. Swap Bribery inherits all hard-
ness results of Shift Bribery and has some additional ones [12].
Yet, there are some FPT algorithms even in this setting [9, 21]. Fi-
nally, we note that both Shift Bribery [20] and Swap Bribery [31]
tend to be easy in the destructive setting, where the goal is to
prevent some candidate from winning (however, even then these
problems are NP-hard for some rules, e.g., for Copeland).
Restricted Domains We focus on the Shift Bribery problem
(and, to a lesser extent, on the Swap Bribery problem) for single-
peaked and single-crossing elections. To this end, we employ the
following conventions (the same conventions were assumed by
Brandt et al. [4], who studied a different model of bribery in single-
peaked elections):

(1) Our elections always come with societal axes or voter orders
witnessing their structure.

(2) The elections have to remain single-peaked/single-crossing
(for the same axis/voter order) after we perform all our oper-
ations, but may violate these conditions during the process
(this convention is important for single-crossing elections,
but vacuous for single-peaked ones: If an election ceases
to be single-peaked during a shift, then it cannot become
single-peaked again with more shifting).

The justification for these conventions is as follows. First, we as-
sume that our elections are single-peaked or single-crossing due to
some publicly known reason, and should remain so. Second, the in-
termediate elections we produce are internal to our algorithms and
are never output (indeed, in the measure-of-success interpretation
of shift bribery we do not actually bribe voters, but only measure
to what extent they would have to be bribed).

4 SINGLE-PEAKED ELECTIONS
In this section we focus on single-peaked elections. We start by
showing that we can solve the Swap Bribery problem for Plurality
and Condorcet-consistent rules in polynomial time (which also
implies the result for Shift Bribery). Then we consider the Borda
rule and provide an algorithm for Shift Bribery with unit costs.

4.1 Plurality and Condorcet-Consistent Rules
For Plurality, the swap bribery problem is known to be in P for
arbitrary elections [12]. We show that this still holds for single-
peaked elections. This result is non-trivial, because the algorithm
for the general casemay output an election that is not single-peaked,
even if its input is.

2We omit definitions of the rules that we mention in passing. See, e.g., the overview of
Zwicker [33] for some details.

3
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Proposition 4.1. Consider a vote v over a set of candidates C =
{c1, . . . , cm }, an axis ◁ given by c1 ◁ · · ·◁cm , a candidate p ∈ C and

a swap bribery price function π : C ×C → Z, which for every pair of

candidates specifies the cost of swapping them in v . We can compute

in polynomial-time a minimum-cost swap bribery that transforms v
into a vote that ranks p first and is single-peaked with respect to ◁.

Proof. Given two candidates ci , c j ∈ C , we write ci ≻ c j if ci is
ranked above c j in v . For each ci , c j ∈ C such that ci ◁ p ◁ c j , let
Ci, j = {ci , . . . , c j } and let Ci, j = C \Ci, j . Further, let A[i, j] be the
cost of a minimum-cost swap bribery that transforms v into a vote
where p is ranked first, followed by the candidates inCi, j \ {p}, and
its restriction to Ci, j is single-peaked with respect to ci ◁ · · · ◁ c j .

We will now explain how to compute A[i, j] for all ci , c j ∈ C
such that ci ◁ p ◁ c j . We proceed by induction on j − i .

If ci = c j = p, we have A[i, j] =
∑
ck ∈C :ck ≻p π (p, ck ): we need

to pay for moving p into the top position, and this involves moving
it past all candidates ranked above p in v .

If ci ◁ p, let AL = A[i + 1, j] +
∑
ck ∈Ci, j :ck ≻ci

π (ci , ck ). This
corresponds to the cost of moving candidates inCi+1, j into top j − i
positions so that p is ranked first (captured by A[i + 1, j]) and then
moving ci into position j − i + 1 (captured by the second summand).

Similarly, ifp◁c j , we setAR = A[i, j−1]+
∑
ck ∈Ci, j :ck ≻c j

π (c j , ck ).
Now, if we have already computed A[i ′, j ′] for all i ′, j ′ such that

ci′ ◁ p ≤ c j′ and j ′ − i ′ < j − i , we can compute A[i, j] as follows:
if ci = p, set A[i, j] = AR ; if c j = p, set A[i, j] = AL ; otherwise set
A[i, j] = min{AR ,AL}. The correctness of this approach follows
from the fact that if a vote is single-peaked with respect to an axis ◁
then for each k > 0 the set of candidates ranked in top k positions
in that vote forms a contiguous segment with respect to ◁. □

Combining Proposition 4.1 with a flow-based argument of Elkind,
Faliszewski and Slinko [12], we can compute a minimum-cost swap
bribery that makes a given candidate an election winner, while
keeping the profile single-peaked with respect to a given axis.

Theorem 4.2. For Plurality both Swap and Shift Bribery are in
P for single-peaked elections.

A more involved application of Proposition 4.1, together with
the classic median voter theorem, gives the next result (Brandt et
al. [4] used a similar idea for a different model of bribery).

Theorem 4.3. Let R be a weakly Condorcet-consistent rule. Both

R Swap Bribery and R Shift Bribery problems for single-peaked

elections are in P.

Proof sketch. For readability, we focus on the case where the
number of voters n is odd; the case where n is even requires addi-
tional effort, but can be handled similarly. Let t = n+1

2 .
We can assume without loss of generality that the voters are

ordered according to the position of their top candidate on the
axis: if i < j then top(vi ) = top(vj ) or top(vi ) ◁ top(vj ). Then, by
the median voter theorem the candidate top(vt ) is the Condorcet
winner of the election. Hence, to make p the Condorcet winner, we
need to ensure that p is the top candidate of the median voter. To
this end, we proceed as follows.

(1) SetCL = {c ∈ C : c ◁p},CR = {c ∈ C : p ◁ c}. We guess two
integers ℓ and r such that 0 ≤ ℓ, r < t ; our aim is to find a

minimum-cost swap bribery that results in ℓ voters ranking
a candidate from CL first and r voters ranking a candidate
fromCR first. Note that for any such guess the median voter
ranks p first.

(2) For each i ∈ [n], let αLi (respectively, αRi ) be the minimum
cost of a swap bribery that transforms vi into a vote that is
single-peaked with respect to ◁ and ranks a candidate from
CL (respectively, from CR ) first, and let αpi be the minimum
cost of a swap bribery that transforms vi into a vote that
is single-peaked with respect to ◁ and ranks p first; these
quantities can be computed using Proposition 4.1.

(3) Construct an instance of minimum-cost flow with source s ,
sinkw , one node for each voter, as well as nodes L, R, and p.
There is an edge of capacity 1 from the source to each voter,
an edge of capacity 1 from each voter to each of L, R, and p,
and edges of capacity ℓ, r and n − ℓ − r from L, R and p to
the sink; the costs of the edges from vi to L, R and p are set
to respectively, αLi , α

R
i and αpi , and the costs of other edges

are set to 0. A minimum-cost flow of size n in this network
corresponds to a minimum-cost swap bribery with ℓ voters
ranking a candidate from CL first and r voters ranking a
candidate from CR first.

Each guess for the values of ℓ and r provides a candidate solution
to our problem; we pick the cheapest of these. □

4.2 Shift Bribery with Unit Costs for Borda
In this section we describe a polynomial-time algorithm for shift
bribery with unit costs under the Borda rule when voters’ prefer-
ences are single-peaked.

Theorem 4.4. Borda Shift Bribery with unit costs is in P for

single-peaked elections.

Setup and Initial Observations Let E = (C,V ) be our input
single-peaked election, where C = {aℓ , . . . a1,p,b1, . . . ,br } and
V = (v1, . . . ,vn ), let p ∈ C be the preferred candidate, let ρ =
(ρ1, . . . , ρn ) be the family of shift-bribery price functions, and let
B be the available budget. Without loss of generality, we assume
that E is single-peaked with respect to the axis:

aℓ ◁ aℓ−1 ◁ · · · ◁ a1 ◁ p ◁ b1 ◁ b2 ◁ · · · ◁ br .

Our analysis crucially relies on the following two observations.

Observation 1. Let v be a single-peaked vote with respect to the

axis ◁. If candidate p is shifted forward in v , then the resulting vote

is single-peaked with respect to ◁ if and only if p does not pass a

candidate c such that top(v) ◁ c ◁ p or p ◁ c ◁ top(v).

Based on Observation 1, for each vote v in V we identify the
set of candidates that p can pass so that the resulting vote remains
single-peaked. Note that this set of candidates forms a contiguous
segment withinv . We refer to the sequence of candidates that forms
this segment (starting with the candidate ranked right ahead of p)
as the passing sequence of v , and denote it by PS(v).

Observation 2. If two votes v and v ′
have the property that

|PS(v)| ≥ |PS(v ′)| and PS(v) and PS(v ′) start with the same candi-

date, then PS(v ′) is a prefix of PS(v).

4
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Example 4.5. Let us considerC = {a5,a4,a3,a2,a1,p, b1,b2} and
the following four votes, which are single-peaked with respect to
a5 ◁ a4 ◁ a3 ◁ a2 ◁ a1 ◁ p ◁ b1 ◁ b2:

v1 : a2 ≻ a1 ≻ a3 ≻ p ≻ a4 ≻ b1 ≻ a5 ≻ b2,

v2 : a2 ≻ a1 ≻ a3 ≻ a4 ≻ a5 ≻ p ≻ b1 ≻ b2,

v3 : a2 ≻ a3 ≻ a1 ≻ a4 ≻ a5 ≻ p ≻ b1 ≻ b2,

v4 : b1 ≻ b2 ≻ p ≻ a1 ≻ a2 ≻ a3 ≻ a4 ≻ a5.

The passing sequences for these votes are, resp., (a3), (a5,a4,a3),
(a5,a4), and (b2,b1). Note that if we wanted p to pass each of a3,a4,
and a5 once, then we could shift p by three positions in v2; alterna-
tively, we can shiftp by one position inv1 and then by two positions
either in v2 or in v3.

Algorithm for Unit Prices Our algorithm has the following
structure:

(1) We guess the numberw of points that p is to gain.
(2) For each candidate c we compute how many points c has

to lose (i.e., how many times p has to pass c), so that p is
a winner, provided p indeed obtains w additional points.
Formally, for each candidate c ∈ C \ {p}, we define its point
deficit to be

dw (c) := max
{
scoreE (c) − (scoreE (p) +w), 0

}
(3) We compute the set of shifts ensuring that p passes each

candidate the required number of times.
(4) We complement our shifts in a cheapest possible way, so that

p obtains at least w points. That is, if p obtainedw1 points
in the previous step, then we have to ensure that he or she
obtains at leastw2 = w −w1 extra points.

It is clear how to perform the first two steps. As we consider unit
prices, Step 4 is easy as well: It suffices to perform arbitrary w2
legal unit shifts. Thus we focus on Step 3.

LetA = {aℓ , . . . ,a1} and B = {b1, . . . ,br }. We describe how to
perform Step 3 for candidates from A only. Due to Observation 1
(and as shown in Example 4.5), for each vote v its passing sequence
either includes candidates from A only or candidates from B only.
Thus Step 3 for the candidates from B can be executed symmetri-
cally and independently.

To execute Step 3, we consider candidates from A in the or-
der a1,a2, . . . ,aℓ . While considering candidate ai , we repeatedly
execute the following steps:

(a) If dw (ai ) = 0 then we move on to the next candidate.
(b) Else, we find the votes that remain single-peaked when p is

shifted ahead of ai 3; among all such votes, let v be the one
where shifting p ahead of ai requires the smallest number
of unit shifts. We shift p right ahead of ai in this vote and
update the values dw (·) for the candidates in A (p never
passes candidates from B at this step).

We now argue that the above algorithm is correct, i.e., it finds a
minimum-cost set of shifts that guarantees that all the point deficit
values for candidates inA drop to zero. We first make the following
observation.

3If there is no such vote, then we reject the current guess forw and move on to the
next guess.

Observation 3. Each time the algorithm executes Step (b), it

shifts p in some vote in which p was not shifted previously.

Let us now consider the sequence of shifts that the algorithm
performs (each of them is performed in Step (b) for some candidate
ai ∈ A). For the sake of contradiction, let us consider the first
time that the shift executed in Step (b) prevents us from computing
an optimal solution (that is, before executing this shift it is still
possible to perform some shifts and obtain aminimum-cost solution,
but after performing this shift it is impossible) and let ai be the
candidate considered at this point. By definition, our algorithm
chose a shift by t + 1 positions in some vote v of the form:

v : · · · ≻ ai ≻ ai+1 ≻ · · · ≻ ai+t ≻ p ≻ · · ·

and there is no vote where we can shift p by fewer than t + 1
positions so that p passes ai and the vote remains single-peaked
with respect to our axis. Consider an optimal solution that is still
possible prior to this shift. This solution also shifts p ahead of ai in
some vote in order to decrease its point deficit. Suppose it does so
in some vote v ′ of the form:

v ′ : · · · ≻ ai ≻ ai+1 ≻ · · · ≻ ai+t+t ′ ≻ p ≻ · · ·

where t ′ > 0 (this holds byObservation 2; t ′ is positive, as otherwise
the shift performed by our algorithm would not preclude it from
finding an optimal solution). This shift in the optimal solution
pushes p forward by exactly t + t ′ + 1 positions: otherwise, after
passing ai , p would pass candidates with zero point deficit only,
and undoing these shifts would give us a cheaper solution.

We modify the optimal solution as follows: (1) We undo the last
t + 1 shifts of p in v ′; (2) We shift p forward by t + 1 positions in
v; (3) If the optimal solution shifts p in v , then instead of doing
so, we additionally shift p by the same number of positions in
v ′. As a result, we obtain a new optimal solution which includes
the shift performed by our algorithm. This is a contradiction with
our assumption that the algorithm makes an incorrect move. We
conclude that our algorithm is correct. A careful implementation
achieves running time O(mn2 logn) (details omitted).

4.3 Beyond Unit Prices?
It is natural to ask if the above algorithm can be extended to more
general families of price functions. Indeed, there are polynomial-
time algorithms for steps (3) and (4) that can handle non-unit prices
(omitted due to space restrictions and their limited applicability).
However, we will now show that for general price functions our
approach fails, i.e., executing steps (3) and (4) independently may
fail to produce an optimal solutions.

Let us consider an election E = (C,V ), where C = {a,b, c,d,p},
the societal axis is a◁b◁c◁p◁d , and the only votes where shifting
p is within budget are:

v1 : c > b > a > p > d

v2 : c > b > p > a > d

v3 : d > p > c > b > a

The election includes other votes as well, and, in particular, we
assume that we have guessed that p is to gain 2 points, and, if this
is to make p be a winner, then p has to pass b at least once.
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The price functions for voters v1, v2, and v3 are, respectively, ρ1,
ρ2, and ρ3, specified as follows (let x be some large value and let ε
be much smaller than x ):

ρ1(i) = (x − ε) · i, ρ2(i) = x · i, ρ3(i) = (x − 3ε/2) · i .

The cheapest way for p to pass b once is to shift p by one position
in v2. This comes at price x . However, then for p to get one more
point we need to shift him or her once more, and the cheapest way
to achieve this is to shift p in v3. This costs x − 3ε/2. The total cost
is 2x − 3ε/2. However, if we shift p by two positions in v1, then p
gains 2 points and passes b once, and this costs 2x − 2ε .

As in the above example all the price functions are linear (al-
though with different coefficients), this shows that even if we
wanted to consider single-peaked elections with price functions
that are only slightly more general than the unit-cost ones, we
would need to develop a different algorithmic technique. Interest-
ingly, in the next section we will see that for the single-crossing
case a similar approach works for all price functions.

5 SINGLE-CROSSING ELECTIONS
For single-crossing elections we also consider Plurality, weakly
Condorcet-consistent rules and the Borda rule; in this setting, we
are able to derive polynomial-time algorithms for shift bribery with
arbitrary costs for all rules we consider; however, the complexity of
swap bribery for any of these rules (including Plurality) in single-
crossing elections remains an open problem.

5.1 Plurality and Condorcet-Consistent Rules
We start by considering the Plurality rule. Our algorithm works for
a somewhat more general model of shift bribery, where we can shift
the preferred candidate p both forward and backward in voters’
preferences; to adapt the algorithm to the standard model, we can
simply set the cost of backward shifts to be +∞.

Theorem 5.1. Plurality Shift Bribery is in P for single-crossing

elections.

Proof. For an election to be single-crossing, p has to appear in
the top position in a contiguous block of votes. Thus, we guess two
indices k, ℓ ∈ [n], k ≤ ℓ, such that after the bribery candidate p is
ranked first in the preferences of voters k, . . . , ℓ (and in no other
votes). For a bribery to be successful, p has to be ranked first in at
least one vote, so the assumption k ≤ ℓ is without loss of generality.
We also guess p’s position in the first and the last vote; denote
these positions by sL and sR , respectively. We discard a guess if
k = 1, but sL , 1, of if ℓ = n, but sR , 1. Our guess determines the
Plurality score of each candidate: for p it is ℓ − k + 1, and for every
c ∈ C \ {p} it is c’s score in the original profile minus the number
of votes in vk , . . . ,vℓ where c is ranked first plus the number of
votes in v1, . . . ,vk−1,vℓ+1, . . . ,vn where c is ranked second after
p. We discard the guess if it does not make p the Plurality winner.
For i ∈ {1,n} ∪ {k, . . . , ℓ}, let ui be the vote obtained from vi by
shifting p as prescribed by our guesses.

Let DL be the set of all candidates ranked below p in u1 and let
DR be the set of all candidates ranked below p in un . Note that
if there is a candidate a ∈ C \ {p} such that a < DL , a < DR , we
can discard this guess, as a and p cross more than once (since p is
ranked first in uk ). Thus, we can assume that DL ∪ DR = C \ {p}.

If a ∈ DL then, for the election to be single-crossing, all voters
between 1 and k must rank a below p; similarly, if a ∈ DR , all voters
between ℓ and n must rank a below p. Thus, for every candidate
other than p its position with respect to p on at least one side of
(uk , . . . ,uℓ) is fully determined by our guesses.

Now, for each i = ℓ + 1, . . . ,n and each s ∈ [m] \ {1}, let c[i, s]
be the cost on a minimum-cost shift bribery of voters ℓ + 1, . . . , i
that results in votes of voters ℓ, . . . , i forming a single-crossing
election where p is ranked in position s in the vote of voter i and
appears above all candidates in DR in each of these votes; we set
c[i, s] = +∞ if no such bribery exists (note that we do not consider
s = 1, as this would contradict our guess for positions where p is
ranked first).

For i = ℓ + 1, computing c[i, s] is straightforward: we check if
shifting p into position s results in p appearing above all candidates
in DR , set c[i, s] = +∞ if this is not the case, and otherwise set
c[i, s] to be the cost of shifting p into position s in that vote. The
correctness follows from the fact that any two-vote election is
single-crossing.

To compute the quantities c[i, s] for i = ℓ + 2, . . . ,n, we use the
following observation (Lakhani et al., [22], Lemma 11).

Lemma 5.2. Consider a single-crossing election (v1, . . . ,vn ) and a
vote v . Then the election (v1, . . . ,vn ,v) is single-crossing if and only
if (v1,vn ,v) is single-crossing.

Now, suppose we have computed c[i − 1, t] for all t ∈ [m] \ {1},
and we would like to compute c[i, s] for some s ∈ [m] \ {1}. Let ui
be the vote obtained by shifting p into position s in the i-th vote,
and let γ be the cost of this shift. Again, we set c[i, s] = +∞ if in ui
candidate p is not placed above all candidates in DR . Otherwise, for
each t ∈ [m]\{1} letut be the vote obtained fromvi−1 by shifting p
into position t , and letT be the set of all values of t ∈ [m] \ {1} such
that (uℓ ,ut ,ui ) is single-crossing; if T = ∅, we set c[i, s] = +∞
and otherwise we set c[i, s] = min{t ∈ T : c[i − 1, t] + γ }. The
correctness of this calculation follows from Lemma 5.2. Eventually,
we will compute c[n, sR ], where sR is the position we guessed for p
in the last vote.

In the same fashion, for each i = k−1, . . . , 1 and each s ∈ [m]\{1}
we compute the cost of a minimum-cost shift bribery of voters
i, . . . ,k − 1 that results in the first k votes forming a single-crossing
election where p is ranked in position s in the i-th vote and appears
above all candidates inDL in each of these votes; we set c[i, s] = +∞
if no such bribery exists. We can compute c[1, sL] by dynamic prog-
ramming, where sL is the position we guessed for p in the first vote.

The overall cost of the minimum-cost shift bribery associated
with the current guess is the sum of c[1, sL], c[n, sR ], and the cost
of shifting p into top position in the preferences of voters k, . . . , ℓ.
It remains to argue that this cost corresponds to a single-crossing
election. To this end, consider an arbitrary candidate a ∈ C \ {p}.
If a ∈ DL ∩ DR , then the bribery associated with this cost has the
property that a is ranked below p in all votes, so a and p do not
cross. Otherwise, we have a ∈ DL , a < DR or a ∈ DR ,a < DL ; by
symmetry, we can assume the former. Then the first k −1 voters are
bribed in such a way that a appears below p in their votes, voters
k, . . . , ℓ are bribed to rank p first, and the last n−ℓ voters are bribed
in such a way that candidates a and p cross at most once. Thus,
after the bribery a and p cross at most once in the overall election.
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To conclude, to find a minimum-cost shift bribery that results
in a single-crossing election where p wins, it suffices to consider
all guesses for k , ℓ, sL and sR , and, for each non-discarded guess,
compute the minimum-cost bribery as described above. □

Using the same proof ideas in conjunction with the median voter
theorem, we can extend our result to all Condorcet-consistent rules.

Theorem 5.3. For every weakly Condorcet-consistent rule.R, the

R Shift Bribery problem for single-crossing elections is in P.

5.2 The Borda Rule
For single-crossing elections we obtain a polynomial-time algo-
rithm that works for arbitrary price functions.

Theorem 5.4. Borda Shift Bribery is in P for single-crossing

elections.

As a consequence, the problem is also polynomial-time solvable
for elections that are both single-peaked and single-crossing [11]
(in the model where they are to retain both of these properties).
Indeed, it suffices to modify the price functions so that shifts that
break the election’s single-peakedness are too expensive.

Corollary 5.5. Borda Shift Bribery is in P for elections that

are both single-peaked and single-crossing.

5.3 Structure of the Algorithms
Our algorithm for Borda Shift Bribery in single-crossing elections
have the same general structure as the unit prices algorithm for
single-peaked elections. Let E = (C,V ) be an input single-crossing
election, where C = {c1, . . . , cm } and V = (v1, . . . ,vn ), let p ∈ C
be the preferred candidate, let ρ = (ρ1, . . . , ρn ) be the family of
shift-bribery price functions, and let B be the available budget. We
execute the same four steps as in the algorithm in Section 4.2. The
first two steps are clear and we focus on Steps 3 and 4.

5.4 Performing the Necessary Shifts (Step 3)
We classify the candidates according to their positions in v1 and
vn relative to p. That is, for each candidate c ∈ C \ {p} we say that:

(1) candidate c is of type A if c ≻1 p and p ≻n c ,
(2) candidate c is of type B if p ≻1 c and c ≻n p,
(3) candidate c is of type C if c ≻1 p and c ≻n p,
(4) candidate c is of type D if p ≻1 c and p ≻n c ,

Type D candidates do not present a challenge: As the election is
single-crossing (with respect to the natural ordering of the voters),
all voters rank p ahead of all such candidates and, thus, all of them
have scores lower than that of p. On the other hand, type C candi-
dates are somewhat problematic. To see why this is the case, let c
be some type C candidate. As all the voters rank c ahead of p, we
certainly need to ensure that p passes c in some votes, but it is not
clear if it would be cheaper (in total) to modify the election so that
after the shiftsv1 ranks p ahead of c , orvn ranks p ahead of c (so, in
other words, it is not clear if c would eventually behave like a type B
candidate or like a type A candidate). Fortunately, we can deal with
this issue in a simple way.We guess by howmany positionsp would
be shifted in the vote v1. Given this shift, we declare each type C
candidate that p passes to be a type B candidate, and each type C

candidate that p does not pass to be a type A candidate (however,
we do not perform this shift; its only role is to partition the type C
candidates into type A candidates and type B candidates). We refer
to these declarations as the type assignment.

Let us now consider some voter i . If we shift p forward in vi by
some number of positions, then it is quite likely that the electionwill
no longer be single-crossing. The following lemma shows that there
is a unique minimal set of shifts that restore the single-crossing
property for the given type assignment.

Lemma 5.6. We can identify in polynomial time a minimal set of

shifts that restores the single-crossing property of the input election

after p has been shifted forward in the preference order of voter i .

Proof. Our algorithm proceeds as follows. If p passes some
candidate c of type A in the preference order or voter i then, for
the election to remain single-crossing with respect to the given
order of voters, p has to be ranked ahead of c by all the voters
i + 1, i + 2, . . . ,n; otherwise we would have p ≻i c , c ≻i+1 p, and
p ≻n c , which would mean that the election is no longer single-
crossing (note that for candidates of type C that have been assigned
type A, we do not reach a contradiction per se; rather, we would
obtain inconsistency with the type assignment). Thus, for each
voter in the set {i + 1, i + 2, . . . ,n} who does not yet rank p ahead
of c , we shift p to appear right in front of c . For candidates of type B
that p passes in the i-th vote we proceed in a similar way, but
focusing on voters 1, . . . , i − 1.

We repeat the above reasoning for all the votes where we shift p,
until the election becomes single-crossing. This has to happen
because in each iteration where the election is not single-crossing,
we shift p forward in at least one vote. □

Now we are ready to describe Step 3 of our algorithm. For each
candidate c ∈ C \ {p} of type A with positive point deficit (i.e., such
that dw (c) > 0) we proceed as follows. Let tc be the largest number
such that in the original election c is ranked ahead of p in votes
v1, . . . ,vtc . We shift p right ahead of c in the preference order of
voter tc−(dw (c)−1) (unlessp is already ranked ahead of c in this vote
due to previous shifts), and we run the algorithm from Lemma 5.6.
As a consequence, this algorithm ensures that p is shifted ahead of c
in the preference orders of the voters tc − (dw (c) − 1), . . . , tc − 1, tc
and hence passes c at least dw (c) times. It is also easy to see that
this is a minimal set of shifts that ensures that p passes c this many
times (for the given assignment of types).

For each candidate of type B we proceed similarly. Let c be a
candidate of type B and let tc be the smallest number such that
in the original election c is ranked ahead of p in votes tc , . . . ,n. If
dw (c) > 0 then we shift p to be right ahead of c in the preference
order of voter tc + dw (c) − 1 (unless p is already ranked ahead of c
in this vote due to previous shifts) and we run the algorithm from
Lemma 5.6. All in all, we obtain the following result.

Lemma 5.7. There is a polynomial-time algorithm that for a given

assignment of types to the candidates computes a minimal set of shifts

ensuring that for each c ∈ C \ {p}, p passes c at least dw (c) times.

The set of shifts computed by the above algorithm is minimal in
the sense that every set of shifts that guarantees that p passes each
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v1 : · · · ≻ c ≻ · · ·︸          ︷︷          ︸
candidates in U

≻ p ≻ · · · ≻ d ≻ · · ·︸          ︷︷          ︸
candidates in D...

vk−1 : · · · ≻ d ≻ · · · ≻ c ≻ p ≻ · · ·

vk : · · · ≻ d ≻ p ≻ · · · ≻ c ≻ · · ·

...

Figure 1: Illustration for the proof of Theorem 5.8.

candidate c at least dw (c) times (for the given type assignment)
includes all the shifts computed by the algorithm from Lemma 5.7.

The above-described algorithm runs in polynomial time, but is
very inefficient. Indeed, it is possible to replace it with a procedure
that runs in timeO(mn2) (briefly, for every vote and every candidate
that p passes, we update the shifts in all other votes; we omit the
detailed description).

5.5 Obtaining the Missing Points (Step 4)
To implement Step 4 of our algorithm, we have to provide a pro-
cedure that given an instance of Borda Shift Bribery finds the
cheapest set of shifts which can ensure that the preferred candidate
obtains additionalw2 points, wherew2 is part of the input (recall
that in the algorithm our goal is to obtain w points and we have
already obtained w1 points in Step 3, so now we need to obtain
w2 = w −w1 extra points). Below we give a greedy procedure for
the case of unit costs (the discussion of more general price functions
is postponed to the full version of the paper).

First, we show that it is always possible to shift the preferred
candidate p forward in some vote so that the election remains
single-crossing (unless p is already ranked first by all the voters).

Theorem 5.8. For every single-crossing election E = (C,V ) and

each candidate p ∈ C who is not ranked first in every vote, there is a

vote v such that if we shift p forward by one position in v then the

election remains single-crossing with respect to the same voter order.

Proof. Consider an election E = (C,V ) with a list of votes
V = (v1, . . . ,vn ), and assume without loss of generality that E is
single-crossing with respect to the natural voter order. Let p be an
arbitrary candidate that is not ranked first in every vote.

Note that if p is ranked first in at least one vote, then we can shift
p forward in a vote that is adjacent to the one where p is ranked first
without violating the single-crossing property. Thus, from now, on
we assume that no voter ranks p first. Let U and D be the sets of
candidates ranked above p in the first and last vote, respectively.

If each voter ranks some member of U right ahead of p then we
can shift p forward in the last vote without violating the single-
crossing property (the candidate ranked right before p in the last
vote is also ranked ahead of p in all the other votes). Suppose then
that for some j ∈ [n] the candidate ranked right above p in vj is
some candidate d ∈ D. Let vk be the first such vote. Thus, in votes
v1, . . . ,vk−1 either p is ranked first (but this is impossible by our
assumptions) or the candidate ranked right above p is inU .

If d is ranked below p invk−1, then d is ranked below p in each of
the first k − 1 votes, so we can swap p and d invk without violating

the single-crossing property. Now, suppose d is ranked above p in
vk−1, and let c be the candidate ranked right above p in vk−1 (note
that c , d by our choice of k ; see Figure 1 for an illustration). As
c ∈ U , the first voter ranks c above d , and the (k − 1)-th voter ranks
d above c . Since our profile is single-crossing and in vk candidate p
is ranked right below d , this means that in vk candidate c appears
below p. Thus, we can swap c and p in vk−1 without violating the
single-crossing property. This completes the proof. □

Using Theorem 5.8 we obtain a very simple algorithm for the
problem of obtaining additional w2 points for p in an instance of
Borda Shift Bribery.

Proposition 5.9. There is an algorithm that given an instance of

Borda Shift Bribery with single-crossing preferences and unit-cost

price functions, and a nonnegative integerw2, finds a minimum-cost

set of unit shifts that increases the score of the preferred candidate p
byw2 (or to the point where p is ranked first in every vote) and runs

in time O(nm).

All in all, our algorithm for unit-price Borda Shift Bribery for
single-crossing elections (Steps 1–4) runs in time O(m2n).
The Space of Single-Crossing Elections Let us now consider
Theorem 5.8 independently from the Shift Bribery problem. By
applying this theorem repeatedly, we can find a sequence of swaps
that transforms a given single-crossing election into one where all
the voters have identical preference orders, while ensuring that each
intermediate election is single-crossing (for the same voter order).
Then, by applying such a transformation “in reverse,” we can obtain
any other single-crossing election (even for a different voter order).
That is, the space of all single-crossing elections is connected in the
sense of Obraztsova et al. [27]. It would be interesting to understand
if this space is also convex in their sense (Obraztsova et al. [27]
show that the space of all single-peaked elections with a given
axis is connected and convex, but for the space of all single-peaked
elections this is not the case).

6 CONCLUSIONS
We have shown that the complexity of Swap and Shift Bribery
drops significantly when the input election is single-peaked or
single-crossing and needs to retain this property post-bribery with
respect to the original societal axis or voter order. Remaining open
problems include complexity of Borda Shift Bribery with arbitrary
prices for single-peaked elections and of Plurality Swap Bribery
for single-crossing elections. Another challenge is to extend our
positive results for Borda to all positional scoring rules. It would also
be interesting to explore the complexity of bribery in a Euclidean
setting, where the briber can pay voters and/or candidates to move
in the issue space. Another exciting direction is empirical study
of shift bribery (both in the general setting and for the restricted
domains).
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