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ABSTRACT
We analyze from the game theory point of view Consensus-based

blockchains when participants exhibit rational or Byzantine be-

havior. Our work is the first to model the Byzantine-consensus

based blockchains as a committee coordination game. Our first
contribution is to offer a game-theoretical methodology to an-

alyze equilibrium interactions between Byzantine and rational

committee members in Consensus-based blockchains. Byzantine

participants seek to inflict maximum damage to the system, while

rational participants best-respond to maximize their expected

net gains. Our second contribution is to derive conditions under

which consensus properties are satisfied or not in equilibrium.

When the number of votes required for a decision is lower than

the proportion of Byzantine participants, invalid blocks are ac-

cepted in equilibrium. When the number of votes needed is large,

equilibrium can involve coordination failures, in which no block

is ever accepted. However, when the cost of accepting invalid

blocks is large, there exists an equilibrium in which blocks are

accepted if and only if they are valid.

CCS CONCEPTS
•Theory of computation� Exact and approximate compu-
tation of equilibria; Algorithmic game theory; • Computing
methodologies� Distributed algorithms;

KEYWORDS
Blockchain; Committee; Game Theory; Termination; Validity

ACM Reference Format:
YackolleyAmoussou-Guenou, Bruno Biais,Maria Potop-Butucaru, and Sara

Tucci-Piergiovanni. 2020. Rational vs Byzantine Players in Consensus-

based Blockchains. In Proc. of the 19th International Conference on Au-
tonomous Agents and Multiagent Systems (AAMAS 2020), Auckland, New
Zealand, May 9–13, 2020, IFAAMAS, 9 pages.

1 INTRODUCTION
Since the publication of Nakamoto’s white paper [29] propos-

ing the proof-of-work protocol, Bitcoin, many blockchains have

been created. At the operational level, a blockchain maintains

an evolving list of ordered blocks. Each block consists of one or

more transactions that have been verified by the system mem-

bers. Proof-of-work blockchains, however, consume excessive

Proc. of the 19th International Conference on Autonomous Agents and Multiagent
Systems (AAMAS 2020), B. An, N. Yorke-Smith, A. El Fallah Seghrouchni, G. Sukthankar
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amounts of energy. This motivated tremendous efforts to propose

alternatives protocols.

Byzantine-consensus based blockchains offer an alternative

that has the advantage of being economically viable and of of-

fering strong consistency guaranties [8]. In Byzantine-consensus

based blockchains such as HoneyBadger, HotStuff or Tendermint

[4, 7, 16, 17, 24, 28, 33] a subset of deterministically selected partic-

ipants, executes an instance of Byzantine consensus to decide on

the next block to append. These protocols strive to satisfy the fol-

lowing properties: Termination: every non-Byzantine participant

decides on a value (a block);Agreement: if there is a non-Byzantine
participant that decides a value 𝐵, then all the non-Byzantine par-

ticipants decide 𝐵; Validity: a decided value by any non-Byzantine
participant is valid, it satisfies the predefined predicate.

While Byzantine consensus [25] is one of the best understood

and formalized building blocks in distributed computing, blockchains

systems revive this line of research in several respects. First, tra-
ditional Byzantine consensus has been analyzed mostly in sys-

tems where participants were either correct (verify their specifi-

cation) or Byzantine (arbitrarily deviate from their specification).

Blockchain systems bring on the scene a third type of player: ra-

tional players who take actions only if these actions increase their

profit. Understanding the performance and limits of Byzantine-

consensus based blockchains with rational players is the goal of

the current work. Our focus on rational players is in line with

analyses of blockchain systems conducted by economists (e.g.

[10]). These works, however, have not considered Byzantine par-

ticipants yet. Second, traditional Byzantine consensus studies have
not considered the impact of rewarding which is a distinctive as-

pect of blockchains. In this work, we take into account the case

of rewarding solely the participants to the consensus protocol.

Our contribution. Our contribution is twofold. First, we offer a

methodology to analyze Byzantine consensus based blockchain

protocols as a game between rational and Byzantine players. Two

key aspects of the game, for rational players, are the cost of blocks

verification and the cost of networking. Block verification is cru-

cial since appending non-verified blocks may have long-term

costs (e.g. double spending, collapse of the system etc.). Network-

ing to communicate votes in favor of blocks also has tremendous

impact on system welfare. That is, if participants do not vote,

this can block the system or lead to agreement on invalid blocks.

We denote the proportion of necessary votes for a decision by

𝜈 . We derive conditions on the threshold 𝜈 and on the propor-

tion of Byzantine players, 𝑓 , under which rational players reach

an equilibrium where the consensus properties of Validity and
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Termination are guaranteed. Our findings are as follows: when

𝑓 ≥ 𝜈 , invalid blocks are accepted, so that validity is not satisfied;

when 𝑓 < 𝜈 , while there exists an equilibrium in which validity

and termination are satisfied, there also exists an equilibrium in

which blocks are never accepted, so that termination is not sat-

isfied. This points to a tension between validity (which requires

that the 𝜈 threshold be large enough) and termination (which can

be threatened when the 𝜈 threshold is high.).

Related work. Rational participants have been considered in

various works in distributed computing, e.g. [1–3, 5, 6, 20, 22,

23, 26]. [1] shows some advantages of combining game theory

and distributed computing and presents some challenges. As for

Byzantine consensus, the utilities of rational players take into

account whether or not a decision is reached. For the problem of

Byzantine agreement for instance, Groce et al. [22] consider an
environment with rational and honest participants where they

provide protocols that tolerate rational adversaries and proved

lower bounds. In [23], Halpern and Vilaça prove that in a full ratio-

nal setting, if participants can fail by crashing, then there is no ex
post Nash equilibrium solving the fair consensus problem (where

fair means that the input of every agent is decided with equal

probability), even with only one crash. They also present a pro-

tocol satisfying fair consensus under some assumptions over the

failures patterns. [5] proposes building blocks for distributed algo-

rithms and proposes protocols solving consensus and renaming.

For leader election, [3] shows that in systems with only ratio-

nal players, under certain conditions, it is possible to obtain a

𝑘-resilient equilibrium (resistant to a coalition of up to 𝑘 partici-

pants). Here, we consider the costs of actions (Sending, Checking)

in the players’ utilities, and not only if a decision is reached, con-

trary to the previous works. We also consider an environment

composed of a combination of Byzantine and rational players.

Similar to our study, in [26], Lysyanskaya and Triandopou-

los consider rational and Byzantine participants, while studying

the problems of secret sharing and multi-party computation; the

latter subsumes classical consensus protocols. [26] proposes an

incentive compatible protocol resistant to a coalition of up to 𝑓

faulty players, where the utilities consider if a decision is reached

or not, and on the value of decision, they also analyzed the case

where Byzantine utilities may be unknown. Concurrently to [26],

[2] proposes an incentive-compatible protocol for secret sharing

with rational participants where some utilities can be unknown.

Contrarily to previous studies, we consider the costs of actions

(Sending, Checking) in the players utilities; these costs make the

study more realistic and the analysis more complex. Our approach

also differs from the previous works by the following: when pre-

vious works provide an incentive compatible protocol for rational

participants, we take a protocol solving the consensus problem in

the classical honest vs Byzantine setting (no rational), and then

study the rational behaviors with that protocol. In particular, in

this work we do not only show that there exist a good equilibrium,

but we also exhibit other different equilibria that exists in the

setting. The articles [2, 22, 26], use cooperative game theory in

their analyses, where we follow the BAR model [6] and study the

rational behavior in a non-cooperative setting, as in [23].

Blockchains either use proof-of-* like mechanisms (e.g. proof-

of-work, proof-of-stake, proof-of-elapsed-time, etc.) or classical

Byzantine consensus approaches [4, 7, 16, 17, 24]. Byzantine

consensus-based blockchains have the advantage to guarantee

strong consistency by running a Byzantine Fault Tolerant (BFT)

protocol [13]. In order to use a BFT protocol in an open setting,

recent research has been devoted to either find secure mecha-

nisms to select committees of fixed size over time (e.g. [15, 21])

and/or to propose incentives to promote participation [4]. Most

of the proposals, however, assume participants as either honest

or Byzantine, failing to thoroughly explore the effect of rational

participants. In this line of work, Solidus [4] is the first to consider

rational participants by proposing an incentive-compatible BFT

protocol for blockchains. Solidus introduces interesting incen-

tive mechanisms; however, the work does not provide a game

theoretic framework for their analysis.

While addressing a different protocol, [27] is the closest work

to ours. In this protocol, multiple committees run in parallel to

validate a non-intersecting set of transactions (a shard). A non-

cooperative static game approach for the intra-committee protocol

is taken leading to the result that rational agents can free-ride

when rewards are equally shared. The main aspect of our analysis

that is new and different from [27] is the following: we have a

dynamic (not static) multi-round analysis of a problem in which

some participants are Byzantine and some blocks can be invalid

(and costly for rational players if accepted). In that context, there

is a situation in which in equilibrium rational agents are pivotal,

because if they do not check the block validity this will create the

risk of having an invalid block accepted. It is because they are

pivotal that they do not free ride. Moreover, we discuss equilib-

ria in relation to formal consensus properties – Termination vs

Validity –, which represents a novelty.

In the realm of consensus-free blockchains (e.g. Bitcoin) many

works used rational arguments to prove thresholds on the fraction

of honest nodes needed to guarantee security properties [18, 32].

These works establish very pessimistic thresholds while in prac-

tice Bitcoin works even if the honest majority assumption does

not hold. Following this observation, [9] proposes a rational anal-

ysis of Bitcoin based on the rational protocol design framework

[20]. The proposed game, with respect to ours, is at an upper

level of abstraction, proposing a two-player game between the

protocol designer and the adversary. The rational protocol design

also models the behavior of (some of the) protocol participants as

rational, and studies the general problem of secure multi-party

computation. Our game models instead the behavior of protocol

participants that can be rational, evolving in an environment with

Byzantine participants. Moreover, our work targets consensus-

based blockchain unlike [9].

With only rational players, [10] models Bitcoin as a coordina-

tion game. Similar to the work in [10], our analysis shows that the

protocol in consensus-based blockchains is a coordination game.

Additionally, we consider Byzantine players, and show that Termi-
nation can be violated when coordination failures occur. [31] uses

game theory to study consensus-free proof-of-stake blockchains,
and shows that the Nothing at Stake problem is mitigated because

players with large stakes on the main chain prefer not to add

blocks on forking branches, since it reduces the strength of the
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main chain, and thus the value of their stakes. The environment

considered in [31] differs from ours, since [31] does not consider

consensus-based blockchains, nor Byzantine players.

2 BLOCKCHAIN CONSENSUS WITH
RATIONAL PLAYERS

2.1 System Model
We consider a system composed of a finite and ordered set Π,
called committee, of synchronous sequential processes or players,
namely Π = {𝑝1, . . . , 𝑝𝑛} where process 𝑝𝑖 is said to have index 𝑖 .

We assume each player is aware of its index. In the following, we

refer to process/player 𝑝𝑖 by its index, say process 𝑖 . Hereafter, the

words “player” and “process” are taken to have the same meaning.

Communication. Weassume that each process evolves in rounds.

A round consists of one or more phases, and each phase is divided

into three sequential steps, in order: the send, the delivery and

the compute step. We assume that the send step is atomically

executed at the beginning of the phase and the compute step

is atomically executed at the end of the phase. The phase has

a fixed duration that allows collecting all the messages sent by

the processes at the beginning of the phase during the delivery

step. At the end of a phase, a process exits from the current phase

and starts the next one. The processes communicate by sending

and receiving messages through a reliable broadcast primitive.

Messages are created with a digital signature, and we assume that

digital signatures cannot be forged. When a process 𝑖 delivers

a message, it knows the process 𝑗 that created the message. We

assume that messages cannot be lost.

Processes Behavior. In this paper we consider a variant of the

BAR model [6] where processes are either rational or Byzantine.
Rational processes are self-interested and target to maximize their

expected utility. They will deviate from a prescribed (suggested)

protocol if and only if doing so increases their expected utility.

Their objective function must account for their costs (e.g., sending

messages) and benefits (e.g., reward of a block) for participating

in a system. In line with [6], the objective of Byzantine processes

is to prevent the protocol from achieving its goal, and to reduce

the rational processes utility, no matter the cost. We denote by 𝑓

the number of Byzantine processes in the network. We assume

symmetric Byzantines (i.e. their behavior is perceived identically

by all non Byzantine processes). That is, a message sent by a

Byzantine process and received by a non-Byzantine process in

a given phase is received by all non-Byzantine processes in the

same phase. Note that this can be implemented by introducing

an extra phase of communication.

2.2 Byzantine Consensus-based Blockchain
Consensus-based blockchains should satisfy the following consen-

sus properties: Termination: every non-Byzantine process decides

on a value (a block);Agreement: if two non-Byzantine processes de-
cide respectively on values 𝐵 and 𝐵′, then 𝐵 = 𝐵′; Validity[12, 14]:
a decided value by any non-Byzantine process is valid, it satisfies

the predefined predicate. Let us note that the above properties

must hold also for systems prone to rational behaviors.

A blockchain is a growing sequence of blocks, where any new

block in the blockchain can only be appended. Once a block is in

the blockchain, it cannot be modified nor removed. The block at

position ℎ ≥ 0 in the blockchain is said to be at height ℎ, and the

first block at height 0 is the initialization block. Let us call length of
a blockchain the number of blocks the blockchain is composed of.

If the length of the blockchain is ℎ − 1 ≥ 0, then the next block to

be added to the blockchain can only be at height ℎ. To implement

the above specification in consensus-based blockchains, for each

heightℎ > 0 of the blockchain, a consensus instance is run inside a

committee selected for the given height. In this paper, we analyze a

very general protocol, inspired by [4, 7, 16, 17, 24, 28, 33], variants

of PBFT [13]. In this protocol, a proposer proposes a value, i.e. a

block, and the other members of the committee will check the

validity of the value. If the value is valid, then they will vote for

it and will announce their vote through a message to the other

members. Votes are collected and if a given threshold is reached,

then the value is decided, otherwise a new proposer will propose

another block and the procedure restarts.

The prescribed protocol. The protocol proceeds in rounds. For

sake of simplicity we consider the height ℎ of the blockchain

passed as parameter to the protocol. Algorithm 1 presents the

pseudo-code of the protocol.

Algorithm 1 Prescribed Protocol for a given height ℎ at any

process 𝑖

1: Initialization:
2: 𝑣𝑜𝑡𝑒 := nil
3: 𝑟 := 0 /* Current round number */

4: 𝑑𝑒𝑐𝑖𝑑𝑒𝑑𝑉𝑎𝑙𝑢𝑒 := nil

5: Phase PROPOSE(𝑟 ) :
6: Send step:
7: if 𝑖 == isProposer(𝑟, ℎ) then
8: 𝑝𝑟𝑜𝑝𝑜𝑠𝑎𝑙 ← createValidValue(ℎ) /* The proposer of the round generates a

block, i.e. the value to be proposed */

9: broadcast ⟨PROPOSE, ℎ, 𝑟, 𝑝𝑟𝑜𝑝𝑜𝑠𝑎𝑙 ⟩
10: Delivery step:
11: delivery ⟨PROPOSE, ℎ, 𝑟, 𝑣⟩ from proposer(𝑟 ) /* The process collects the proposal

*/

12: Compute step:
13: if isValid(𝑣) then
14: 𝑣𝑜𝑡𝑒 ← 𝑣 /* If the delivered proposal is valid, then the process sets a vote for it */

15: Phase VOTE(𝑟 ) :
16: Send step:
17: if 𝑣𝑜𝑡𝑒 ≠ 𝑛𝑖𝑙 then
18: broadcast ⟨VOTE𝑖 , ℎ, 𝑟, 𝑣𝑜𝑡𝑒 ⟩ /* If the proposal is valid, the process sends the vote

for it to all the validators */

19: Delivery step:
20: delivery ⟨VOTE, ℎ, 𝑟, 𝑣⟩ /* The process collects all the votes for the current height

and round */

21: Compute step:
22: if | ⟨VOTE, ℎ, 𝑟, 𝑣⟩ | ≥ 𝜈 ∧ 𝑑𝑒𝑐𝑖𝑑𝑒𝑑𝑉𝑎𝑙𝑢𝑒 = nil ∧ 𝑣𝑜𝑡𝑒 ≠ 𝑛𝑖𝑙 ∧ 𝑣𝑜𝑡𝑒 = 𝑣 then
23: 𝑑𝑒𝑐𝑖𝑑𝑒𝑑𝑉𝑎𝑙𝑢𝑒 ← 𝑣; exit /* The valid value is decided if the threshold is reached */
24: else
25: 𝑣𝑜𝑡𝑒 ← nil
26: 𝑟 ← 𝑟 + 1

For each round 𝑡 a committee member is designated as the pro-

poser for the round in a round robin fashion. The isProposer(𝑡, ℎ)
function returns the id of the proposer for the current round (line

7). The function, by taking as parameter the current height, deter-

ministically selects the proposer on the basis of the information

contained in the blockchain up to ℎ (the actual selection mech-

anism is out of the scope of the paper). Each round is further

divided in two phases: the PROPOSE and the VOTE phase.
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During the PROPOSE phase, the proposer of the round uses

the function createValidValue(ℎ) to generate a block. Because

a valid block must include the identifier of the ℎth block in the

blockchain, the height ℎ is passed as parameter (line 8). Once the

block is created, a message broadcasting the proposal is sent (line

9). At line 10 the proposal is received through a delivery function.

Each process checks if the proposal is a valid value (line 13). If so,

the process sets its vote to the value (line 14).

During the VOTE phase, any process that sets its vote to the

current valid proposal sends a message (of type vote) to the other

members of the committee (line 18). During the delivery step, sent

messages are collected by every process. During the compute step,

each process verifies if a quorum of 𝜈 votes for the current pro-

posal has been reached. Let us note that 𝜈 , the majority threshold

is a parameter here, because it is the object of our study to estab-

lish the quorum 𝜈 in presence of rational and Byzantine processes.

If the quorum is reached, the process voted for the value and did

not already decide for the current height, then it decides for the

current proposal (line 23) and the protocol ends. If the quorum is

not reached, then a new round starts (line 26).

Let us note that the protocol in an environment assuming only

correct and symmetric Byzantine processes trivially implements

consensus if 𝑓 , the number of Byzantine processes, is such that

𝑓 < 𝜈 . If 𝑓 ≥ 𝜈 , on the other hand, the Termination property is

not guaranteed. The scenario for that is that Byzantine validators

might vote for a different value with respect to the one voted by

correct processes or a nil value. In that case, the correct process

will not decide (line 22) and will move in the next round. The

scenario can repeat forever.

In the followingwe detail the pseudo-code for a rational process

shown in Algorithm 2. The rational process will try to maximize

its payoff by choosing to undertake or not the actions defined

in its action space (Section 2.3). We consider the choice of: (i)

proposing or not a valid block, (ii) checking or not the validity of

a block and (iii) sending or not the vote for a proposed block. We

consider that the action of checking the validity of the block and

the action of sending the message (of type vote) have a cost.

Protocol of the rational processes. Rational processes choices are
explicitly represented in the pseudo-code (Algorithm 2) by dedi-

cated variables, namely,𝑎𝑐𝑡𝑖𝑜𝑛𝑝𝑟𝑜𝑝𝑜𝑠𝑒 ,𝑎𝑐𝑡𝑖𝑜𝑛𝑐ℎ𝑒𝑐𝑘 , and𝑎𝑐𝑡𝑖𝑜𝑛𝑠𝑒𝑛𝑑 ,

defined at lines 5−7. Each action, initialized to 𝑛𝑖𝑙 , can take values
from the set {0, 1}. Those values are set by calling the functions

𝜎
propose

𝑖
, 𝜎check

𝑖
, and 𝜎send

𝑖
, respectively, returning the strategy

for the process 𝑖 .

Strategy 𝜎
propose

𝑖
determines if the proposer 𝑖 chooses to pro-

duce a valid proposal or an invalid one (lines 12-16). In both cases,

the proposal is sent in broadcast (line 17).

Strategy 𝜎check
𝑖

determines if the receiving process chooses

to check the validity of the proposal or not, which is a costly

action. If the process chooses to check the validity (line 22), it

will also update the knowledge it has about the validity of the

proposal and it will pay a cost 𝑐𝑐ℎ𝑒𝑐𝑘 . If otherwise, the process

keeps not knowing if the proposal is valid or not (𝑣𝑎𝑙𝑖𝑑𝑉𝑎𝑙𝑢𝑒 [𝑟 ]
remains set to ⊥). Note that this value remains set to ⊥ even if the

process is the proposer. This is because we assumed, without loss

of generality, that checking validity has a cost and that the only

way of checking validity is by executing the isValid(𝑣) function.

Algorithm 2 Pseudo-code for a given height ℎ modeling the

rational process 𝑖’s behavior

1: Initialization:
2: 𝑣𝑜𝑡𝑒 := nil
3: 𝑟 := 0 /* Current round number */

4: 𝑑𝑒𝑐𝑖𝑑𝑒𝑑𝑉𝑎𝑙𝑢𝑒 := nil
5: 𝑎𝑐𝑡𝑖𝑜𝑛propose := nil
6: 𝑎𝑐𝑡𝑖𝑜𝑛check := nil
7: 𝑎𝑐𝑡𝑖𝑜𝑛send := nil
8: 𝑣𝑎𝑙𝑖𝑑𝑉𝑎𝑙𝑢𝑒 [] := {⊥,⊥, . . . ,⊥} /* 𝑣𝑎𝑙𝑖𝑑𝑉𝑎𝑙𝑢𝑒 [𝑟 ] ∈ {⊥, 0, 1} */

9: Phase PROPOSE(𝑟 ) :
10: Send step:
11: if 𝑖 == isProposer(ℎ, 𝑟 ) then
12: 𝑎𝑐𝑡𝑖𝑜𝑛propose ← 𝜎

propose

𝑖
() /* 𝜎

propose

𝑖
∈ {0, 1} sets the action of proposing a

valid block or an invalid one */

13: if 𝑎𝑐𝑡𝑖𝑜𝑛propose == 1 then
14: 𝑝𝑟𝑜𝑝𝑜𝑠𝑎𝑙 ← createValidValue(ℎ)
15: else if 𝑎𝑐𝑡𝑖𝑜𝑛propose == 0 then
16: 𝑝𝑟𝑜𝑝𝑜𝑠𝑎𝑙 ← createInvalidValue()
17: broadcast ⟨PROPOSE, ℎ, 𝑟, 𝑝𝑟𝑜𝑝𝑜𝑠𝑎𝑙 ⟩
18: Delivery step:
19: delivery ⟨PROPOSE, ℎ, 𝑟, 𝑣⟩ from proposer(ℎ, 𝑟 )
20: Compute step:
21: 𝑎𝑐𝑡𝑖𝑜𝑛check ← 𝜎check

𝑖
() /* 𝜎check

𝑖
∈ {0, 1} sets the action of checking or not the

validity of the proposal */

22: if 𝑎𝑐𝑡𝑖𝑜𝑛check == 1 then
23: validValue[𝑟 ] ← isValid(𝑣) /* The execution of isValid(v) has a cost 𝑐𝑐ℎ𝑒𝑐𝑘 */

24: 𝑎𝑐𝑡𝑖𝑜𝑛send ← 𝜎send

𝑖
(validValue) /* 𝜎send

𝑖
: {⊥, 0, 1} → {0, 1} sets the action of

sending the vote or not */

25: if 𝑎𝑐𝑡𝑖𝑜𝑛send == 1 then
26: 𝑣𝑜𝑡𝑒 ← 𝑣 /* The process decides to send the vote, the proposal might be invalid */

27: Phase VOTE(𝑟 ) :
28: Send step:
29: if 𝑣𝑜𝑡𝑒 ≠ 𝑛𝑖𝑙 then
30: broadcast ⟨VOTE𝑖 , ℎ, 𝑟, 𝑣𝑜𝑡𝑒 ⟩ /* The execution of the broadcast has a cost 𝑐𝑠𝑒𝑛𝑑

*/

31: Delivery step:
32: delivery ⟨VOTE, ℎ, 𝑟, 𝑣⟩ /* The process collects all the votes for the current height

and round */

33: Compute step:
34: if | ⟨VOTE, ℎ, 𝑟, 𝑣⟩ | ≥ 𝜈 ∧ 𝑑𝑒𝑐𝑖𝑑𝑒𝑑𝑉𝑎𝑙𝑢𝑒 = nil ∧ 𝑣𝑜𝑡𝑒 ≠ 𝑛𝑖𝑙 ∧ 𝑣𝑜𝑡𝑒 = 𝑣 then
35: 𝑑𝑒𝑐𝑖𝑑𝑒𝑑𝑉𝑎𝑙𝑢𝑒 = 𝑣; exit
36: else
37: 𝑣𝑜𝑡𝑒 ← nil
38: 𝑟 ← 𝑟 + 1

Note that, as defined in Section 2.3, the strategy 𝜎send
𝑖

depends

on the knowledge the process has about the validity of the pro-

posal. The strategy determines if the process chooses to send its

vote for the proposal or not (line 24-30). If the processes choose

to send a message for the proposal, it will pay a cost 𝑐𝑠𝑒𝑛𝑑 .

Let us note that the rational player that did not check the

validity of the block could decide an invalid value if more than

𝜈 other processes have done the same and the proposed block is

invalid. We also note that in our model, the Agreement property

always holds, since at the end of each round, all rational processes

have the same set of messages delivered.

We now define the game that represents the protocol.

2.3 Byzantine-Rational Game
Recall that out of the 𝑛 players, 𝑓 ≥ 1 are Byzantine, while 𝑛 − 𝑓

are rational. Each player 𝑖 locally observes its own type, 𝜃𝑖 , which

can be Byzantine (𝜃𝑖 = 𝜃𝑏 ) or rational (𝜃𝑖 = 𝜃𝑟 ).1

1
If player’s type was observable (i.e., if Byzantine players were detectable in ad-

vance) there would be a trivial solution to preclude them from harming the system:

forbidding their participation.
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Action space. As proposer, the player decides whether to pro-

pose a valid block or an invalid one. Then, at each round 𝑡 , each

player first decides whether to check the block’s validity or not

(at cost 𝑐𝑐ℎ𝑒𝑐𝑘 ), and second decides whether to send a message

(at cost 𝑐𝑠𝑒𝑛𝑑 ) or not.

Information sets. At the beginning of each round 𝑡 > 1, the

information set of the player, ℎ𝑡
𝑖
, includes the observation of the

round number 𝑡 , the player’s own type 𝜃𝑖 , as well as the obser-

vation of what happened in previous rounds, namely (i) when

the player decided to check validity, the knowledge of whether

the block was valid or not, (ii) how many messages were sent,

and (iii) whether a block was accepted or not. At round 1, ℎ1
𝑖
only

includes the player’s private information about its own type, 𝜃𝑖 .

Then, in each round 𝑡 > 1, the player decides whether to check

the validity of the current block. At this point, denoting by 𝑏𝑡 the

block proposed at round 𝑡 , when the player does not decide to

check validity isValid(𝑏𝑡 ) is the null information set, while if

the player decides to check, isValid(𝑏𝑡 ) is equal to 1 if the block
is valid and 0 otherwise. So, at this stage the player information

set becomes 𝐻𝑡
𝑖
= ℎ𝑡

𝑖
∪ isValid(𝑏𝑡 ), which is ℎ𝑡

𝑖
augmented with

the validity information player 𝑖 has about 𝑏𝑡 , the proposed block.

Strategies. At each round 𝑡 ≥ 1, the strategy of player 𝑖 is a

mapping from its information set into its actions. If the agent is

selected to propose the block, its choice is given by 𝜎
propose

𝑖
(ℎ𝑡

𝑖
).

Then, at the point at which the agent can decide to check block

validity, its strategy is given by 𝜎check
𝑖

(ℎ𝑡
𝑖
). Finally, after making

that decision, the player must decide whether to send a message

or not, and that decision is given by 𝜎send
𝑖
(𝐻𝑡

𝑖
).

Reward and cost from adding blocks. In this paper we study the

case in which, when a block is accepted, only the players which

sent a message are rewarded (and receive 𝑅), as it is done in some

blockchain systems (e.g [7]). In addition, we assume that when

an invalid block is accepted, all rational players incur cost 𝜅.

The reward 𝑅, given to the players when a block is accepted, is
larger than the cost 𝑐𝑐ℎ𝑒𝑐𝑘 of checking validity, which in turn is
larger than the cost 𝑐𝑠𝑒𝑛𝑑 of sending a message. Additionally, we
assume that the reward obtained when a block is accepted is smaller
than the cost 𝜅 of accepting an invalid block. That is, 𝜅 > 𝑅 >

𝑐𝑐ℎ𝑒𝑐𝑘 > 𝑐𝑠𝑒𝑛𝑑 .

Objective of rational players. Let𝑇 be the endogenous round at

which the game stops. If a block is accepted at round 𝑡 ≤ 𝑛, then

𝑇 = 𝑡 . Otherwise, if no block is accepted, 𝑇 = 𝑛. In the latter case,

the termination property is not satisfied.

At the beginning of the first round, the expected gain of rational

player 𝑖 is:

𝑈𝑖 = 𝐸


(
𝑅 ∗ 1(𝜎send

𝑖
(𝐻𝑇

𝑖
)=1) ∗ 1(block accepted at𝑇 )

−𝜅1(invalid block accepted)
)

−∑𝑇
𝑡=1

(
𝑐𝑐ℎ𝑒𝑐𝑘1𝜎check

𝑖
(ℎ𝑡

𝑖
)=1) + 𝑐𝑠𝑒𝑛𝑑1(𝜎send

𝑖
(𝐻 𝑡

𝑖
)=1)

) |ℎ1𝑖  ,
where 1(.) denotes the indicator function, taking the value 1 if

its argument is true, and 0 if it is false.

Then, at the beginning of round 𝑡 > 1, if𝑇 ≥ 𝑡 , the continuation

payoff of the rational player with information set ℎ𝑡
𝑖
is

𝑊𝑖,𝑡 (ℎ𝑡𝑖 ) = 𝐸


(
𝑅 ∗ 1(𝜎send

𝑖
(𝐻𝑇

𝑖
)=1) ∗ 1(block accepted at𝑇 )

−𝜅1(invalid block accepted)
)

−∑𝑇
𝑠=𝑡

(
𝑐𝑐ℎ𝑒𝑐𝑘1(𝜎check

𝑖
(ℎ𝑠

𝑖
)=1) + 𝑐𝑠𝑒𝑛𝑑1(𝜎send

𝑖
(𝐻𝑠

𝑖
)=1)

) |ℎ𝑡𝑖  ,
Objective of Byzantine players. In the current paper, we assume

the following: Byzantine players 1) as proposers, propose invalid
blocks, and 2) when receiving a proposed block, check the blocks’
validity and send a message if and only if the block is invalid.

We conjecture the above strategies will turn out to be the

optimal strategies of the Byzantine players, minimizing𝑊𝑖,𝑡 in

equilibrium.

Equilibrium concept. Since we consider a dynamic game, with

asymmetric information, the relevant equilibrium concept is Per-

fect Bayesian Equilibrium [19], intuitively defined as follows:

A Perfect Bayesian equilibrium is such that all players 1) choose
actions maximizing their objective function, 2) rationally anticipate
the strategies of the others, and 3) draw rational inferences from
what they observe, using their expectations about the strategies of
the others and Bayes law, whenever it applies.

A Perfect Bayesian Equilibrium (PBE) is a Nash equilibrium

[30], so players best-respond to one another. It imposes additional

restrictions, to take into account the fact that the game is dynamic

and that players can have private information, and therefore

must draw rational inferences, from their observation of actions

and outcomes. Rationality of inferences in PBE implies that (i)

each player has rational expectations about the strategies of the

others, and (ii) each player’s beliefs are consistent with Bayes law,

when computing probabilities conditional on events that have

strictly positive probability on the equilibrium path. Perfection

in PBE implies that, at each node starting a subgame the players’

strategies form aNash equilibrium of that subgame. In this context,

to show that a strategy is optimal it is sufficient to show that it

dominates any one-shot deviation [11].

We explore the behaviors of rational players that may not

validate the block – because checking validity has a cost – and

conditions (on the threshold 𝜈 and proportion of Byzantine play-

ers) under which rational players reach an equilibrium where

both Validity and Termination properties (Section 2.2) are guar-

anteed. To do so, in Section 3, we study the equilibria that arise

under different conditions.

3 EQUILIBRIA FOR RATIONAL PLAYERS
3.1 Equilibrium when 𝑓 ≥ 𝜈

When the number of Byzantine players is larger than 𝜈 , i.e., 𝑓 ≥ 𝜈 ,

the validity property is not satisfied, since, when the first pro-

poser is Byzantine, it proposes an invalid block, and that block

is accepted, as all Byzantine players send messages in its favor.

Against that backdrop, we characterize the strategies of the ratio-

nal players and state the equilibrium outcome when 𝑓 ≥ 𝜈 .

Proposition 3.1. If 𝑛 − 𝑓 ≥ 𝜈 + 1 and 𝑓 ≥ 𝜈 , there exists a
Perfect Bayesian equilibrium in which the strategy of a rational
player at any round is the following:
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• As proposer, a rational player proposes a valid block.
• When receiving a proposed block, the rational players do not
check the block validity but send a message.

The first condition (𝑛 − 𝑓 ≥ 𝜈 + 1) implies that, when all

rational players but one send a message, they meet the majority

threshold 𝜈 , so the block is accepted. The second condition (𝑓 ≥ 𝜈)

implies that, when all Byzantine players send a message, the

block is accepted. Under these conditions, each rational player

understands it is not pivotal: If the block is invalid, Byzantine

players will send messages, so that the block will be accepted

irrespective of the rational player’s own action. Moreover, if the

block is valid, Byzantine players will not send messages, but all

the other rational players will, so that the block will be accepted

irrespective of the rational player’s action.

Thus rational players understand that they are not pivotal, and

that whatever they do, given the equilibrium behavior of the other

rational agents and of the Byzantine players; all blocks will be

accepted. Consequently, they have no interest in checking the

validity of the block. The only relevant comparison for them is

between their expected gain when they send a message

𝑅 − 𝑐𝑠𝑒𝑛𝑑 −
𝑓

𝑛
𝜅

and their expected gain when they do not send a message − 𝑓
𝑛𝜅.

Since, by assumption, 𝑅 > 𝑐𝑠𝑒𝑛𝑑 , rational players find it optimal to

send amessage. Finally note that, in the equilibrium of Proposition

3.1, a block is decided at round 1, so the termination property is

satisfied, but, when the proposer is Byzantine, an invalid block is

accepted, so the validity property is not satisfied.

3.2 Equilibria when 𝑓 < 𝜈

Proposition 3.2. When 𝑓 < 𝜈 and𝑛− 𝑓 ≥ 𝜈 , there exists a Nash
equilibrium in which rational players never check blocks’ validity
nor send messages, so that no block is ever accepted.

Condition 𝑓 < 𝜈 in Proposition 3.2 implies that Byzantine

players cannot reach the threshold on their own. This precludes

accepting invalid blocks. Therefore, the validity property is sat-

isfied. Unfortunately, the condition also implies there exists an

equilibrium in which the termination property also fails to hold.

The intuition is the following:

In Proposition 3.2, each rational player anticipates that no other

player will send amessage when the block is valid.
2
In this context,

each rational player knows that, if it were to send a message in

favor of a valid block, it would be the only one to do so. Because

the threshold 𝜈 is strictly larger than 1, the block would not be

accepted. Therefore sending a message is a dominated action for

the rational player. The equilibrium in Proposition 3.2 reflects that

rational players’ actions are strategic complements and they must

coordinate on sending messages in order to have valid blocks

accepted. Proposition 3.2 shows that, in equilibrium, there can be

a coordination failure, such that no block is ever accepted.
3

2
Byzantine players send messages but only when the block is invalid.

3
If 𝑓 = 0, then, with 𝜈 = 1, there exists a unique equilibrium, in which all players

check validity and send a message iff the block is valid. In that equilibrium Validity

and Termination are satisfied. But this obtains only if there are no Byzantine players.

As soon as 𝑓 ≥ 1, if 𝜈 = 1, Proposition 3.1 applies and validity is not satisfied.

Proposition 3.3. When 𝑓 < 𝜈 and 𝜈 < 𝑛 − 𝑓 − 1, there exists
a Perfect Bayesian equilibrium in which the strategy of a rational
player at any round is the following:

• As proposer, a rational player proposes a valid block.
• When receiving a proposed block, the rational players do not
check the block validity but send a message.

As in Proposition 3.1, the rational players understand that they

are not pivotal, and that whatever they do, given the equilibrium

behavior of the other rational agents and of the Byzantine pro-

cesses; all blocks will be accepted. Consequently, they have no

interest in checking the validity of the block. The only relevant

comparison for them is between their expected gain when they

send a message 𝑅 −𝑐𝑠𝑒𝑛𝑑 −
𝑓
𝑛𝜅 and their expected gain when they

do not send a message − 𝑓
𝑛𝜅. Since, by assumption, 𝑅 > 𝑐𝑠𝑒𝑛𝑑 , ra-

tional players find it optimal to send a message. Finally note that,

in the equilibrium of Proposition 3.3, a block is decided at round 1,

so the termination property is satisfied, but, when the proposer is

Byzantine, an invalid block is accepted, so the validity property is

not satisfied. Note that the conditions of either Proposition 3.2 or

of Proposition 3.3 imply that 𝑓 < 𝑛
2
, i.e, there is a strict majority

of rational players. Yet, the propositions show that such majority

is not enough to ensure both termination and validity.

While there exists equilibria inwhich either Termination (Propo-

sition 3.2) is not verified or Validity (Proposition 3.3) is not verified,

this does not necessarily imply there is no equilibrium that satis-

fies both properties. To have termination and validity, it must be

that, in equilibrium, sufficiently many rational players find it in

their own interest to check the validity of the block and to send

messages in support of valid blocks. The problem is that some

players might be tempted to free-ride, and let the others bear the

cost of checking. To avoid this situation, it must be that (at least

some) rational players anticipate they are pivotal, i.e., if they fail

to check block validity and send messages in support of valid

blocks, this may derail the player at their own expense.

To make this point, we look for an equilibrium in which some

rational players check the validity of the block and send a message

if and only if the block is valid, and this results in valid blocks

being immediately accepted and invalid blocks being rejected.

Before proving that such an equilibrium exists, we characterize

the expected continuation payoff to which it would give rise.

Lemma 3.4. Consider a candidate equilibrium in which some
rational players check the validity of the block and send a message
if and only if the block is valid, while the other rational players send
messages without checking validity, and this results in valid blocks
being immediately accepted and invalid blocks being rejected. In
such an equilibrium, if it exists, the expected continuation payoff,
at round 𝑡 , of the rational players who are to check block validity is

𝜋𝑐ℎ𝑒𝑐𝑘 (𝑡) = 𝑅 − 𝑐𝑠𝑒𝑛𝑑 − 𝜙 (𝑡)𝑐𝑐ℎ𝑒𝑐𝑘 ,

while the expected continuation payoff, at round 𝑡 , of the rational
players who are not to check block validity is

𝜋𝑠𝑒𝑛𝑑 (𝑡) = 𝑅 −𝜓 (𝑡)𝑐𝑠𝑒𝑛𝑑 ,

where 𝜙 (𝑓 ) = 1, 𝜓 (𝑓 + 1) = 1 and both 𝜙 and𝜓 satisfy property 𝑃
defined below.
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Definition 3.5. A function 𝑔 satisfies property 𝑃 , if 𝑔(𝑡) = 1 +
𝑓 −𝑡+1
𝑛−𝑡+1𝑔(𝑡 + 1),∀𝑡 < 𝑓 .

In the candidate equilibrium, participants will reach a point at

which the block is valid and all rational players send a message so

that the block is accepted. This gives rise to a payoff 𝑅−𝑐𝑠𝑒𝑛𝑑 , the
first part of 𝜋𝑐ℎ𝑒𝑐𝑘 (𝑡). The second part of 𝜋𝑐ℎ𝑒𝑐𝑘 (𝑡), 𝜙 (𝑡)𝑐𝑐ℎ𝑒𝑐𝑘 ,
is the expected cost of checking the block validity, where 𝜙 (𝑡) is
the expected number of times the player expects to check validity

before a block is accepted. Similarly, in 𝜋𝑠𝑒𝑛𝑑 (𝑡), 𝜓 (𝑡)𝑐𝑐ℎ𝑒𝑐𝑘 , is
the expected cost of sending messages, where𝜓 (𝑡) is the expected
number of times the player expects to send messages before a

block is accepted.

Relying on Lemma 3.4, we now establish that our candidate

equilibrium is indeed an equilibrium. To do so denote the highest

index
4
of all Byzantine players by 𝑖𝐵 .

Proposition 3.6. When 𝑓 < 𝜈 and 𝑛 − 𝑓 > 𝜈 , if the cost 𝜅 of
accepting an invalid block is large enough, in the sense that

𝜅 > 𝛼 (𝑡)𝑐𝑐ℎ𝑒𝑐𝑘 − 𝛽 (𝑡)𝑐𝑠𝑒𝑛𝑑 ,∀𝑡 < 𝑓 ,

where

𝛼 (𝑡) = (𝑛 − 𝑡 + 1)𝜙 (𝑡) − (𝑓 − 𝑡 + 1) Pr(𝑖𝐵 ≥ 𝑛 − 𝜈 + 𝑓 + 2|𝑇 ≥ 𝑡)𝜙 (𝑡 + 1)
(𝑓 − 𝑡 + 1) Pr(𝑖𝐵 < 𝑛 − 𝜈 + 𝑓 + 2|𝑇 ≥ 𝑡)

and

𝛽 (𝑡) = Pr(𝑖𝐵 ≥ 𝑛 − 𝜈 + 𝑓 + 2|𝑇 ≥ 𝑡)
Pr(𝑖𝐵 < 𝑛 − 𝜈 + 𝑓 + 2|𝑇 ≥ 𝑡) ,

and if the reward is large enough relative to the costs in the sense
that

𝑅 ≥ max

[
𝑛

𝑛 − 𝑓
𝑐𝑠𝑒𝑛𝑑 , 𝑐𝑠𝑒𝑛𝑑 +

𝑛

𝑛 − 𝑓
𝑐𝑐ℎ𝑒𝑐𝑘

]
,

there exists a Perfect Bayesian equilibrium in which the strategy of
rational players is the following:
• As proposer, a rational player proposes a valid block.
• At any round 𝑡 ≤ 𝑓 , when receiving a proposed block, (i) the
rational players with index 𝑖 ∈ {𝑡, .. 𝑛 − 𝜈 + 𝑓 + 1} check the
block validity and send a message only if the block is valid,
while (ii) the rational players with index 𝑖 ∈ {𝑛−𝜈+𝑓 +2, ...𝑛}
do not check the validity of the block but send a message.
• If round 𝑡 = 𝑓 + 1 is reached, rational players send a message
without checking if the block is valid. At this point the block
is valid and accepted.

Hence, in equilibrium, termination occurs no later than at round𝑓 +
1.

On the equilibrium path, invalid blocks (proposed by Byzantine

players) are rejected, while valid blocks (proposed by rational

players) are accepted. This implies that, if round 𝑡 = 𝑓 + 1 is

reached, the players know that during all the previous (𝑓 ) rounds

the proposers were Byzantine (to draw this inference, the rational

players use their anticipation that all participants play equilibrium

strategies; hence the Perfect Bayesian nature of the equilibrium).

Consequently, at round 𝑓 + 1, the proposer must be rational, and

all players anticipate the proposed block is valid. So, no rational

player needs to check the validity of the block but all send a

message, which brings them expected gain equal to 𝑅 − 𝑐𝑠𝑒𝑛𝑑 .
4
A player knows its index in the committee. Note that this is a common assumption

in PBFT based blockchains.

This is larger than their gain from deviating (e.g., by not sending

a message or by checking the block.)

At previous rounds 𝑡 ≤ 𝑓 , players know that all 𝑡 − 1 previous
proposers were Byzantine and that there remains 𝑓 − 𝑡 + 1 Byzan-
tine players with index strictly larger than 𝑡 − 1 (as above, this
rational inference is a feature of the Perfect Bayesian equilibrium

we characterize). Do the equilibrium strategies of the rational

players preclude acceptance of an invalid block by Byzantine pro-

cesses? To examine that, consider the maximum possible number

of messages that can be sent if the proposer is Byzantine. In equi-

librium the 𝜈 − 𝑓 − 1 players with indexes strictly larger than

𝑛 −𝜈 + 𝑓 + 1 are to send a message without checking it. The worst

case scenario (maximizing the number of messages sent when

the block is invalid) is that none of these players are Byzantine.

In that case, in equilibrium, the number of messages sent when

the block is invalid is 𝑓 + (𝜈 − 𝑓 − 1) = 𝜈 − 1, so that we narrowly
escape validation of the invalid block. In contrast, if one of the

rational players deviated from equilibrium and sent a message

without checking the block, in the worst-case scenario, this would

lead to accepting an invalid block. Thus, in that sense, the rational

players with index strictly lower than 𝑛 − 𝜈 + 𝑓 + 1 are pivotal.
Hence, they check block validity, because, under the condition

stated in the proposition, the cost of accepting an invalid block is

so large that rational players do not want to run that risk.

Proof For clarity, we decompose the proof in 5 steps.

(1) The first step is to note that rational proposers strictly

prefer to propose a valid block than an invalid one. This

is because, when they follow their equilibrium strategy of

proposing a valid block, it is accepted and the proposer gets

𝑅 − 𝑐𝑐ℎ𝑒𝑐𝑘 − 𝑐𝑠𝑒𝑛𝑑 , while if they propose an invalid block,

it is rejected, and we move to the next round, in which,

in equilibrium, the player gets at most 𝑅 − 𝑐𝑐ℎ𝑒𝑐𝑘 − 𝑐𝑠𝑒𝑛𝑑
(and possibly less). Indeed, this player incurs the cost of

checking validity at the next round, because the rational

players who are not expected to check validity have indexes

above 𝑛 − 𝜈 + 𝑓 + 1, which are above 𝑓 + 1, so that they do

not get to propose blocks.

(2) The next step concerns the actions of the rational players

when round 𝑡 = 𝑓 + 1 is reached. At that round, all players
know the proposer must be rational and the proposed block

valid. In equilibrium no rational checks validity but all send

a message. Any other action would be dominated.

(3) The third step concerns the most relevant deviation, in

which a rational player expected to check block validity

fails to do so. If at round 𝑡 a rational player supposed to

check, deviates and sends a message without checking

block validity, its expected continuation payoff is(
1 − 𝑓 − (𝑡 − 1)

𝑛 − 𝑡 + 1

)
(𝑅 − 𝑐𝑠𝑒𝑛𝑑 )

+ 𝑓 − (𝑡 − 1)
𝑛 − 𝑡 + 1 Pr(𝑖𝐵 < 𝑛 − 𝜈 + 𝑓 + 1) (𝑅 − 𝑐𝑠𝑒𝑛𝑑 − 𝜅)

+ 𝑓 − (𝑡 − 1)
𝑛 − 𝑡 + 1 Pr(𝑖𝐵 ≥ 𝑛 − 𝜈 + 𝑓 + 1) (𝜋 (𝑡 + 1) − 𝑐𝑠𝑒𝑛𝑑 ) .

The first term is the payoff obtained by the deviating ra-

tional player if the current block is valid, and therefore
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immediately accepted. The second term is the payoff ob-

tained by the deviating player when he was pivotal and

triggered acceptance of an invalid block. To see this, con-

sider the number of messages when the block is invalid,

the rational player is deviating and the indexes of all the

Byzantine players are strictly lower than 𝑛 − 𝜈 + 𝑓 + 2: 𝑓
messages are sent by the Byzantine players, 1 message is

sent by the deviating rational agent, 𝜈 − 𝑓 − 1 messages are

sent by the rational players with index above than or equal

to 𝑛−𝜈 + 𝑓 + 2. The resulting total number of messages is 𝜈

and the block is accepted. The last term corresponds to the

case in which the deviating rational player is not pivotal,

and the invalid block is not accepted, so that we move to

the next round.

Thanks to Lemma 3.4, we can substitute 𝜋𝑐ℎ𝑒𝑐𝑘 (𝑡 + 1) by
its value: 𝑅 − 𝑐𝑠𝑒𝑛𝑑 − 𝜙 (𝑡 + 1)𝑐𝑐ℎ𝑒𝑐𝑘 . After simplification,

the expected continuation value of the deviating player is

then:

(𝑅 − 𝑐𝑠𝑒𝑛𝑑 ) −
𝑓 − (𝑡 − 1)
𝑛 − 𝑡 + 1 Pr(𝑖𝐵 < 𝑛 − 𝜈 + 𝑓 + 2|𝑇 ≥ 𝑡)𝜅

− 𝑓 − (𝑡 − 1)
𝑛 − 𝑡 + 1 Pr(𝑖𝐵 ≥ 𝑛−𝜈+𝑓 +2|𝑇 ≥ 𝑡) (𝜙 (𝑡 + 1)𝑐𝑐ℎ𝑒𝑐𝑘 + 𝑐𝑠𝑒𝑛𝑑 ) .

The equilibrium condition is that this deviation payoffmust

be lower than the equilibrium continuation payoff of the

player: 𝑅 − 𝑐𝑠𝑒𝑛𝑑 − 𝜙 (𝑡)𝑐𝑐ℎ𝑒𝑐𝑘 . That is
𝑓 − (𝑡 − 1)
𝑛 − 𝑡 + 1 Pr(𝑖𝐵 < 𝑛 − 𝜈 + 𝑓 + 2|𝑇 ≥ 𝑡)𝜅 > 𝜙 (𝑡)𝑐𝑐ℎ𝑒𝑐𝑘

− 𝑓 − (𝑡 − 1)
𝑛 − 𝑡 + 1 Pr(𝑖𝐵 ≥ 𝑛 − 𝜈 + 𝑓 + 2|𝑇 ≥ 𝑡) (𝜙 (𝑡 + 1)𝑐𝑐ℎ𝑒𝑐𝑘 + 𝑐𝑠𝑒𝑛𝑑 ) .

Note that

𝜙 (𝑡) ≥ 𝑓 − (𝑡 − 1)
𝑛 − 𝑡 + 1 Pr(𝑖𝐵 ≥ 𝑛 − 𝜈 + 𝑓 + 2|𝑇 ≥ 𝑡)𝜙 (𝑡 + 1),

by the definition of 𝜙 (𝑡) this inequality is equivalent to

1+ 𝑓 − (𝑡 − 1)
𝑛 − 𝑡 + 1 𝜙 (𝑡+1) ≥ 𝑓 − (𝑡 − 1)

𝑛 − 𝑡 + 1 Pr(𝑖𝐵 ≥ 𝑛−𝜈+𝑓 +2|𝑇 ≥ 𝑡)𝜙 (𝑡+1),

which holds. Thus, we can write the equilibrium condition

as

𝜅 > 𝛼 (𝑡)𝑐𝑐ℎ𝑒𝑐𝑘 − 𝛽 (𝑡)𝑐𝑠𝑒𝑛𝑑 ,∀𝑡 < 𝑓 ,

as stated in the proposition.

(4) Other possible deviations for rational player supposed to

check block’s validity are easier to rule out:

First, the player could do nothing (neither check nor send).

Relative to the equilibrium payoff, this deviation econo-

mizes the cost of checking (𝑐𝑐ℎ𝑒𝑐𝑘 ). If the current proposer

is Byzantine, the player then obtains the same payoff after a

one shot deviation as on the equilibrium path (𝜋𝑐ℎ𝑒𝑐𝑘 (𝑡+1)).
If the current proposer is rational, the block gets accepted,

but the player does not earn any reward. So the deviation

is dominated if

𝑛 − 𝑓

𝑛 − 𝑡 + 1 (𝑅 − 𝑐𝑠𝑒𝑛𝑑 ) ≥ 𝑐𝑐ℎ𝑒𝑐𝑘 ,

which holds under the condition, stated in the proposition,

that 𝑅 ≥ max

[
𝑛

𝑛−𝑓 𝑐𝑠𝑒𝑛𝑑 , 𝑐𝑠𝑒𝑛𝑑 +
𝑛

𝑛−𝑓 𝑐𝑐ℎ𝑒𝑐𝑘
]
.

Second, the player could check the block validity, and then

send a message irrespective of whether the block is valid

or not. This would generate a lower payoff than the main

deviation, shown above (in 3.) to be dominated.

Third, the player could check validity but then send no

message. When the current proposer is Byzantine, this

one-shot deviation yields the same payoff as the equilib-

rium strategy. When the current proposer is rational, this

deviation yields a payoff of −𝑐𝑐ℎ𝑒𝑐𝑘 , which is lower than

the equilibrium payoff 𝑅 − 𝑐𝑠𝑒𝑛𝑑 − 𝑐𝑐ℎ𝑒𝑐𝑘 .
Fourth, the player could check the block’s validity and send

a message only if the block is invalid, which is dominated.

(5) Finally turn to deviations of rational players supposed to

send messages without checking blocks’ validity.

First, consider the possibility to abstain from sending a

message. This economizes the costs 𝑐𝑠𝑒𝑛𝑑 , but, in case the

block is valid and accepted, this implies the agent loses the

reward 𝑅. Therefore, the deviation is dominated if

𝑛 − 𝑓

𝑛 − 𝑡 + 1𝑅 ≥ 𝑐𝑠𝑒𝑛𝑑 ,

which holds under the condition, stated in the proposition,

that 𝑅 ≥ max

[
𝑛

𝑛−𝑓 𝑐𝑠𝑒𝑛𝑑 , 𝑐𝑠𝑒𝑛𝑑 +
𝑛

𝑛−𝑓 𝑐𝑐ℎ𝑒𝑐𝑘
]
.

Second, consider the possibility of checking validity and

sending a message only for valid blocks. This deviation

would imply the agent would have to incur the cost of

checking (𝑐𝑐ℎ𝑒𝑐𝑘 ), but it would economize the cost of send-

ing a message when the block is invalid. So the deviation

is dominated if

𝑐𝑐ℎ𝑒𝑐𝑘 ≥
𝑓 − 𝑡 + 1
𝑛 − 𝑡 + 1 𝑐𝑠𝑒𝑛𝑑 ,

which holds, since by assumption 𝑐𝑐ℎ𝑒𝑐𝑘 ≥ 𝑐𝑠𝑒𝑛𝑑 .

Other deviations, such as checking validity but never send-

ing messages, or checking validity and always sending

messages, or checking validity and sending only if the

block is invalid, are trivially dominated.

□𝑃𝑟𝑜𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 3.6

4 CONCLUSION AND FUTUREWORK
In this paper, we study the resilience of multi-agent Byzantine

consensus-based blockchains by modeling them as a coordina-

tion game between rational and Byzantine players. We derived

the conditions (on the majority threshold and the proportion of

Byzantine players) under which the Validity and Termination

properties of the consensus are guaranteed in equilibrium or not,

assuming that we always have agreement. In future work, we

will extend the analysis to more general Byzantine strategies and

rational agents’ preferences, costs and rewards. Note that our

work is the first game theoretical analyses that considers the com-

bination of rational and Byzantine players in consensus-based

blockchains. Previous game theoretical works in these settings

considered either all players are rational, or the combination of

correct (follow the protocol specification) and rational.
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