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ABSTRACT
The problem of finding optimal solutions of stochastic functions

over continuous domains is common in several real-world applica-

tions, such as, e.g., advertisement allocation, dynamic pricing, and

power control in wireless networks. The optimization process is

customarily performed by selecting input points sequentially and

receiving a noisy observation from the function. In this paper, we

resort to the Multi-Armed Bandit approach, aiming at optimizing

stochastic functions when keeping at a pace the regret (i.e., the
loss incurred during the learning process) during the learning pro-

cess. In particular, we focus on smooth stochastic functions, as it

is known that any algorithm suffers from a constant per-round

regret when the domain is continuous, and the function does not

satisfy any kind of regularity. Our main original contribution is

the provision of a general family of algorithms, which, under the

mild assumption that stochastic functions are a realization of a

Gaussian Process, provides a regret of the order of𝑂 (
√
𝛾𝑇𝑇 ), being

𝛾𝑇 the maximum information gain and 𝑇 the time horizon used for

the learning process. Furthermore, we design a specific algorithm

of our family, called DAGP-UCB, which exploits the structure of

GPs to select the next arm to pull more effectively than the previ-

ous algorithms available in the state of the art, thus speeding up

the learning process. In particular, we show the superior perfor-

mance of DAGP-UCB in both synthetic and applicative settings,

comparing it with the state-of-the-art algorithms.
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1 INTRODUCTION
The problem of finding optimal solutions of stochastic functions

over continuous domains is common in several real-world appli-

cations, such as, e.g., advertisement allocation [21], dynamic pric-

ing [26], power control in wireless communications [8] and learning

optimal control strategies in RL settings [18]. The optimization pro-

cess is customarily performed by selecting input points sequentially

and receiving a noisy observation from the function. Two different

approaches are customarily used to determine the sequence of the

points to test: Bayesian optimization [19], aiming at optimizing

a given function globally using the smallest possible number of

samples, and Multi-Armed Bandit (MAB) approaches [2], aiming at

learning the optimal solution while minimizing the loss incurred

during the sampling process. In particular, Bayesian optimization is

useful when the learner incurs in a loss proportional to the number

of samples drawn in the learning process. For instance, this is the

case when one aims at optimizing the hyperparameters of complex

models and algorithms in machine learning, robotics, and computer

vision [6, 16, 23, 27], where the main issue is the computational

time required to sample the input data points. Conversely, in many

real-world scenarios, selecting a suboptimal option during the opti-

mization process causes the learner to lose value. For instance, in

the ad allocation problem, in which the learner has to partition a

given daily budget for advertising over a set of ads to maximize the

number of clicks received by users, whenever the learner selects a

suboptimal budget allocation, she causes a potential loss of profit

for current day the company that advertises the product. Indeed,

differently from the past settings, the loss incurred at each round

is proportional to the difference between the maximum number

of clicks we can obtain and the number of clicks provided by the

allocation chosen for the round. In our work, we propose a novel

algorithm for stochastic optimization following the MAB approach,

which exploits the structure of models based on Gaussian Processes

(GPs) [22].

The effectiveness of the MAB algorithms is usually measured by

comparing their theoretical guarantees on their cumulative regret
(i.e., the expected cumulative loss incurred during the execution

of the algorithm) and convergence to the optimal solution. This

is done by balancing exploration, i.e., the process of gathering in-

formation on potentially unexplored options, and exploitation, i.e.,
the use of available information to choose the best option. The as-

ymptotic convergence to the optimal solution is guaranteed when
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the algorithm provides a regret that is sublinear w.r.t. the a priori
chosen number of rounds 𝑇 . When the domain is continuous, and

the stochastic function does not satisfy any kind of regularity, ev-

ery algorithm suffers from a constant per-round regret [24]. For

this reason, it is common to design MAB algorithms working on

the assumption that some kind of regularity on either the sam-

pled observations or, more often, the function itself is satisfied.

For instance, if the function is assumed to be Lipschitz continuous,

we can use Continuous-Armed Bandit (CAB) techniques: Klein-

berg et al. ([2008]) propose techniques suffering from a regret of

order 𝑂 (𝑇
𝑑+1
𝑑+2 ), where 𝑑 is the so-called Zooming dimension, i.e.,

a parameter that identifies the complexity of the specific setting.

Nonetheless, the application of the CAB algorithms requires the

knowledge of the Lipschitz constant of the function, a value that is

often difficult to obtain in real-life problems.

In recent years, a milder assumption on the function has been

used to design algorithms in this field: the function should be a

realization of a GP, a model that is the generalization to infinite

dimensions of the multivariate Gaussian distribution. Several algo-

rithms have been specifically crafted to minimize the cumulative

regret in the so-called GPMAB setting [9, 24]. Most of them, e.g.,
GPUCB and IGPUCB, given the observations, build high-probability

Upper Confidence Bounds (UCBs) over the function values and use

them to drive the learning process. Another approach adopted in

this setting, namely GP-TS [9], relies on sampled values from the

estimated distribution to drive the optimization process. Although

these algorithms have been shown to have good theoretical prop-

erties, i.e., a cumulative regret of order 𝑂 (
√
𝑇𝛾𝑇 ), being 𝛾𝑇 the

maximum information gain of 𝑇 samples drawn from the original

function, and empirical performance, they do not fully exploit the

potential offered by the structure of the GPs. More specifically, the

procedure used to select the next arm to play does not explicitly

use the fact that the choice of an input point (a.k.a. arm in the MAB

field) provides information over the entire function. In principle,

one could select an arm not only because it is likely to be opti-

mal, but also to obtain information on those regions that are most

likely to be optimal. This kind of exploration strategy may be of

paramount importance in the early stage of the learning process

and can be addressed by explicitly incorporating the uncertainty

reduction that one would have as a result of pulling an arm. The

novel contributions of this paper are the following:

• the definition of a family of UCB-like algorithms, which also

includes some of the currently available techniques in the

literature, and a regret bound for this family of 𝑂 (
√
𝑇𝛾𝑇 )

in the GP setting, extending and corroborating theoretical

results already present in the literature;

• the design of the Distribution-Aware GP-UCB (DAGP-UCB)
algorithm, capable of leading the exploration using the un-

certainty reduction provided to the most promising regions

(having a large probability of being optimal) of the function;

• a wide experimental campaign on synthetically generated

data and an application to advertising allocation optimiza-

tion comparing the empirical performance of the proposed

algorithm with the state-of-the-art ones.

2 RELATEDWORKS
A first line of research related to our work is represented by algo-

rithms specifically created to solve the GPMAB problem. Srinivas

et al. [24] establish, for the first time in the literature, a new con-

nection between experimental design and GP optimization. They

introduce the GP-UCB algorithm, which uses statistical upper con-

fidence bounds to drive the sequential selection of points, whose

cumulative regret bound is expressed in terms of the maximum

information gain 𝛾𝑇 . More precisely, the authors provide high

confidence bounds of the order 𝑂 (
√
𝛾𝑇𝑇 ), meaning that, for most

common kernel classes, the algorithm provides sublinear regret

guarantees. Chowdhury and Gopalan [9] propose two algorithms:

IGP-UCB and GP-TS. The former one is upper-confidence bound

based and can be seen as a variant of GP-UCB using tighter confi-

dence intervals. This algorithm achieves a high confidence bound

of 𝑂

(
𝐵
√
𝛾𝑇𝑇 +

√
𝛾2

𝑇
𝑇

)
on the cumulative regret, but it requires

the a priori knowledge of an upper bound on the maximum infor-

mation gain at round 𝑡 and an upper bound of the norm of the

target function 𝐵. A completely different approach is provided by

GP-TS, which is an algorithm inspired by Thompson Sampling [14]

modified to work in the GPMAB setting. At each round, the GP-TS

algorithm samples a new GP from a specific probability distribution

and plays the arm that is optimal for that sample. It is known that

this algorithm suffers from a high confidence cumulative regret

of𝑂

(√
𝛾𝑇𝑑 log(𝐵𝑑𝑇 )

[√
𝛾𝑇𝑇 + 𝐵

√
𝑇

] )
, where 𝑑 is the dimension of

the input space. The EST [28] and MES [27] algorithms are based

on the entropy search approach and provide an upper bound to

the regret of 𝑂 (
√
𝛾𝑇𝑇 ). Both algorithms require the knowledge of

the value of the optimal solution (or an upper bound) to run the

algorithm, which, usually, is a strong assumption for real-world

scenarios. Other heuristic approaches to balance exploration and

exploitation in optimization have also been applied to the GP set-

ting, for instance, EI [19] and PI [17]. They are based on the idea

to choose at every round the arm that maximizes the expected

improvements and the probability of improvement, respectively,

w.r.t. a given threshold. To the best of our knowledge, no upper

bound on the cumulative regret for these algorithms is known.

Another line of research focuses on the analysis of the algorithm

in terms of simple regret [5, 13, 27], defined as the minimum dis-

tance between the value of the function of the points selected so

far and the optimal solution of the function to be optimized. This

concept of regret is weaker than the one used in the MAB setting.

Indeed, we will show that, in our setting, an algorithm with sublin-

ear cumulative regret, also has sublinear simple regret, but not vice
versa.1 Therefore, the theoretical results provided in these works

cannot be compared with ours.

We also mention the works dealing with MAB settings with a

continuous number of arms [1, 4, 15], in which the authors require

some degree of continuity, e.g., Lipschitz, of the reward function.

The smoothness property of functions drawn from a GPs is different

from the one required in these works (see [24] for details). Moreover,

it has been shown that empirically these techniques perform poorly

in terms of average cumulative regret [25].

1
The relationship between the two in a more general setting having rewards with

finite support is studied in [3].
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Finally, one of the most promising applications of the GPMAB

techniques in real-world setting is the optimization of advertising

campaigns [20, 21]. Indeed, they have been used to approximate the

functions providing the number of impressions or clicks given the

advertiser’s bid and the daily budget allocated to the specific add.

GPs have been both used to optimize the bid/budget allocation over

a set of ads in an online fashion [21], as well as to optimize the ads

campaign offline [20]. In the aforementioned works, the framework

used to model the problem is a generalization of the MAB one,

namely the Combinatorial MAB [7]. Nonetheless, the improvement

of algorithms to explore efficiently the space of the possible input,

i.e., minimizing the cumulative regret, is of paramount importance

in this applicative setting.

3 PROBLEM STATEMENT
We focus on the problem of deciding sequentially which input x, in a
domain D ∈ R𝑑 , to sample from an unknown function 𝑓 : D → R
to find the solution that maximizes the function while minimizing

the loss incurred in the learning process. More precisely, at each

round 𝑡 over a finite time horizon𝑇 ∈ N, we choose a point x𝑡 ∈ D,

a.k.a. arm, and observe a perturbed sample from that function

𝑦𝑡 = 𝑓 (x𝑡 ) + 𝜖𝑡 , where 𝜖𝑡 ∼ N(0, 𝜆) is a zero-mean Gaussian noise

with variance 𝜆.

In this scenario, an algorithm or policy 𝔘 prescribes the arm x𝑡
to be selected in a specific round 𝑡 . The performance of a policy 𝔘

is evaluated in terms of the cumulative expected reward that it is

capable of gaining over the finite time horizon 𝑇 or, equivalently,

in terms of its cumulative expected pseudo-regret, defined as follows:

𝑅𝑇 (𝔘) =
𝑇∑
𝑡=1

E
[
𝑓 (x∗) − 𝑓 (x𝑡 )

]
, (1)

where x∗ := arg maxx∈D 𝑓 (x) is the choice providing the largest

value of the function 𝑓 , and the expectation in the formula is

w.r.t. the possible stochasticity of the policy.

Gaussian Process. As aforementioned, if function 𝑓 does not show

any kind of regularity, the problem of minimizing the regret does

not admit any algorithm with sublinear cumulative regret. In our

work, we require that the function has some smoothness properties

assuming that is a sample from a GP [22], which is a set of random

variables, one for each x = (𝑥1, . . . , 𝑥𝑑 ), x ∈ D, every finite subset

of which is a multivariate Gaussian distributed. More specifically,

a Gaussian Process𝐺𝑃 (𝜇 (x), 𝑘 (x, x)′) is completely defined by its

mean function 𝜇 (x) = E[𝑓 (x)] and covariance (or kernel) function

𝑘 (x, x′) = E[(𝑓 (x) − 𝜇 (𝑥)) (𝑓 (x′) − 𝜇 (x′))] (x, x′ ∈ D).
2
Under the

GP assumption, and given a set of noisy observations {(xℎ, 𝑦ℎ)}𝑡ℎ=1

from 𝑓 , we have a closed form formula to compute the posterior

mean and variance of each input point x ∈ D as follows:

𝜇𝑡 (x) := k𝑡 (x)⊤ (𝐾𝑡 + 𝜆𝐼 )−1 y𝑡 , (2)

𝜎2

𝑡 (x) := 𝑘 (x, x) − k𝑡 (x)⊤ (𝐾𝑡 + 𝜆𝐼 )−1 k𝑡 (x), (3)

where k𝑡 (𝑥) := (𝑘 (x1, x), . . . , 𝑘 (x𝑡 , x))⊤, (𝐾𝑡 )𝑖 𝑗 := 𝑘 (x𝑖 , x𝑗 ), 𝐼 is
the identity matrix of order 𝑡 , y𝑡 := (𝑦1, . . . , 𝑦𝑡 )⊤.

2
In what follows, without loss of generality, we assume that GPs not conditioned on

data have 𝜇 (x) ≡ 0, i.e., we have uniform null prior for the mean, and we restrict

𝑘 (x, x) ≤ 1 for each x ∈ D, i.e., we assume bounded variance.

Algorithm 1 UCB-like Algorithm for GPMAB

1: Input: input space D, GP prior 𝐺𝑃 (𝜇 (x), 𝑘 (x, x′)), confidence
level 𝛿 , time horizon 𝑇 , exploration term 𝛽 (𝑡, 𝛿), weight coeffi-

cients𝑤𝑡 (x, x′), uncertainty term 𝑆𝑡 (x, x′)

2: for 𝑡 ∈ {1, . . . ,𝑇 } do
3: Pull arm:

x𝑡 = arg max

x∈D
𝜇𝑡−1 (x) +

√
𝛽 (𝑡, 𝛿)

∑
x′∈D

𝑤𝑡 (x, x′)𝑆𝑡 (x, x′)

4: Get reward 𝑦𝑡 = 𝑓𝑡 (x𝑡 ) + 𝜖𝑡
5: Compute 𝜇𝑡 (x), 𝜎𝑡 (x) ∀x ∈ D with Eq. (2)-(3)

Maximum Information Gain. In what follows, we define theMax-
imum Information Gain, whose value depends on the kernel and

the dimension of the input space and on which the regret strictly

depends. Formally:

Definition 1 (Information Gain). Given a set of realization 𝑍𝑡 :=

{(xℎ, 𝑦ℎ)}𝑡ℎ=1
from the function 𝑓 , sampled from a GP, the Informa-

tion Gain is defined as:

𝐼𝐺 (𝑍𝑡 | 𝑓 ) :=
1

2

log

����𝐼 + 𝐾𝑡𝜆 ���� .
For a GP, the information gain has an expression depending on

the input points we selected in 𝑍𝑡 [24]:

𝐼𝐺 (𝑍𝑡 | 𝑓 ) :=
1

2

𝑡∑
ℎ=1

log

(
1 +

𝜎2

𝑡−1
(xℎ)
𝜆

)
. (4)

We can now define the maximum information gain as:

Definition 2 (Maximum Information Gain). Given a realization of
a GP 𝑓 , the Maximum Information Gain of a generic set of 𝑡 samples
𝑍𝑡 := {(xℎ, 𝑦ℎ)}𝑡ℎ=1

is defined as:

𝛾𝑡 := max

x1,...,x𝑡
𝐼𝐺 (𝑍𝑡 | 𝑓 ),

where the maximum is over the possible choice of the set of input
points {x1, . . . , x𝑡 } in 𝑍𝑡 .

The upper bound on the maximum information gain depends

on to specific adopted kernel, the dimension of the input space 𝑑

and the cardinality 𝑡 of the set 𝑍𝑡 , i.e., the number of samples. For

instance, we have:

• Linear Kernel 𝑘 (x, x′) = x⊤x′, with information gain upper

bounded of 𝛾𝑡 = 𝑂 (𝑑 log 𝑡);
• Squared Exponential Kernel𝑘 (x, x′) = exp

{
− | |x−x

′ | |2
2𝑙2

}
, with

information gain upper bounded of 𝛾𝑡 = 𝑂 ((log 𝑡)𝑑+1);
• Matern Kernel 𝑘 (x, x′) = 2

1−𝜈

Γ (𝜈) 𝑟
𝜈𝐵𝜈 (𝑟 ), with 𝑟 =

√
2𝜈
𝑙
| |x −

x′ | |, with information gain upper bounded of𝛾𝑡 = 𝑂

(
𝑡

𝑑 (𝑑+1)
2𝜈+𝑑 (𝑑+1)

log 𝑡

)
;

where | | · | | denotes the vector norm, 𝑙 is a lengthscale parameter,

𝜈 > 0 is a smoothness term, and 𝐵𝜈 is the modified Bessel function

of the second type. These expressions can be used to fully specify

the regret of a method on a given class of GPs.
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4 UCB-LIKE ALGORITHM FAMILY FOR THE
GPMAB SETTING

At first, we define a general family of algorithms, which includes

most of the relevant works from the state of the art, as well as the

DAGP-UCB algorithm proposed here. The pseudocode of DAGP-
UCB is presented in Algorithm 1. A UCB-like algorithm for the

GPMAB setting is a policy selecting the next point to chose as

follows:

x𝑡 = arg max

x∈D
𝜇𝑡−1 (x) +

√
𝛽 (𝑡, 𝛿)

∑
x′∈D

𝑤𝑡 (x, x′)𝑆𝑡 (x, x′), (5)

where 𝛽 (𝑡, 𝛿) > 0 is an exploration term, nondecreasing in 𝑡 , and de-

pending on the confidence level 𝛿 ,𝑤𝑡 (x, x′) are weight coefficients
s.t. 0 ≤ 𝑤𝑡 (x, x′) ≤ 1 for each x, x′ ∈ D, and

∑
x′∈D 𝑤 (x, x′) ≤ 1,

and 𝑆𝑡 (x, x′) > 0 is an uncertainty term. The UCB-like algorithms

available in the literature, i.e., GP-UCB and IGP-UCB, use the fol-

lowing definitions for the coefficients and the uncertainty term:

𝑤𝑡 (x, x′) := 𝛿x,x′,

𝑆𝑡 (x, x′) := 𝜎𝑡−1 (x),

respectively, where 𝛿x,x′ denotes the Kronecker delta, i.e., a func-
tion that is one for x = x′ and zero elsewhere. These two methods

differ from each other in the choice of 𝛽 (𝑡, 𝛿), which is, 𝛽 (𝑡, 𝛿) =
2 log

(
𝑡2𝜋2 |D |

6𝛿

)
for GP-UCB, and 𝛽 (𝑡, 𝛿) =

[
𝐵 +

√
2(𝛾𝑡 + 1 + log(1/𝛿))

]
2

for IGP-UCB. Notably, both the algorithms select the next arm to

play mainly using the information on the performance of a single

arm, while, for instance, they are not explicitly taking into account

the reduction of uncertainty we have on all the other arms provided

by choosing x𝑡 . We will see that exploiting this piece of information

might improve the performance of algorithms designed for GPMAB

settings.

4.1 Finite Domain
It is possible to show the following result, which upper bounds the

regret of the UCB-like algorithms if the input set D is finite:

Theorem 1. Assume to use an UCB-like algorithm ¯𝔘 s.t. 0 ≤
𝑆𝑡 (x, x′) ≤ maxx∈D 𝜎𝑡−1 (x) for each 𝑡 ∈ {1, . . . ,𝑇 } to solve a GP-
MAB problem over a finite domainD. For each probability 𝛿 ∈ (0, 1),
the regret 𝑅𝑇 ( ¯𝔘) is bounded with probability at least 1− 𝛿 as follows:

𝑅𝑇 ( ¯𝔘) ≤

√√√
4

[
𝛽 (𝑇, 𝛿) + 8 log

(
𝑇 2𝜋2 |D |

6𝛿

)]
log(1 + 1/𝜆) 𝛾𝑇𝑇 . (6)

Proof. It has been shown in Lemma 5.1 in [24] that with proba-

bility at least 1−𝛿 , choosing 𝑏 (𝑡, 𝛿) = 2 log

(
𝑡2𝜋2 |D |

6𝛿

)
the following

bounds holds:

|𝑓 (x) − 𝜇𝑡−1 (x) | ≤
√
𝑏 (𝑡, 𝛿)𝜎𝑡−1 (x), (7)

at the same time for each x ∈ D and for each 𝑡 ∈ {1, . . . ,𝑇 }. Under
the assumption that the previous bounds hold, the instantaneous

regret is:

𝑟𝑒𝑔𝑡 = 𝑓 (x∗) − 𝑓 (x𝑡 ) ≤ 𝜇𝑡−1 (x∗) +
√
𝑏 (𝑡, 𝛿)𝜎𝑡−1 (x∗)

− 𝜇𝑡−1 (x𝑡 ) +
√
𝑏 (𝑡, 𝛿)𝜎𝑡−1 (x𝑡 ) (8)

= 𝜇𝑡−1 (x∗) +
√
𝛽 (𝑡, 𝛿)

∑
x′∈D

𝑤 (x∗, x′)𝑆𝑡 (x∗, x′)

−
√
𝛽 (𝑡, 𝛿)

∑
x′∈D

𝑤 (x∗, x′)𝑆𝑡 (x∗, x′)︸                                        ︷︷                                        ︸
≤0

(9)

+
√
𝑏 (𝑡, 𝛿)𝜎𝑡−1 (x∗) − 𝜇𝑡−1 (x𝑡 ) +

√
𝑏 (𝑡, 𝛿)𝜎𝑡−1 (x𝑡 ) (10)

≤ 𝜇𝑡−1 (x∗) +
√
𝛽 (𝑡, 𝛿)

∑
x′∈D

𝑤 (x∗, x′)𝑆𝑡 (x∗, x′)

− 𝜇𝑡−1 (x𝑡 ) + 2

√
𝑏 (𝑡, 𝛿)max

x∈D
𝜎𝑡−1 (x) (11)

≤ 𝜇𝑡−1 (x𝑡 ) +
√
𝛽 (𝑡, 𝛿)

∑
x′∈D

𝑤 (x∗, x′)𝑆𝑡 (x𝑡 , x′)

− 𝜇𝑡−1 (x𝑡 ) + 2

√
𝑏 (𝑡, 𝛿)max

x∈D
𝜎𝑡−1 (x) (12)

≤
√
𝛽 (𝑡, 𝛿)

∑
x′∈D

𝑤 (x∗, x′)max

x∈D
𝜎𝑡−1 (x) + 2

√
𝑏 (𝑡, 𝛿)max

x∈D
𝜎𝑡−1 (x)

(13)

≤ (
√
𝛽 (𝑡, 𝛿) + 2

√
𝑏 (𝑡, 𝛿))max

x∈D
𝜎𝑡−1 (x), (14)

where Equation (12) follows from the definition of the UCB-like
algorithm family

¯𝔘, since x𝑡 is the arm with the largest bound at

round 𝑡 , and Equation (13) from the assumption that 𝑆𝑡 (x, x′) ≤
maxx∈D 𝜎𝑡−1 (x).

Following the proof of Theorem 1 by Srinivas et al. [24] we have

that:

𝑟𝑒𝑔2

𝑡 ≤
(√
𝛽 (𝑡, 𝛿) + 2

√
𝑏 (𝑡, 𝛿)

)
2

(max

x∈D
𝜎𝑡−1 (x))2 (15)

≤ (2𝛽 (𝑡, 𝛿) + 8𝑏 (𝑡, 𝛿)) (max

x∈D
𝜎𝑡−1 (x))2 (16)

≤ 2 (𝛽 (𝑇, 𝛿) + 4𝑏 (𝑇, 𝛿))max

x∈D
𝜎2

𝑡−1
(x) (17)

= 2𝜆 (𝛽 (𝑇, 𝛿) + 4𝑏 (𝑇, 𝛿))max

x∈D

𝜎2

𝑡−1
(x)
𝜆

(18)

≤ 4 (𝛽 (𝑇, 𝛿) + 4𝑏 (𝑇, 𝛿))
log(1 + 1/𝜆)

1

2

max

x∈D
log

(
1 +

𝜎2

𝑡−1
(x)
𝜆

)
, (19)

where Equation (17) follows from the fact that 𝛽 (𝑡, 𝛿) and 𝑏 (𝑡, 𝛿)
are nondecreasing in 𝑡 , and Equation (19) follows from the fact that

for 𝑠 ∈ (0, 𝜆−1) we have 𝑠2 ≤ 𝜆−1

log(1+1/𝜆) log(1 + 𝑠2) for 𝜎𝑡−1 (x) ≤
𝑘 (x, x) ≤ 1 (see [24] for details).

Finally, using the Cauchy-Schwarz inequality we have:

𝑅𝑇 ( ¯𝔘) ≤

√√√
𝑇

𝑇∑
𝑡=1

𝑟𝑒𝑔2

𝑡

=

√√√
𝑇

𝑇∑
𝑡=1

4 (𝛽 (𝑇, 𝛿) + 4𝑏 (𝑇, 𝛿))
log(1 + 1/𝜆)

1

2

max

x∈D
log

(
1 +

𝜎2

𝑡−1
(x)
𝜆

)

=

√√√√√√√√√√𝑇 4 (𝛽 (𝑇, 𝛿) + 4𝑏 (𝑇, 𝛿))
log(1 + 1/𝜆)

𝑇∑
𝑡=1

1

2

max

x∈D
log

(
1 +

𝜎2

𝑡−1
(x)
𝜆

)
︸                                ︷︷                                ︸

≤𝛾𝑇
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≤

√√√
4

[
𝛽 (𝑇, 𝛿) + 8 log

(
𝑇 2𝜋2 |D |

6𝛿

)]
log(1 + 1/𝜆) 𝛾𝑇𝑇,

where the last equation follows from the result on the information

gain of a GP provided in Lemma 5.3 by Srinivas et al. [24]. □

Note that, restricted to the case 𝑓 is sampled from a GP, the

upper bound in Theorem 1 has the same order as that one pre-

sented by Srinivas et al. [24] for GP-UCB, and by Chowdhury and

Gopalan [9] for IGP-UCB.

The results provided in Theorem 1 also hold for𝑤 (x, x′) = 0 or

𝑆𝑡 (x, x′) = 0, meaning that in principle one can use the posterior

mean of an arm 𝜇𝑡−1 (x) as a criterion to choose the next arm to

select. Nonetheless, it has been shown by Srinivas et al. [24] that, in

practice, this choice provides a poor average empirical performance.

In Section 5 we propose and motivate a weight and exploration

scheme for which Theorem 1 holds and is effective in practice.

4.2 Compact Domains
If we are dealing with compact and convex domains D which are

not finite, we need to apply a specific time dependent discretization

D𝑡 of the original domain, i.e., D𝑇 ⊂ D, to still keep at a pace

the regret of a generic UCB-like algorithm. Moreover, we require

further assumptions about the smoothness of kernel generating the

function to avoid dealing with functions which are too much er-

ratic. More specifically, similarly to what has been done in Srinivas

et al. [24], we require that:

Assumption 1 (Kernel Smoothness). A kernel 𝑘 (x, x′) is said to be
smooth on D if, for each 𝐿 > 0 and for some constants 𝑎, 𝑏 > 0, the
functions 𝑓 drawn from 𝐺𝑃 (0, 𝑘 (x, x′)) satisfy:

P

(
𝑠𝑢𝑝x∈D

���� 𝜕𝑓𝜕𝑥 𝑗
���� ≥ 𝐿) ≤ 𝑎𝑒−( 𝐿𝑏 )

2

∀𝑗 ∈ {1, . . . , 𝑑}. (20)

Note that most of the kernels mentioned in Section 3 satisfy

Assumption 1 [12], e.g., the Gaussian kernel and the Matérn one

with 𝜈 > 1

2
. Thanks to this assumption and using a round dependent

discretization we have:

Theorem 2. Assume to use an UCB-like algorithm ¯𝔘 s.t. 0 ≤
𝑆𝑡 (x, x′) ≤ maxx∈D 𝜎𝑡−1 (x) runs over a discretized space D𝑡 of
𝜏𝑡 = 𝑑𝑡

2𝑏
√

log(𝑑𝑎/𝛿) evenly spaced points in each dimension of D
for each 𝑡 ∈ {1, . . . ,𝑇 } to solve a GP-MAB problem in which the
kernel satisfies Assumption 1. For each probability 𝛿 ∈ (0, 1), the
regret 𝑅𝑇 ( ¯𝔘) is bounded with probability at least 1 − 𝛿 as follows:

𝑅𝑇 ( ¯𝔘) ≤
𝜋2

6

+

√√√√√
4

[
𝛽 (𝑇, 𝛿) + 8 log

(
𝑡2𝜋2

3𝛿

)
+ 8𝑑 log

(
𝑑𝑡2𝑏

√
2𝑑𝑎
𝛿

)]
log(1 + 1/𝜆) 𝛾𝑇𝑇 .

(21)

Proof. The proof is adapted from Theorem 2 in [24] and extends

what has been done in Theorem 1. As shown in Theorem 1 with

probability at least 1 − 𝛿
2
, choosing:

𝑏 (𝑡, 𝛿) = 2 log

(
𝑡2𝜋2 |D𝑡 |

3𝛿

)
== 2𝑑 log

(
𝑡2𝜋2𝑑𝑡2𝑏

√
ln(𝑑𝑎/𝛿)

3𝛿

)
(22)

the following bounds holds:

|𝑓 (x) − 𝜇𝑡−1 (x) | ≤
√
𝑏 (𝑡, 𝛿)𝜎𝑡−1 (x), (23)

at the same time for each x ∈ D𝑡 and for each 𝑡 ∈ {1, . . . ,𝑇 }. From
now on, let us assume that the previous bounds hold. Using a union

bound w.r.t. the 𝑑 dimensions of the input spaceD in Assumption 1

we have:

P

(
∀𝑗, 𝑠𝑢𝑝x∈D

���� 𝜕𝑓𝜕𝑥 𝑗
���� ≤ 𝐿) ≥ 𝑑𝑎𝑒−( 𝐿𝑏 )

2

=:

𝛿

2

, (24)

therefore, with probability at least 1− 𝛿
2
we have that for any x ∈ D:

|𝑓 (x − 𝑓 (x′) | ≤ 𝐿 | |x − x′ | |1 . (25)

Since we choose a discretization with step 𝜏𝑡 := 𝑑𝑡2𝑏
√

log(𝑑𝑎/𝛿),
for any x ∈ D exists [x] ∈ D𝑡 s.t.:

| |x − [x] | |1 ≤
𝑑

𝜏𝑡
=

1

𝑡2𝐿
, (26)

where we used the definition of 𝛿 and 𝜏𝑡 .

Let us denote with x∗𝑡 ∈ D𝑡 the nearest point in the discretized

input space to the global optimum x∗. The instantaneous regret of
the algorithm is:

𝑟𝑒𝑔𝑡 = 𝑓 (x∗) − 𝑓 (x𝑡 ) = 𝑓 (x∗) − 𝑓 (x∗𝑡 ) + 𝑓 (x∗𝑡 ) − 𝑓 (x𝑡 ) (27)

≤ 𝐿 | |x∗ − x∗𝑡 | |1 + 𝑓 (x∗𝑡 ) − 𝑓 (x𝑡 ) (28)

≤ 1

𝑡2
+ 𝜇𝑡−1 (x∗𝑡 ) +

√
𝑏 (𝑡, 𝛿)𝜎𝑡−1 (x∗) − 𝜇𝑡−1 (x𝑡 ) +

√
𝑏 (𝑡, 𝛿)𝜎𝑡−1 (x𝑡 )

(29)

≤ 1

𝑡2
+ (

√
𝛽 (𝑡, 𝛿) + 2

√
𝑏 (𝑡, 𝛿))max

x∈D
𝜎𝑡−1 (x), (30)

where we used the same proof techniques used in Equations (8)-(14)

since we are evaluating the regret over a finite set of arms, as in

Theorem 1.

Overall, we have:

𝑅𝑇 (𝔘) ≤
𝑇∑
𝑡=1

1

𝑡2
+

𝑇∑
𝑡=1

(
√
𝛽 (𝑡, 𝛿) + 2

√
𝑏 (𝑡, 𝛿))max

x∈D
𝜎𝑡−1 (x)︸                                             ︷︷                                             ︸

𝑅𝐴

(31)

≤
∞∑
𝑡=1

1

𝑡2
+

√√√
4

[
𝛽 (𝑇, 𝛿) + 8 log

(
𝑡2𝜋2 |D𝑇 |

3𝛿

)]
log(1 + 1/𝜆) 𝛾𝑇𝑇 (32)

=
𝜋2

6

+

√√√√√
4

[
𝛽 (𝑇, 𝛿) + 8 log

(
𝑡2𝜋2

3𝛿

)
+ 8𝑑 log

(
𝑑𝑡2𝑏

√
2𝑑𝑎
𝛿

)]
log(1 + 1/𝜆) 𝛾𝑇𝑇,

(33)

where the term 𝑅𝐴 is bounded as done in Theorem 1. Using the

union bound over the two probabilities that these events occur

(Assumption 1 holds and the bounds in Equation (23) are not vio-

lated), we have a bound over the cumulative regret which holds

with probability at least 1 − 𝛿 , which concludes the proof. □

Thanks to this result, we are also able to bound the simple regret,
formally defined as follows:

𝑆𝑅𝑇 (𝔘) = max

x∈D
𝑓 (x) − max

x∈{x1,...,x𝑇 }
𝑓 (x) . (34)

It is possible to show the following:
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Theorem 3. If an algorithm U has guarantee on the cumulative
regret for a GP-MAB setting s.t. 𝑅𝑇 (𝔘) ≤ 𝐶 (𝑇 ) over a time horizon of
𝑇 , then it also guarantees that the simple regret is s.t. 𝑆𝑅𝑇 (𝔘) ≤ 𝐶 (𝑇 )

𝑇
on the same time horizon.

Proof. Fix the time horizon 𝑇 . The case in which the algorithm

𝔘 suffers the largest simple regret and 𝑅𝑇 (𝔘) ≤ 𝐶 (𝑇 ) is the one
in which it selects over the time horizon 𝑇 always arms providing

an instantaneous regret of 𝑟𝑒𝑔𝑡 =
𝐶 (𝑇 )
𝑇

, so that it has simple regret

bounded by
𝐶 (𝑇 )
𝑇

and cumulative regret bounded by 𝐶 (𝑇 ). By con-

tradiction, assume there exist a time instant 𝑡 ′ s.t. the instantaneous
expected regret 𝑟𝑒𝑔′𝑡 >

𝐶 (𝑇 )
𝑇

. This implies that there exists also

𝑡 ′′ ≠ 𝑡 ′ s.t. 𝑟𝑒𝑔′′𝑡 <
𝐶 (𝑇 )
𝑇

, which violates the initial assumption that

the simple regret is
𝐶 (𝑇 )
𝑇

. □

Notably, if one has some guarantees on simple regret, they can-

not be used to bound the cumulative regret, since they are only

providing a condition on the best point we selected over the time

horizon 𝑇 , while the cumulative regret also bounds the regret dur-

ing the whole learning process. Concluding, Theorem 3 applied to

UCB-like algorithms and provides a simple regret that is 𝑂

(√
𝛾𝑇
𝑇

)
,

which is of the same order of the one corresponding to algorithms

from the optimization literature, such as the one in [27].

5 THE DAGP-UCB ALGORITHM
We propose a specific instance of the UCB-like algorithms, namely

the DAGP-UCB algorithm, in which the weights𝑤 (x, x′) give more

importance to the region of the domain D which has the largest

probability of being optimal, and the uncertainty term 𝑆𝑡 (x, x′)
encourages the exploration of those arms that contribute most to

the reduction of the standard deviation of the GP over each point

in the input space D. Regarding the exploration term, DAGP-UCB

use the same as GP-UCB 𝛽 (𝑡, 𝛿) := 2 log

(
𝑡2𝜋2 |D |

6𝛿

)
. Notice that

the combined use of 𝑤 (x, x′) with 𝑆𝑡 (x, x′) is crucial to provide

improved empirical performance (more details will be shown below

together with the experimental evaluation of the algorithm).

5.1 Weight Design: Maximum Distribution
As a weight, we use the posterior probability of an arm to be maxi-

mal. We refer to the formal definition of the weight computation

provided in [11] for finite domains and in [10] for compact domains.

Here, we focus on the finite domain formulation:

𝑤𝑡 (x, x′) = 𝑤 (x′) = P(𝑓 (x′) ≥ max

x∈D
𝑓 (x)) (35)

=

∫ +∞

−∞

[
𝑝𝑑 𝑓𝑡−1 (𝑠, x′)

∏
x′≠x

𝐶𝐷𝐹𝑡−1 (𝑠, x′)
]
𝑑𝑠, (36)

where 𝑝𝑑 𝑓𝑡−1 (·, x) and𝐶𝐷𝐹𝑡−1 (·, x) are the probability density func-
tion and the cumulative distribution function, respectively, of a

Gaussian distribution with mean 𝜇𝑡−1 (x) and variance 𝜎2

𝑡−1
(x).

Even if this choice seems natural if one wants to gather more infor-

mation on the region of the space where the optimum is most likely

to be, the weights 𝑤𝑡 (x, x′) cannot be computed in closed form.

However, if the number of arms is finite (|D| ≤ +∞), 𝑤𝑡 (x, x′)
can be computed by numerical integration (e.g., trapezoidal rule or

Algorithm 2 Weights Computation for Finite Domains

Inputs: number of arms |D|, number of iterations 𝑁

Output: computed weights𝑤 (x𝑚)
𝑐𝑖 ← 0, ∀𝑖 ∈ {1, . . . , |D|}
for 𝑛 ∈ {1, . . . , 𝑁 } do

for𝑚 ∈ {1, . . . , |D|} do
sample 𝑠𝑚 from N(𝜇 (x𝑚), 𝜎2 (x𝑚))

𝑖 ← 𝑎𝑟𝑔𝑚𝑎𝑥𝑚∈{1,..., |D | }𝑠𝑚
𝑐𝑖 ← 𝑐𝑖 + 1

𝑤 (x𝑚) ← 𝑐𝑚
𝑁
, ∀𝑚 ∈ {1, . . . , |D|}

return𝑤

Monte Carlo methods). In Algorithm 2, we provide a high-level de-

scription of a Monte-Carlo-like approximation method to compute

the integral in Equation (35). Let 𝑁 be the number of iterations

set, for each 𝑛 ∈ {0, . . . , 𝑁 }, for each arm x𝑚 ∈ D, we draw a

sample 𝑠𝑚 from the corresponding probability density function

𝑝𝑑 𝑓 (x𝑚) = N(𝜇 (x𝑚), 𝜎2 (x𝑚)), and we store the index of the arm

that generated the maximum sample. Each element𝑤 (x𝑚) of the
output vector is the ratio

𝑐𝑚
𝑁
, where 𝑐𝑚 is the number of times

s.t. x𝑚 generated the sample with the largest value.

5.2 Uncertainty Terms Design: Standard
Deviation

The uncertainty terms we propose use the reduction of the standard

deviation given by pulling an arm to drive the selection process,

formally we have:

𝑆𝑡 (x, x′) := 𝜎𝑡−1 (x′) − 𝜎𝑡,x𝑡=x (x′), (37)

where 𝜎𝑡,x𝑡=x (x′) is the standard deviation we would have in x′ by
pulling arm x at round 𝑡 . With the proposed definition of 𝑆𝑡 (x, x′),
the uncertainty term is bounded by maxx∈D 𝜎𝑡−1 (x) (due to the

fact that 𝜎𝑡−1 (x′) − 𝜎𝑡,x𝑡=x (x′) ≤ 𝜎𝑡−1 (x′) ∀x ∈ D, ∀ 𝑡 ≥ 1) and,

therefore, Theorem 1 holds.

Note that this method requires to compute the GP conditional

mean 𝜇𝑡−1 (x) and conditional standard deviation 𝜎𝑡,x𝑡=x (x′) for all
the possible |D|2 pairs of arms, which, in principle, would require a

complexity of𝑂 ( |D|𝑡3), due to the inversion of the Grammatrix𝐾𝑡
built in the sampled points. Nonetheless, relying on the recursive

formulas as done by Chowdhury and Gopalan [9] one could reduce

the computational burden of each step to 𝑂 ( |D|2). Finally, we can
state the following result, whose proof is a simple variation of the

proof of Theorem 1:

Theorem 4. Assume to use the DAGP-UCB algorithm to solve
a GP-MAB problem. For each probability 𝛿 ∈ (0, 1), the regret is
bounded with probability at least 1 − 𝛿 as follows:

𝑅𝑇 ( ¯𝔘) ≤

√√√
36 log

(
𝑇 2𝜋2 |D |

6𝛿

)
log(1 + 1/𝜆) 𝛾𝑇𝑇 .

Notice that the upper bound we would obtain by applying The-

orem 1 to the case stated in Theorem 4 would be the same upper

bound reported in Theorem 4 except for a larger constant. More

precisely, the ratio of the two upper bound is

√
2.
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(a) DAGP-UCB (b) GP-UCB (c) URGP-UCB

Figure 1: Examples of optimization results provided by DAGP-UCB, GP-UCB, and URGP-UCB. The red dots are the samples
selected by the algorithms, the dashed line is the real function f , the blue line represents the posterior of the expected value
𝝁𝒕−1(·), and the blue area represents the 95% confidence interval for the expected value of the function.
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Figure 2: Comparison of the regret of DAGP-UCB with GP-
UCB, and URGP-UCB.

6 EXPERIMENTS
In this section, we perform a wide range of experiments to test

the DAGP-UCB algorithm on both synthetically-generated and

applicative GP-MAB settings. We evaluate the performances of

DAGP-UCB in terms of cumulative regret 𝑅𝑡 (𝔘), and compare

them with the ones of GP-UCB [24], IGP-UCB [9], and GP-TS [9].

6.1 DAGP-UCB Rationale Evaluation
At first, we aim at showing that the specific combination of the

weight coefficient scheme and uncertainty term we chose in the

DAGP-UCB algorithm is crucial to provide an effective algorithm

in practice. Over a setting with |D| = 100 arms, we compare the

proposed algorithm DAGP-UCB with GP-UCB, as a baseline, and

a specifically crafted method, namely the Uncertainty Reduction

GP-UCB (URGP-UCB), an UCB-like algorithm which uses the same

uncertainty term as DAGP-UCB. Formally, URGP-UCB uses:

𝛽 (𝛿, 𝑡) = 2 log

(
𝑡2𝜋2 |D|

6𝛿

)
,

𝑤𝑡 (x, x′) = 𝛿x,x′,
𝑆𝑡 (x, x′) := 𝜎𝑡−1 (x′) − 𝜎𝑡,x𝑡=x (x′) .

Note that also for the UR-GPUCB algorithm Theorem 1 holds, so

it has the same theoretical properties of DAGP-UCB and GP-UCB.

The functions 𝑓 optimized in this setting are generated from a GP

with zero mean, squared exponential kernel with lengthscale 𝑙 = 1

and noise variance of 𝜆 = 0.1. The parameters of the algorithms

are chosen s.t. they satisfy the assumptions provided by the regret

bounds, and we set 𝛿 = 0.1, and a matching kernel has been used for

the posterior estimation. The presented results have been averaged

over 100 independent runs of the analyzed algorithms.

Results. The results are presented in Figure 2. The algorithm that

provides the best performance is DAGP-UCB, which focuses on the

optimal arm after a few samples (≈ 7), after which the cumulative

regret remains almost constant. While GP-UCB takes a few more

samples to converge (≈ 10), the sole use of the uncertainty reduction

to compute the exploration term in URGP-UCB does not allow it to

match the GP-UCB performance. The reason for this behavior is

evident by inspecting Figure 1, in which the URGP-UCB decreases

the uncertainty of the estimates of function 𝑓 over the entire input

space D (Figure 1c). Conversely, the addition of the weighting

scheme as in DAGP-UCB allows concentrating the efforts only in

those areas of the domain that are closest to the optimal value 𝑓 (𝑥∗)
(Figure 1a). The concentration on such arms is even more evident

than the one provided by GP-UCB in Figure 1b, which does not

explicitly weigh them when selecting the next arm to be played.

6.2 Synthetic Settings
In the synthetic experiments, we sample the function 𝑓 from a

linear, a squared exponential (with lengthscale 𝑙 = 1), and a Matérn

(with parameters 𝜈 = 1.5, 𝑙 = 0.2) kernels, all with noise variance

𝜆 = 0.1. We used matching kernels as prior for the GP and the

posterior computation. We analyzed a setting with |D| = 100 arms

evenly spaced over [0, 1], and we set, as customary in the GP-MAB

literature, the parameter 𝛿 = 0.1 for all the analyzed methods. The

parameters have been set as prescribed by theoretical regret upper

bound results, i.e., the parameter 𝐵 of the IGP-UCB algorithm as

the upper bound of the function norm | |𝑓 | |𝑘 , and the parameter 𝛾𝑡
according to the theoretical upper bounds for the information gain

provided above. We repeated the experiments for 100 runs over

𝑇 = 50 rounds and generating 10 independent functions 𝑓 .

Results. In Figure 3a-3c, we report 𝑅𝑡 (𝔘) at each round 𝑡 of

the algorithms averaged over the runs corresponding to the three

different kernels. We observe that the DAGP-UCB algorithm has a
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Figure 3: Regret over functions sampled from linear (a), squared exponential (b), and Matérn (c) kernel.
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Figure 4: Regret on the advertising application.

cumulative regret significantly lower than all the other methods

in all the settings.
3
Note that IGP-UCB does not present good

performance, i.e., its regret seems to grow linearly over time in two

of the three experiments. This is due to the fact that the methods

is designed for a more general case, thus, in this setting, it may

perform poorly, if compared with algorithms suited for this case.

6.3 Advertising Settings
We evaluate the performance of the analyzed algorithms on the

advertising budget optimization problem, defined as follows. An

advertiser has to maximize the number of clicks over a set of 𝐶 = 3

sub-campaigns, each of which is corresponding to a specific ad. At

each day 𝑡 , she chooses a partition 𝑆𝑡 = (𝑥 (1)𝑡 , 𝑥
(2)
𝑡 , 𝑥

(3)
𝑡 ) of a fixed

budget 𝐵 = 20 to allocate on each sub-campaign 𝑖 , i.e., she has to pull
three arms per turn under a overall budget constraint

∑
3

𝑖=1
𝑥
(𝑖)
𝑡 ≤ 𝐵.

The number of clicks received (considered here as reward) is deter-

mined by a noisy function 𝑐𝑙𝑖 (𝑥 (𝑖)𝑡 ) = 𝑐𝑙max

(
1 − 𝑒−𝜂𝑖 (𝑥

(𝑖 )
𝑡 −𝑥𝑖 )

)
+ 𝜀,

where 𝜀 is a Gaussian, zero-mean noise with variance 0.1, and we set

𝑐𝑙max = 100, 𝑥1 = 5, 𝑥2 = 2, 𝑥3 = 1, 𝜂1 = 0.5, 𝜂2 = 0.4, and 𝜂3 = 0.1.

We run the analysed algorithms using |D| = 21 evenly spaced arms

in [0, 20], and a Matérn kernel with 𝜈 = 1.5 as correlation structure

for the estimating GP and noise variance of 𝜆 = 0.1.

3
Confidence intervals have been omitted for visualization reasons: the 95% confidence

intervals are non-overlapping for DAGP-UCB in all the experiments for 𝑡 ∈ [20, 50].

In this specific case, we are not necessarily interested in the

estimation of the maximum value in each sub-campaign, but in

those values of the budget 𝑥
(𝑖)
𝑡 which are most likely to be in the

final budget allocation. Therefore, we define the weights values

as 𝑤𝑖 (𝑥 (𝑖)𝑡 ) = P(𝑥
(𝑖)
𝑡 = 𝑥∗(𝑖) ), where 𝑆∗ = (𝑥∗(1) , 𝑥∗(2) , 𝑥∗(3) ) is

the optimal solution, which in our specific case is 𝑆∗ = (9, 6, 5).
The estimation of𝑤𝑖 (𝑥 (𝑖)𝑡 ) is carried out by resorting to a repeated

sampling/optimization procedure, in which the function 𝑓 (𝑥 (𝑖)𝑡 ) is
repeatedly sampled over the available budget values, and the solu-

tion is computed over these values.
4
We repeated 30 independent

run of the algorithms over a time horizon of 𝑇 = 50 days.

Results. From Figure 4, we can see that the proposed method

outperforms the state-of-the-art ones starting from day 𝑡 ≈ 25. This

suggests that the use of a more flexible criterion to compute the

weights is able to provide a significant improvement to the choice

of the budget over time. Notably, in this setting, GP-TS is able to

provide significantly better performance than GP-UCB, probably

due to the complexity of the environment.

7 CONCLUSIONS AND FUTUREWORKS
In this paper, we propose the DAGP-UCB algorithm, a novel MAB

algorithm capable of optimizing a continuous stochastic function

over a finite dataset D under the assumption the function is a

sample from a GP. This algorithm is based on the UCB approach and

exploits the regularity of the GP structure to minimize the amount

of loss incurred by the algorithm during the learning process. On the

one hand, we provide a theoretical result stating that the proposed

algorithm meets the regret order of the algorithms constituting the

state of the art for the GPMAB setting. On the other hand, we show

that the proposed algorithm outperforms the state-of-the-art ones

in the synthetic and in an advertising problems.

Possible lines of research are to study of tighter theoretical results

on specific classes of problems for DAGP-UCB, and the design of

UCB-like algorithms able to adapt to settings they are applied on.

4
The solution to such a problem can be computed by resorting to a modification of

the dynamic programming procedure used to solve the knapsack problem. See [21].
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